A Common Framework for Linear and Cyclic Multiple Sequence Alignment

Sebastian Will and Peter Stadler

Bioinformatics, University Leipzig

WABI 2014

UAUGACUACAUAUCGCAAUCGCGAAAACGACUGACGUA AUCACUAAAUUCGGAUUCGCGAACGACUACGGCGUA AUACAUCUACAUAUCGCACGAGCGAAAACGACUGUA

Structure-based alignment of RNAs:

e.g. [Will et al., 2007]: two linear RNAs

Here: multiple circular RNAs

AUCACUAGU

AUCACUAGU

AUCACUAGU || AUACACCGU

Multiple Cyclic Sequence Alignment

Two major problems at once

- 1) (Linear) multiple sequence alignment is NP-hard.
- 2) Search over all cuts is exponential!

Multiple Cyclic Sequence Alignment

Two major problems at once

- 1) (Linear) multiple sequence alignment is NP-hard.
- 2) Search over all cuts is exponential!

Multiple Cyclic Sequence Alignment

Two major problems at once

- 1) (Linear) multiple sequence alignment is NP-hard.
- 2) Search over all cuts is exponential!

Graph-based Model: Maximum Weight Trace (for linear alignment)

Alignment graph for input sequences (a = AUCA, b = AUCC,and c = ACCA)

MWT-problem: find trace of maximum weight, where *trace* := set of edges that corresponds to a valid MSA

Mixed cycle constraints

There are exponentially many mixed cycles!

Branch-and-cut: mixed cycles as cuts [Reinert et al., 1997]

Graph-based Model: Maximum Weight Trace (for linear alignment)

Alignment graph for input sequences (a = AUCA, b = AUCC,and c = ACCA)

MWT-problem: find trace of maximum weight, where *trace* := set of edges that corresponds to a valid MSA

Mixed cycle constraints

There are exponentially many mixed cycles!

Branch-and-cut: mixed cycles as cuts [Reinert et al., 1997]

Set-theoretic Model of Linear MSA

X := set of all positions (a, k) of all sequences

Define linear order relation on classes $A, B \subseteq X$: $A \prec B$ iff

- A ≠ B (irreflexive)
- \exists $(a, i) \in A$, $(a, j) \in B$: i < j (ordered for at least one sequence)
- $\not\exists$ $(a,i) \in A$, $(a,j) \in B$: i > j (no conflicts)

Definition [Morgenstern et al., 1999]: A partition \mathcal{A} is called *multiple* sequence alignment iff

- $\forall A \in A$: at most one position per sequence,
- $\forall A \neq B \in \mathcal{A}$: $A \prec B$ or $B \prec A$ (non-crossing)
- transitive closure $\overline{\prec}$ of \prec : partial order on \mathcal{A} .

Set-theoretic Model of Linear MSA

X := set of all positions (a, k) of all sequences

Define linear order relation on classes $A, B \subseteq X$: $A \prec B$ iff

- A ≠ B (irreflexive)
- \exists $(a, i) \in A$, $(a, j) \in B$: i < j (ordered for at least one sequence)
- $\not\exists$ $(a,i) \in A$, $(a,j) \in B$: i > j (no conflicts)

Definition [Morgenstern et al., 1999]: A partition \mathcal{A} is called *multiple* sequence alignment iff

- $\forall A \in A$: at most one position per sequence,
- $\forall A \neq B \in \mathcal{A}$: $A \prec B$ or $B \prec A$ (non-crossing)
- transitive closure $\overline{\prec}$ of \prec : partial order on \mathcal{A} .

Set-theoretic Model of Linear MSA

X := set of all positions (a, k) of all sequences

Define linear order relation on classes $A, B \subseteq X$: $A \prec B$ iff

- A ≠ B (irreflexive)
- \exists $(a, i) \in A$, $(a, j) \in B$: i < j (ordered for at least one sequence)
- $\not\exists$ $(a,i) \in A$, $(a,j) \in B$: i > j (no conflicts)

Definition [Morgenstern et al., 1999]: A partition \mathcal{A} is called *multiple* sequence alignment iff

- $\forall A \in \mathcal{A}$: at most one position per sequence,
- $\forall A \neq B \in \mathcal{A}$: $A \prec B$ or $B \prec A$ (non-crossing)
- transitive closure $\overline{\prec}$ of \prec : partial order on \mathcal{A} .

Key idea: use cyclic order (in place of linear order)

The ternary relation ⊲ is a *cyclic order* iff

- $\triangleleft i j k$ implies i, j, k pairwise distinct (irreflexive)
- $\triangleleft i j k$ implies $\triangleleft k i j$ (cyclic)
- $\triangleleft i j k$ implies $\neg \triangleleft k j i$ (antisymmetric)
- ⊲*i j k* and ⊲*i k l* implies ⊲*i j l* (transitive)
- If *i*, *j*, *k* are pairwise distinct then ⊲*i j k* or ⊲*k j i* (total)

Key idea: use cyclic order (in place of linear order)

The ternary relation ⊲ is a *cyclic order* iff

- $\triangleleft i j k$ implies i, j, k pairwise distinct (irreflexive)
- $\triangleleft i j k$ implies $\triangleleft k i j$ (cyclic)
- $\triangleleft i j k$ implies $\neg \triangleleft k j i$ (antisymmetric)
- ⊲*i j k* and ⊲*i k l* implies ⊲*i j l* (transitive)
- If i, j, k are pairwise distinct then $\triangleleft i j k$ or $\triangleleft k j i$ (total)

Key idea: use cyclic order (in place of linear order)

