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Mathias Möhl, Rolf Backofen

University of Leipzig
University of Freiburg



S
P
A
R
S
E
·
S
.W

il
l

Simultaneous Alignment and Folding [Sankoff]

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

& B = AUUGCCGCUGACCGGCACGCCAUCGGAAUCCCGAUCGGGUCAGCGGCA

Find:
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sequence similarity + energy A + energy B → opt

where alignment, structure A, & structure B are compatible
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Sankoff’s Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker]

×
Sequence Alignment

O(n6)= “extreme computational cost”
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Sankoff-style Approaches

HEAVY

Dynalign
FoldAlign

• Sankoff implementations
• heavyweight energy model
• sequence-based heuristics

LIGHT

PMcomp
• lightweight energy model
• base pair probabilities

LocARNA
+ sparsifies structure space
(ensemble-based)
• improves time and space

RAF
+ sparsifies alignment space
• sequence-based heuristics

SPARSE
• strong sparsification w/o
sequence-based heuristics
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PMcomp’s Trick – Lightweight SAF

Sankoff: sequence similarity
+ energies of A and B

→ opt

• energies composed of loop energies

• Dynamic Programming

Base Pair Maximization [Nussinov] × Sequence Alignment

• cheaper but same complexity
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PMcomp: sequence similarity
+ pseudo-energies of A and B

→ opt

• pseudo-energies composed of “base pair energies”
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PMcomp – THE Lightweight Sankoff Algorithm?

compatibilitycompatibilitycompatibility
Sankoff: same shape

PMcomp: all base pairs match
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PMcomp – THE Lightweight Sankoff Algorithm?

compatibilitycompatibilitycompatibility
Sankoff: same shape

PMcomp: all base pairs match
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PARSE — THE Lightweight Sankoff Algorithm
(PARSE = Prediction and Alignment of RNAs using Structure Ensembles)

• lightweight (PMcomp pseudo-energy)

& complete (Sankoff’s compatibility)

• allows base pair insertions and deletions

e.g.
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C- U
U

We need “complete” for strong sparsification, please be patient.
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PARSE Algorithm
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PARSE Algorithm
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LocARNA’s Trick:
Ensemble-based Sparsification

• Sparsify structure ensemble
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• improves time and space; each by O(n2)O(n2)O(n2)
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SPARSE: Novel Ensemble-based Sparsification∗

>θ1

• only base pairs with probabilities > θ1

• only bases with unpaired probabilities in loops > θ2

• only base pairs with probabilities in loops > θ3

requires complete prediction (Sankoff/PARSE)

(*) confer LocARNA’s “old” sparsification:

• match only base pairs with probabilities > θ1
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SPARSE: Novel Ensemble-based Sparsification∗

>θ1 >θ2 >θ3

• only base pairs with probabilities > θ1

• only bases with unpaired probabilities in loops > θ2

• only base pairs with probabilities in loops > θ3

requires complete prediction (Sankoff/PARSE)

b1

C
G

b2

a1 a2

G
C

a3

G
C

C
G

U
-

A
-

A
A

U
C

C
C

C
GC C

C- U
U

a3 in loop a2 3
but a3 in loop a1 7

a2 7 =⇒ a3-b2 7
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Thresholds in Recursions Cases
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Thresholds in Recursions Cases
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Modify Evaluation to Save Time
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Quadratic Time

a

b
k

i

Q: How many matrices Mab compute (i , k)?

Count base pairs a where

PrA[i in loop of a] > θ2
i

⇒ less than 1/θ2

A: each (i , k) in only constant number of matrices �
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Quadratic Time
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Run-times and Speedup

Tool Sparsification Mean Time Speedup
θ1 θ2 θ3 per Instance vs. LocARNA

LocARNA 1e-3 - - 2.02s 1.0

SPARSE 1e-3 1e-5 1e-4 0.92s 2.2

RAF 2e-3 - - 0.37s 5.5

Bralibase 2.1, pairwise alignments
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Alignment and Prediction Accuracy
(Bralibase 2.1, 3-way alignments)
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Conclusions

SPARSE: very efficient RNA alignment
without sequence-based heuristics

• PARSE is THETHETHE lightweight Sankoff-variant (cf. PMcomp)

• predicts deleted/inserted base pairs; like original SAF

• SPARSE = Sparsified PARSE

• Novel ensemble-based sparsification (in-loop probabilities)

• No sequence-based heuristics

• Speeds up SAF: Quadratic Time [← O(n6)]
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Appendix
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Computing “In Loop” Probabilities

from McCaskill matrices: Qb, Qm

Pr[(i’,j’) base pair in loop of (i,j)]
=(I + M)/Q

i ji' j'

=I =M
Qb

i j

...

Qm

i' j'
Qb

i j

...

Qm

i' j'
Qb

...

Qm

i j
Q

i' j'
Qb

...

m
+ +

similar: Pr[k unpaired in loop of (i,j)]

[ExpARNA-P; Schmiedl et al., RECOMB 2012]
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LocARNA SPARSE

(shown: IRES HCV, pairwise)


