SPARSE:
 Quadratic Time SA\&F of RNAs without Sequence-Based Heuristics

Beijing, RECOMB 2013

Sebastian Will, Christina Schmiedl, Milad Miladi, Mathias Möhl, Rolf Backofen

University of Leipzig
University of Freiburg

Simultaneous Alignment and Folding [Sankoff]

Given: $\begin{aligned} \mathrm{A} & =\text { GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU } \\ \& \quad B & =\text { AUUGCCGCUGACCGGCACGCCAUCGGAAUCCCGAUCGGGUCAGCGGCA }\end{aligned}$

Find:

sequence similarity + energy $A+$ energy $B \rightarrow$ opt
where alignment, structure $A, \&$ structure B are COMpatible

Simultaneous Alignment and Folding [Sankoff]

Given: $\begin{aligned} & A=\text { GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU } \\ & \& \quad B\end{aligned}$

Find:

sequence similarity + energy $A+$ energy $B \rightarrow$ opt
where alignment, structure $A, \&$ structure B are COMpatible

Sankoff's Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker]

Sequence Alignment

Sankoff's Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker]
 \times

Sequence Alignment

Sankoff's Algorithm

Dynamic Programming

> RNA Energy Minimization [Zuker]
> \times

Sequence Alignment
$O\left(n^{6}\right)=$ "extreme computational cost"

Sankoff-style Approaches
 HEAVY
 LIGHT

Dynalign
FoldAlign

- Sankoff implementations
- heavyweight energy model
- sequence-based heuristics

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

+ sparsifies structure space (ensemble-based)
- improves time and space

RAF

+ sparsifies alignment space
- sequence-based heuristics

SPARSE

- strong sparsification w/o secuence-hased heuristics

Sankoff-style Approaches
 HEAVY
 LIGHT

Dynalign FoldAlign

- Sankoff implementations - heavyweight energy model
- sequence-based heuristics

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

+ sparsifies structure space (ensemble-based)
- improves time and space

RAF

+ sparsifies alignment space
- sequence-based heuristics

SPARSE N

- strong sparsification w/o sequence-based heuristics

PMcomp's Trick - Lightweight SAF

Sankoff: sequence similarity + energies of A and $B \quad \rightarrow$ opt

- energies composed of loop energies

- Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

- cheaper but same complexity

PMcomp's Trick - Lightweight SAF

Sankoff: sequence similarity + energies of A and $B \rightarrow$ opt

- energies composed of loop energies

- Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

- cheaper but same complexity

PMcomp's Trick - Lightweight SAF

PMcomp: sequence similarity + pseudo-energies of A and $B \quad$ opt

- pseudo-energies composed of "base pair energies"

- Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

- cheaper but same complexity

PMcomp's Trick - Lightweight SAF

PMcomp: sequence similarity + pseudo-energies of A and $B \quad \rightarrow$ opt

- pseudo-energies composed of "base pair energies"

- Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

- cheaper but same complexity

PMcomp's Trick - Lightweight SAF

PMcomp: sequence similarity + pseudo-energies of A and $B \quad \rightarrow$ opt

- pseudo-energies composed of "base pair energies"

- Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

- cheaper but same complexity

PMcomp - THE Lightweight Sankoff Algorithm?

Sankoff: same shape

compatibility

PMcomp: all base pairs match

PMcomp - THE Lightweight Sankoff Algorithm?

Sankoff: same shape

compatibility

PMcomp: all base pairs match

PMcomp - THE Lightweight Sankoff Algorithm?

compatibility
Sankoff: same shape
PMcomp: all base pairs match

PARSE - THE Lightweight Sankoff Algorithm

- lightweight (PMcomp pseudo-energy)
\&
complete (Sankoff's compatibility)
- allows base pair insertions and deletions

PARSE - THE Lightweight Sankoff Algorithm

- lightweight (PMcomp pseudo-energy)
\&
complete (Sankoff's compatibility)
- allows base pair insertions and deletions

We need "complete" for strong sparsification, please be patient.

