# Nucleic Acids design targeting integer-valued features: FPT counting and uniform sampling

Yann Ponty · Sebastian Will · Stefan Hammer

École Polytechnique · University of Vienna · University of Leipzig

WEPA 2018, Pisa

### The central dogma



### The central dogma V2



### **RNA** design



### **RNA** design



# Positive and negative RNA design

#### Positive structural design

Design sequences S with high affinity to the given structure(s)  $\mathcal{R}$ .

Optimize energy  $\sum_{R \in \mathcal{R}} E(R|S)$  (or target specific energies)

= **IN**-design

#### • Negative structural design

Moreover, avoid high(er) affinity for all other structures.

Optimize probability  $\prod_{R \in \mathcal{R}} Pr(R|S)$ 

= **OUT**-design

### Multi-target design of RNA sequences

Bio-example: design riboswitches for translational control



### Multi-target design of RNA sequences



**Multiple structures** (=multiple design targets)



```
(((((.)).(((..))).))).\\((.))((...))..(((..)))\\....(((((..)))...))...
```

# Multi-target design of RNA sequences



**Multiple structures** (=multiple design targets)



(((((.)).(((..))).))).((.))((...))..(((..))) $\dots.(((((..)))...))\dots$ 

Task: generate seq's with *specific* properties

- Low/specific energy for multiple structures
- Forbid motifs to appear **anywhere** in design; Force, **each at least once**
- Control overall composition (GC-content) ...

Approach: controlled sampling

# **RNA** sequence/structure compatibility

Complementarity of bases:

Given **multiple** secondary structures  $\mathcal{R} = \{R_1, \ldots, R_k\}$  of length *n*, a sequence  $S \in \{A, C, G, U\}$  is compatible with  $(\mathcal{R}, n)$  iff

 $\forall (i, j) \in R \in \mathcal{R} : (S_i, S_i)$  is complementary

**Problems** given  $(\mathcal{R}, n)$ :

- Decision: is there any compatible S
- Find/Construct a compatible S
- Count the compatible S
- Generate S uniformly (among all compatible ones)

# Multi-target compatible designs

### Given $(\{R_1, ..., R_k\}, n)$

#### Decision

Theorem (Flamm et al., 2001)  $\mathcal{O}(n)$  algorithm: return bipartite(G)

#### Construct one

Theorem (Flamm et al., 2001)  $\Theta(n)$  algorithm: alternate **G** and **C** along cycles and paths

#### Counting

Theorem (Hammer/Wei/Ponty/Will, 2018)  $\Rightarrow$  Corollary: Counting designs is #P-hard

#### • **Controlled (uniform, Boltzmann) sampling** *FPT algorithm on treewidth* (Hammer/Wei/Ponty/Will, 2018)

# Uniform sampling for multiple structures

5 4

U

| R1 | ( |
|----|---|
| R2 |   |
| R3 | ( |
|    | Α |
|    | Α |
|    | Δ |

1 2 3

> . ( . (

> > Α

G

A A

Α GAGUU

GGUU

AAUU

G

**GAUC** 

A U

Δ

Α G

Α

G

G

G

G G

٠

G

U

A U U

U С

U C

U

UU

| • | Complementarity | A | / | G |
|---|-----------------|---|---|---|
|   |                 | U |   | С |

- Uneven distribution: e.g.
  - first position **A** : **C** : **G** : **U** = 4 : 4 : 10 : 10
  - second position, after selecting **G**, **A** : **G** = 4 : 6, ...
- $\rightarrow$  counting enables uniform sampling

**Theorem [HWPW, 2018]:** Counting of sequences for multiple targets is **#P-hard**.

- #BIS (Counting bipartite independent sets) is #P-hard [Ge, Štefankovič, 2012].
- Sequence counting is *equivalent* to counting **independent sets**.





**Theorem [HWPW, 2018]:** Counting of sequences for multiple targets is **#P-hard**.

- #BIS (Counting bipartite independent sets) is #P-hard [Ge, Štefankovič, 2012].
- Sequence counting is *equivalent* to counting **independent sets**.



**Theorem [HWPW, 2018]:** Counting of sequences for multiple targets is **#P-hard**.

- #BIS (Counting bipartite independent sets) is #P-hard [Ge, Štefankovič, 2012].
- Sequence counting is *equivalent* to counting **independent sets**.



**Theorem [HWPW, 2018]:** Counting of sequences for multiple targets is **#P-hard**.

- #BIS (Counting bipartite independent sets) is #P-hard
  [Ge, Štefankovič, 2012].
- Sequence counting is *equivalent* to counting **independent sets**.



**Theorem [HWPW, 2018]:** Counting of sequences for multiple targets is **#P-hard**.

- #BIS (Counting bipartite independent sets) is #P-hard [Ge, Štefankovič, 2012].
- Sequence counting is *equivalent* to counting **independent sets**.



**Theorem [HWPW, 2018]:** Counting of sequences for multiple targets is **#P-hard**.

- #BIS (Counting bipartite independent sets) is #P-hard
  [Ge, Štefankovič, 2012].
- Sequence counting is *equivalent* to counting **independent sets**.