The ternary relation ⊲ is a *cyclic order* iff

- $\triangleleft i j k$ implies i, j, k pairwise distinct (irreflexive)
- $\triangleleft i j k$ implies $\triangleleft k i j$ (cyclic)
- $\triangleleft i j k$ implies $\neg \triangleleft k j i$ (antisymmetric)
- $\triangleleft i j k$ and $\triangleleft i k l$ implies $\triangleleft i j l$ (transitive)
- If i, j, k are pairwise distinct then $\triangleleft i j k$ or $\triangleleft k j i$ (total)

Define relation \blacktriangleleft on classes (of X); $\blacktriangleleft ABC$ iff

- A, B, and C are pairwise distinct (irreflexive)
- \exists $(a,i) \in A$, $(a,j) \in B$, $(a,k) \in C$: $\triangleleft i j k$ (comparable)
- $\not\exists$ $(a,i) \in A$, $(a,j) \in B$, $(a,k) \in C$: $\neg \triangleleft i j k$ (no conflicts)

Set-theoretic Cyclic MSA Model

Definition (Cyclic MSA)

A cyclic MSA is a partition \mathcal{A} of X iff

- $\forall A \in A$: at most one position per sequence,
- for all $A, B, C \in A$: A, B, C are cyclically non-crossing
- The transitive closure $\overline{\blacktriangleleft}$ of \blacktriangleleft is a partial cyclic order of \mathcal{A} .

Set-theoretic Cyclic MSA Model

Definition (Cyclic MSA)

A cyclic MSA is a partition \mathcal{A} of X iff

- $\forall A \in A$: at most one position per sequence,
- for all $A, B, C \in A$: A, B, C are cyclically non-crossing
- The transitive closure $\overline{\blacktriangleleft}$ of \blacktriangleleft is a partial cyclic order of \mathcal{A} .

Formal Linear MSA Model \Rightarrow ILP Model

Model the linear MSA A by Boolean variables and linear inequations and maximize alignment score.

Variables:

- $\mathbf{P}x\alpha = 1$ iff x = (a, i) is in class α of the partition \mathcal{A}
- $\mathbf{O}\alpha\beta = 1$ iff $\alpha \prec \beta$
- ... (further variables for objective function: base matches: **E**, affine gap cost: **G**, **GO**, RNA structure matches **B**)

Integer Linear Program (ILP):

max alignment-score(E, G, GO, B)

s.t.

- Variables $\mathbf{P} x \alpha$ represent a partition of \mathcal{A}
- Variables $\mathbf{O}\alpha\beta$ represent $\overline{\prec}$
- $\mathbf{O}\alpha\beta$ describe a partial order
- \bullet ... (constrain the variables of the objective function)

Formal Cyclic MSA Model \Rightarrow ILP Model

Model the cyclic MSA A by Boolean variables and linear inequations and maximize alignment score.

Variables:

- $\mathbf{P}x\alpha = 1$ iff x = (a, i) is in class α of the partition \mathcal{A}
- $\mathbf{O}\alpha\beta = 1$ iff $\alpha \prec \beta$ $\mathbf{O}\alpha\beta\gamma = 1$ iff $\overline{\triangleleft} \alpha\beta\gamma$
- ... (further variables for objective function: base matches: **E**, affine gap cost: **G**, **GO**, RNA structure matches **B**)

Integer Linear Program (ILP):

max alignment-score(E, G, GO, B)

s.t.

- Variables $\mathbf{P} x \alpha$ represent a partition of \mathcal{A}
- Variables $\Theta \alpha \beta$ represent $\overline{\prec} \mathbf{O} \alpha \beta \gamma$ represent $\overline{\triangleleft}$
- $\Theta \alpha \beta \ \mathbf{0} \alpha \beta \gamma$ describe a partial cyclic order
- ... (constrain the variables of the objective function)

Preliminary Results with CPLEX Solver

Instance			Model	Solving Time (s)	
#seqs	length	structure		95% opt.	optimal
3	10	2-knot	linear	1.4	1.4
3	10	2-knot	cyclic	170	176
3	10	2-knot	cyclic	229	273
3	15	3-knot	linear	129	143
3	20	3-knot	linear	287	> 300
3	20	3-knot	linear $\Delta 3$	8.4	8.4
4	10	2-knot	linear	10	28
4	10	2-knot	linear $\Delta 3$	4.8	6.4

Conclusions

- Systematic analysis of cyclic MSA
- Framework for linear and cyclic MSA; single difference: order
- Only polynomially many constraints (graph-based: exponential)
- Model is flexibly extensible: structure-based alignment of circular RNAs
- Current ILP model: CPLEX solves only small instances
- Future work:
 - are other solvers more suitable?
 - "tricks" like variable reduction
 - transfer "critical mixed cycles" from linear to cyclic MSA (some reassuring theoretical results given in the paper)
 - $\Rightarrow\,$ branch-and-cut or Lagrange relaxation for cyclic MSA

Conclusions

- Systematic analysis of cyclic MSA
- Framework for linear and cyclic MSA; single difference: order
- Only polynomially many constraints (graph-based: exponential)
- Model is flexibly extensible: structure-based alignment of circular RNAs
- Current ILP model: CPLEX solves only small instances
- Future work:
 - are other solvers more suitable?
 - "tricks" like variable reduction
 - transfer "critical mixed cycles" from linear to cyclic MSA (some reassuring theoretical results given in the paper)
 - \Rightarrow branch-and-cut or Lagrange relaxation for cyclic MSA

Thank you!