PARSE Algorithm

PARSE Algorithm

PARSE Algorithm

LocARNA's Trick:
 Ensemble-based Sparsification

- Sparsify structure ensemble

- improves time and space; each by $O\left(n^{2}\right)$

LocARNA's Trick:
 Ensemble-based Sparsification

- Sparsify structure ensemble

all base pairs

LocARNA's Trick:
 Ensemble-based Sparsification

- Sparsify structure ensemble

only probable base pairs

LocARNA's Trick: Ensemble-based Sparsification

- Sparsify structure ensemble

only probable base pairs
- improves time and space; each by $O\left(n^{2}\right)$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$ - only base pairs with probabilities in loops $>\theta_{3}$ requires complete prediction (Sankoff/PARSE)
(*) confer LocARNA's "old" sparsification:
- match only base pairs with probabilities $>\theta_{1}$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$
- only base pairs with probabilities in loops $>\theta_{3}$
requires complete prediction (Sankoff/PARSE)
(*) confer LocARNA's "old" sparsification:
- match only base pairs with probabilities $>\theta_{1}$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$
- only base pairs with probabilities in loops $>\theta_{3}$
requires complete prediction (Sankoff/PARSE)
(*) confer LocARNA's "old" sparsification:
- match only base pairs with probabilities $>\theta_{1}$

SPARSE: Novel Ensemble-based Sparsification*

- only base pairs with probabilities $>\theta_{1}$
- only bases with unpaired probabilities in loops $>\theta_{2}$
- only base pairs with probabilities in loops $>\theta_{3}$
requires complete prediction (Sankoff/PARSE)

a_{3} in loop $a_{2} \sqrt{ }$
but a_{3} in loop $a_{1} X$
$a_{2} \boldsymbol{X} \Longrightarrow a_{3}-b_{2} \boldsymbol{X}$

Thresholds in Recursions Cases

Thresholds in Recursions Cases

all base pairs θ_{1}

Modify Evaluation to Save Time

Quadratic Time

Q: How many matrices $M^{a b}$ compute (i, k) ?

Quadratic Time

Q: How many matrices $M^{a b}$ compute (i, k) ?
Count base pairs a where $\operatorname{Pr}^{A}[i$ in loop of $a]>\theta_{2}$

Quadratic Time

Q: How many matrices $M^{a b}$ compute (i, k) ?
Count base pairs a where $\operatorname{Pr}^{A}[i$ in loop of $a]>\theta_{2}$

A: each (i, k) in only constant number of matrices

Run-times and Speedup

Tool	Sparsification			Mean Time	Speedup
	θ_{1}	θ_{2}	θ_{3}	per Instance	vs. LocARNA
LocARNA	$1 \mathrm{e}-3$	-	-	2.02 s	1.0
SPARSE	$1 \mathrm{e}-3$	$1 \mathrm{e}-5$	$1 \mathrm{e}-4$	0.92 s	2.2
RAF	$2 \mathrm{e}-3$	-	-	0.37 s	5.5

Bralibase 2.1, pairwise alignments

Alignment and Prediction Accuracy (Bralibase 2.1, 3-way alignments)

SPS: alignment quality

MCC: prediction quality

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SAF
- SPARSE $=$ Sparsified PARSE

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SAF
- SPARSE $=$ Sparsified PARSE

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SAF
- SPARSE $=$ Sparsified PARSE
- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SAF: Quadratic Time $\left[\leftarrow O\left(n^{6}\right)\right]$

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SAF
- SPARSE $=$ Sparsified PARSE
- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SAF: Quadratic Time $\left[\leftarrow O\left(n^{6}\right)\right]$

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SAF
- SPARSE = Sparsified PARSE
- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SAF: Quadratic Time $\left[\leftarrow O\left(n^{6}\right)\right]$

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
- predicts deleted/inserted base pairs; like original SAF
- SPARSE = Sparsified PARSE
- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SAF: Quadratic Time $\left[\leftarrow O\left(n^{6}\right)\right.$]

Thanks

...for your attention
... to my coauthors

- Christina Schmiedl
- Milad Miladi
- Mathias Möhl
- Rolf Backofen
... and the German Research Foundation $\boldsymbol{D} \boldsymbol{F}$

Appendix

Computing "In Loop" Probabilities

from McCaskill matrices: Q_{b}, Q_{m}

similar: $\operatorname{Pr}[k$ unpaired in loop of $(\mathbf{i}, \mathbf{j})]$
[ExpARNA-P; Schmiedl et al., RECOMB 2012]

SPARSE Improves Over LocARNA for Specific Families

(shown: IRES HCV, pairwise)