*Given:* k structures, length n **Recipe:** 

- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)

*Given:* k structures, length n **Recipe:** 

- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



#### tree decomposition

 $^{1}$ CTE = Cluster Tree Elimination (Rina Dechter)

*Given:* k structures, length n **Recipe:** 

- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



#### tree decomposition

 $^{1}$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $^{1}$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) <sup>↑</sup>
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) <sup>↑</sup>
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) ↑
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)



- $1. \ {\rm Decompose \ dependency \ graph}$
- 2. Apply dynamic programming (CTE<sup>1</sup>) <sup>↑</sup>
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph



tree decomposition

**Theorem:** Counting and sampling is efficient for fixed tree width  $O(n k 4^w + t n k)$ 

 $<sup>^{1}</sup>$ CTE = Cluster Tree Elimination (Rina Dechter)



- 1. Decompose dependency graph
- 2. Apply dynamic programming (CTE<sup>1</sup>) <sup>↑</sup>
- 3. Sample (stochastic backtracking)  $\downarrow$
- 1 2 3 4 5 6 7
- ( ( . . ) ) . . ( ( ( ) ) ) . ( ( . ) ) .

target structures



dependency graph





Theorem: Counting and sampling is efficient for fixed tree width  $\mathcal{O}(n \, k \, 4^{\mathsf{w}} + t \, n \, k) \longrightarrow \text{can be improved}$ 

<sup>&</sup>lt;sup>1</sup>CTE = Cluster Tree Elimination (Rina Dechter)

# From uniform to Boltzmann sampling

uniform sampling ← counts Boltzmann sampling ← partition functions

Boltzmann sampling: P(S) 
$$\propto \prod_{\ell} \pi_{\ell}^{-F_{\ell}(S)}$$

Features  $F_{\ell}$  can express energies as sums over feature contributions  $\Rightarrow$  complex constraints  $F_{\ell}(S) = f_{\ell}^{\star}$ 

# From uniform to Boltzmann sampling

uniform sampling ← counts Boltzmann sampling ← partition functions

Boltzmann sampling: P(S) 
$$\propto \prod_\ell \pi_\ell^{-F_\ell(S)}$$

Features  $F_{\ell}$  can express energies as sums over feature contributions  $\Rightarrow$  complex constraints  $F_{\ell}(S) = f_{\ell}^{\star}$ 

#### Energy models

- Base pair model *"like counting"* energy = sum of contributions per base pair
- Stacking model scores stacks (of two consec. bps) multi-ary feature contributions
- and beyond: full model, p-knots...

( ( ( ( ( . . . ) ) ) . . ( ( . . . ) ) . ) ) base pair model

### **Dependency graphs**



### Treewidths are typically low

Base pair model

Stacking model







Boltzmann sample: 1000 low energy sequences; generated in seconds

# The positive RNA design problem

Problem **IN:** structures  $\mathcal{R}$ , length *n*, *d* features  $F_1, \dots, F_d$ and objective values  $f_1^*, \dots, f_d^*$ **OUT:** *t* uniform random sequences *S*, compatible w/  $\mathcal{R}$ , s.t.

 $\forall 1 \leq \ell \leq d : F_{\ell}(S) = f_{\ell}^{\star}.$ 

# The positive RNA design problem

#### Problem **IN:** structures $\mathcal{R}$ , length *n*, *d* features $F_1, \dots, F_d$ and objective values $f_1^*, \dots, f_d^*$ **OUT:** *t* uniform random sequences *S*, compatible w/ $\mathcal{R}$ , s.t.

$$\forall 1 \leq \ell \leq d : F_{\ell}(S) = f_{\ell}^{\star}.$$

#### Method (Multi-dim. Boltzmann sampling)

- Choose initial weights π<sub>1</sub>,...π<sub>d</sub>
- Sample from Boltzmann-distribution, s.t.  $Pr(S) \propto \prod_{\ell} \pi_{\ell}^{-F_{\ell}(S)}$
- Output samples that meet objective values
- Estimate feature means and adapt weights; iterate

# Why multi-dim. Boltzmann sampling?

Problem

**IN:** structures  $\mathcal{R}$ , length *n*, *d* features  $F_1, \dots, F_d$ ; objective values  $f_1^*, \dots, f_d^*$ ; and tolerance  $\varepsilon > 0$ **OUT:** *t* random sequences *S*, compatible w/  $\mathcal{R}$ , s.t.

$$orall 1 \leq \ell \leq d : F_\ell(S) \in [f_\ell^\star \cdot (1 - \varepsilon), f_\ell^\star \cdot (1 + \varepsilon)]$$

Possible approaches:

• Multi-dim. Boltzmann sampling (+ rejection step)

