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Multi-target design of RNA sequences

For example: design riboswitches for translational control
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Multi-target design of RNA sequences

For example: design riboswitches for translational control
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Task: generate seq’s with specific properties Approach: 1

® low/specific energy for multiple structures

® specific GC content
® specific energy differences

® specific sequence/structure motifs



S1
52
S3

~

~

~

Uniform sampling for multiple structures
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Uniform sampling for multiple structures
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® For uniform: choose first position
A:C:G:U=4:4:10:10
Then, e.g. after G, choose second A: G=4:6, ...
® — counting
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Uniform sampling for multiple structures
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® For uniform: choose first position
A:C:G:U=4:4:10:10
Then, e.g. after G, choose second A: G=4:6, ...

® — counting

® Theorem: Counting of sequences for multiple targets
is #P-hard.
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Counting is #P-hard

Proof (sketch):
e Counting bipartite independent sets is #P-hard.

® Sequence counting is equivalent to counting independent sets.
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Counting is #P-hard

Proof (sketch):
e Counting bipartite independent sets is #P-hard.

® Sequence counting is equivalent to counting independent sets.
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Counting is #P-hard

Proof (sketch):
e Counting bipartite independent sets is #P-hard.

® Sequence counting is equivalent to counting independent sets.
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Recipe:

Systematic counting and sampling

1. Decompose dependency graph
2. Apply dynamic programming T

3. Sample |
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Systematic counting and sampling

Recipe:
1. Decompose dependency graph
2. Apply dynamic programming T
3. Sample |
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Theorem: Counting and sampling is efficient for fixed tree width

O(nkd™ +tnk)
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Systematic counting and sampling

Recipe:
1. Decompose dependency graph
2. Apply dynamic programming T
3. Sample |
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target structures dependency graph

tree decomposition

Theorem: Counting and sampling is efficient for fixed tree width

O(nkd +tnk) — O(nk2%*c+ tnk)
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From uniform to Boltzmann sampling

uniform sampling +— counts
Boltzmann sampling «+— partition functions

Boltzmann sampling: P(S) o« exp(—B8E(S)).
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From uniform to Boltzmann sampling

uniform sampling +— counts
Boltzmann sampling «+— partition functions

Boltzmann sampling: P(S) o« exp(—B8E(S)).
Energy E(S):=)_ weighted energies of single structures

® energy models

* Base pair model CCCCCae))) - - ﬁ,;s; ;');r)m.oge?
“like counting”

* Nearest neighbor model (Turner) m
nearest neighbor mode

requires multi-ary dependencies: constraint

framework*
® Stacking model @E. . Y@
“in-between”, scores stacks stacking model

¥ Constraint networks / cluster tree elimination [Rina Dechter]
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Targeting specific properties:
multi-dimensional Boltzmann sampling

=50 -40 =30 =20 -10 0 10 20

Weight and combine single structure energies and features

Sampling for multi-target RNA design - S. Will

Learn weights (adaptively) — target specific energies and GC content



Targeting specific properties:
multi-dimensional Boltzmann sampling

=50 -40 =30 =20 -10 0 10 20

Weight and combine single structure energies and features

Sampling for multi-target RNA design - S. Will

Learn weights (adaptively) — target specific energies and GC content



Targeting specific properties:
multi-dimensional Boltzmann sampling

0.2
B
0.1 Mlli U
337
' B
0.1 milm U
0.0 |
0.2
B
0.1 ml U
0.0 -
-50 -40 -30 -20 -10 0 10 20
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Boltzmann vs. uniform sampling
for multi-target RNA design

Dataset RedPrint Uniform Improvement
Seeds 2str 21.67 (+£4.38) 37.74 (£6.45) 73%

3str 18.09 (+3.98) 30.49 (+5.41) 71%

4str 19.94 (+3.84) 32.29 (+5.24) 63%
Optimized 2str 5.84 (+£1.31) 7.95 (£1.76) 28%

3str 5.08 (£1.10) 7.04 (£1.52) 31%

4str 8.77(+£1.48) 13.13 (£2.13) 37%

Multi-target design objectivelB/“eP""t] on the Modena benchmark

nulti-target RNA design - S. Will

@ https://github.com/yannponty/RNARedPrint
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[Modena] Taneda. BMC Bioinformatics, 2015.
[Blueprint] Hammer et al. Bioinformatics, 2017.


https://github.com/yannponty/RNARedPrint

Summary

FPT Boltzmann sampling for multi-target RNA design

(counting is #P-hard)

Targets specific properties

Versatile framework w/ multi-ary constraints

Supports complex RNA design scenarios and various RNA energy models (NN, PKs)
Perspectives: towards FPT negative design; apply to Riboswitch design
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iii) Dependency Graph
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iv) Tree Decomposition V) Weight Optimization (Adaptive Sampling) Vi) Final Designs

(workflow for the base pair energy model; our approach supports complex models and scenarios by n-ary constraints)
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