SPARSE: Quadratic Time SA&F of RNAs without Sequence-Based Heuristics

Beijing, RECOMB 2013

<u>Sebastian Will</u>, Christina Schmiedl, Milad Miladi, Mathias Möhl, Rolf Backofen

> University of Leipzig University of Freiburg

Simultaneous Alignment and Folding [Sankoff]

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

& B = auugccgcugaccggcacgccaucggaaucccgaucgggucagcggca

sequence similarity + energy A + energy B \rightarrow opt

where alignment, structure A, & structure B are **compatible**

Simultaneous Alignment and Folding [Sankoff]

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

& B = auugccgcugaccggcacgccaucggaaucccgaucgggucagcggca

sequence similarity + energy A + energy B \rightarrow opt

where alignment, structure A, & structure B are **compatible**

Sankoff's Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker] \times Sequence Alignment

$O(n^6)$ = "extreme computational cost"

Sankoff's Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker] \times Sequence Alignment

$O(n^6)$ = "extreme computational cost"

Sankoff's Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker] \times Sequence Alignment

$O(n^6)$ = "extreme computational cost"

Sankoff-style Approaches HEAVY LIGHT

Dynalign FoldAlign

- Sankoff implementations
- heavyweight energy model
 - sequence-based heuristics

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

- + sparsifies structure space (ensemble-based)
- improves time and space

RAF

- $+\ {\rm sparsifies}\ {\rm alignment}\ {\rm space}$
- sequence-based heuristics

SPARSE

strong sparsification w/o sequence-based heuristics

Sankoff-style Approaches HEAVY LIGHT

Dynalign FoldAlign

- Sankoff implementations
- heavyweight energy model
 - sequence-based heuristics

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

- + sparsifies structure space (ensemble-based)
- improves time and space

RAF

- $+\ {\rm sparsifies}\ {\rm alignment}\ {\rm space}$
- sequence-based heuristics

SPARSE

• strong sparsification w/o sequence-based heuristics

• energies composed of loop energies

Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

• energies composed of loop energies

Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

• pseudo-energies composed of "base pair energies"

Dynamic Programming

Base Pair Maximization [Nussinov] × Sequence Alignment

• pseudo-energies composed of "base pair energies"

• Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

• pseudo-energies composed of "base pair energies"

• Dynamic Programming

Base Pair Maximization [Nussinov] \times Sequence Alignment

SPARSE · S.Will

SPARSE · S.Will

PARSE — THE Lightweight Sankoff Algorithm

 $(PARSE = \underline{P}rediction and \underline{A}lignment of \underline{R}NAs using \underline{S}tructure \underline{E}nsembles)$

lightweight (PMcomp pseudo-energy)
 complete (Sankoff's compatibility)

allows base pair insertions and deletions

We need "complete" for strong sparsification, please be patient

PARSE — THE Lightweight Sankoff Algorithm

 $(PARSE = \underline{P}rediction and \underline{A}lignment of \underline{R}NAs using \underline{S}tructure \underline{E}nsembles)$

lightweight (PMcomp pseudo-energy)
 complete (Sankoff's compatibility)

• allows base pair insertions and deletions

We need "complete" for strong sparsification, please be patient.

PARSE Algorithm

PARSE Algorithm

PARSE Algorithm

• Sparsify structure ensemble

• Sparsify structure ensemble

all base pairs

• Sparsify structure ensemble

only probable base pairs

• Sparsify structure ensemble

only probable base pairs

- only **base pairs** with probabilities $> \theta_1$
- only **bases** with unpaired probabilities in loops $> \theta_2$
- only **base pairs** with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

(*) confer LocARNA's "old" sparsification:

• match only base pairs with probabilities $> \theta_1$

- only **base pairs** with probabilities $> \theta_1$
- only **bases** with unpaired probabilities in loops $> \theta_2$
- only **base pairs** with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

(*) confer LocARNA's "old" sparsification:

• match only base pairs with probabilities $> \theta_1$

- only **base pairs** with probabilities $> \theta_1$
- only **bases** with unpaired probabilities in loops $> \theta_2$
- only **base pairs** with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

(*) confer LocARNA's "old" sparsification:

• match only base pairs with probabilities $> \theta_1$

- only **base pairs** with probabilities $> \theta_1$
- only **bases** with unpaired probabilities in loops $> \theta_2$
- only base pairs with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

Thresholds in Recursions Cases

Thresholds in Recursions Cases

Modify Evaluation to Save Time

Quadratic Time

Q: How many matrices M^{ab} compute (i, k)?

A: each (i, k) in only constant number of matrices

Quadratic Time

Q: How many matrices M^{ab} compute (i, k)?

Count base pairs *a* where $\Pr^{A}[i \text{ in loop of } a] > \theta_{2}$ $i \Rightarrow \text{ less than } 1/\theta_{2}$

A: each (i, k) in only constant number of matrices

Quadratic Time

Q: How many matrices M^{ab} compute (i, k)?

A: each (i, k) in only constant number of matrices

Run-times and Speedup

Tool	Sparsification			Mean Time	Speedup
	θ_1	θ_2	θ_3	per Instance	vs. LocARNA
LocARNA	1e-3	-	-	2.02s	1.0
SPARSE	1e-3	1e-5	1e-4	0.92s	2.2
RAF	2e-3	-	-	0.37s	5.5

Bralibase 2.1, pairwise alignments

Alignment and Prediction Accuracy (Bralibase 2.1, 3-way alignments)

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SAF

• SPARSE = **Sparsified** PARSE

- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SAF: Quadratic Time [← O(n⁶)]

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SAF
- SPARSE = **Sparsified** PARSE
 - Novel ensemble-based sparsification (in-loop probabilities)
 - No sequence-based heuristics
 - Speeds up SAF: Quadratic Time [← O(n⁶)]

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SAF

• SPARSE = **Sparsified** PARSE

- Novel ensemble-based sparsification (in-loop probabilities)
- No sequence-based heuristics
- Speeds up SAF: Quadratic Time [$\leftarrow O(n^6)$]

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SAF
- SPARSE = **Sparsified** PARSE
 - Novel ensemble-based sparsification (in-loop probabilities)
 - No sequence-based heuristics
 - Speeds up SAF: Quadratic Time [$\leftarrow O(n^6)$]

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SAF
- SPARSE = **Sparsified** PARSE
 - Novel ensemble-based sparsification (in-loop probabilities)
 - No sequence-based heuristics
 - Speeds up SAF: Quadratic Time [$\leftarrow O(n^6)$]

- PARSE is THE lightweight Sankoff-variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SAF
- SPARSE = **Sparsified** PARSE
 - Novel ensemble-based sparsification (in-loop probabilities)
 - No sequence-based heuristics
 - Speeds up SAF: Quadratic Time [$\leftarrow O(n^6)$]

Thanks

... for your attention

... to my coauthors

• Christina Schmiedl

• Milad Miladi

- Mathias Möhl
 - Rolf Backofen

Appendix

Computing "In Loop" Probabilities

from McCaskill matrices: Q_b , Q_m

Pr[(i',j') base pair in loop of (i,j)] = (I + M)/Q

similar: Pr[k unpaired in loop of (i,j)]

[ExpARNA-P; Schmiedl et al., RECOMB 2012]

SPARSE Improves Over LocARNA for Specific Families

(shown: IRES HCV, pairwise)