#### Classified Dynamic Programming

# Why multi-dim. Boltzmann sampling?

Problem

**IN:** structures  $\mathcal{R}$ , length *n*, *d* features  $F_1, \dots, F_d$ ; objective values  $f_1^*, \dots, f_d^*$ ; and tolerance  $\varepsilon > 0$ **OUT:** *t* random sequences *S*, compatible w/  $\mathcal{R}$ , s.t.

$$orall 1 \leq \ell \leq d : F_\ell(S) \in [f_\ell^\star \cdot (1 - arepsilon), f_\ell^\star \cdot (1 + arepsilon)]$$

Possible approaches:

- Multi-dim. Boltzmann sampling (+ rejection step) works well b/c distributions are typically concentrated
  - expect  $\mathcal{O}(1)$  rejections for  $\varepsilon > 1/\sqrt{n}$ ,
  - $\Theta(n^{d/2})$  for  $\varepsilon = 0$  [Bender et al., 1983; Drmota, 1997].
- Classified Dynamic Programming

# Why multi-dim. Boltzmann sampling?

Problem

**IN:** structures  $\mathcal{R}$ , length *n*, *d* features  $F_1, \dots, F_d$ ; objective values  $f_1^*, \dots, f_d^*$ ; and tolerance  $\varepsilon > 0$ **OUT:** *t* random sequences *S*, compatible w/  $\mathcal{R}$ , s.t.

$$orall 1 \leq \ell \leq d : F_\ell(S) \in [f_\ell^\star \cdot (1 - arepsilon), f_\ell^\star \cdot (1 + arepsilon)]$$

Possible approaches:

- Multi-dim. Boltzmann sampling (+ rejection step) works well b/c distributions are typically concentrated
  - expect  $\mathcal{O}(1)$  rejections for  $\varepsilon > 1/\sqrt{n}$ ,
  - $\Theta(n^{d/2})$  for  $\varepsilon = 0$  [Bender et al., 1983; Drmota, 1997].
- Classified Dynamic Programming
  - convolution:  $\times \Theta(n^{2d})$  time /  $\Theta(n^d)$  space [Cupal et al., 1996]
  - using DFT to avoid convolution allows more efficient uniform sampling over range (case  $\varepsilon > 0$ ) [cf. Senter et al., 2012]



Boltzmann sample: 1000 low energy sequences; generated in seconds



**Boltzmann sample**: 1000 low energy sequences; generated in seconds **Targeted samples**: 1000 highly specific sequences; in minutes



**Boltzmann sample**: 1000 low energy sequences; generated in seconds **Targeted samples**: 1000 highly specific sequences; in minutes



**Boltzmann sample**: 1000 low energy sequences; generated in seconds **Targeted samples**: 1000 highly specific sequences; in minutes

# Boltzmann outperforms uniform sampling for negative multi-target RNA design

|           | Dataset | <b>Red</b> Print | Uniform       | Improvement |
|-----------|---------|------------------|---------------|-------------|
| Seeds     | 2str    | 21.67 (±4.38)    | 37.74 (±6.45) | 73%         |
|           | 3str    | 18.09 (±3.98)    | 30.49 (±5.41) | 71%         |
|           | 4str    | 19.94 (±3.84)    | 32.29 (±5.24) | 63%         |
| Optimized | 2str    | 5.84 (±1.31)     | 7.95 (±1.76)  | 28%         |
|           | 3str    | $5.08(\pm 1.10)$ | 7.04 (±1.52)  | 31%         |
|           | 4str    | 8.77(±1.48)      | 13.13 (±2.13) | 37%         |

Multi-target design objective<sup>[Blueprint]</sup> on the Modena benchmark



# **Complex sequence constraints**

**Task:** forbid a set  $\mathcal{W}$  of subwords of length  $\leq k$ 

Naïve: add k-ary constraints for each k successive sequence positions

Proposed:

- construct Aho-Corasick automaton (states Q)
- extend alphabet from  $\Sigma$  to  $Q imes \Sigma$
- restrict consecutive positions to transitions of the automaton (adds Hamiltonian path of binary constraints)
- new complexity  $\mathcal{O}(n \cdot |\mathcal{R}| \cdot (|\Sigma| \cdot |Q|)^{w'+1})$ ; new tree width w' (!)

Similarly: enforce subwords

transfers ideas of [Zhou et al, 2013]

# https://github.com/s-will/Infrared

- Satisfies multiple constraints and targets multiple complex properties; **Improves quality and feasibility of RNA design** complex constraints by multi-dimensional Boltzmann sampling
- Based on Constraint Networks and Tree Decomposition/CTE: Generic system to extend RNA design ... ...and develop novel sampling-based tools
- Theorems: counting is #P-hard; Boltzmann-sampling is FPT
- Perspectives and Open Questions:
  - effect on tree-width of complex constraints like forbidding motifs? (e.g. this adds hamiltonian path of dependencies)
  - how to (better) ensure uniformity within range of feature values?
  - complexity of generation, stronger complexity bounds?
  - how to extend towards FPT negative design?

read more:





#### **Co-authors**



Stefan Hammer



Wei Wang





BI (Ivo Hofacker) at



#### Funding







