SPARSE: Quadratic Time SA&F of RNAs without Sequence-Based Heuristics

Sebastian Will

University of Leipzig

Simultaneous Alignment and Folding [Sankoff]

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

& B = AUUGCCGCUGACCGCCAUCGGAAUCCCGAUCGGGUCAGCGGCA

Find:

sequence similarity + energy A + energy B \rightarrow opt

where alignment, structure A, & structure B are compatible

Simultaneous Alignment and Folding [Sankoff]

Given: A = GCUGACGAGCACGCUCAUCGGUAAAUCUACCGAUCGUCAGCACU

B = AUUGCCGCUGACCGCCAUCGGAAUCCCGAUCGGGUCAGCGGCA

Find:

sequence similarity + energy A + energy B \rightarrow opt

where alignment, structure A, & structure B are **compatible**

Sankoff's SA&F Algorithm

Dynamic Programming

RNA Energy Minimization [Zuker]

8

Sequence Alignment

$$O(n^6)$$
 = "extreme computational cost"

Sankoff-style Approaches

HEAVY

Dynalign FoldAlign

- Sankoff implementations
- full ("heavy") energy model
 - (sequence-based) heuristics

LIGHT

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

- + sparsifies structure space (ensemble-based)
- improves time and space

RAF

- + sparsifies alignment space
- sequence-based heuristics

SPARSE

• strong sparsification w/o sequence-based heuristics

Sankoff-style Approaches

HEAVY

Dynalign FoldAlign

- Sankoff implementations
- full ("heavy") energy model
 - (sequence-based) heuristics

LIGHT

PMcomp

- lightweight energy model
- base pair probabilities

LocARNA

- + sparsifies structure space (ensemble-based)
- improves time and space

RAF

- $+ \ \mathsf{sparsifies} \ \mathsf{alignment} \ \mathsf{space}$
- sequence-based heuristics

SPARSE

• strong sparsification w/o sequence-based heuristics

Sankoff: sequence similarity + energies of A and B \rightarrow opt

energy composed of loop energies

Dynamic Programming
 Base Pair Maximization [Nussinov] ⊗ Sequence Alignment

Sankoff: sequence similarity + energies of A and B \rightarrow opt

• energy composed of loop energies

Dynamic Programming
 Base Pair Maximization [Nussinov] ⊗ Sequence Alignment

PMcomp: sequence similarity
+ pseudo-energies of A and B
→ opt

pseudo-energy composed of "base pair energies"

Dynamic Programming
 Base Pair Maximization [Nussinov] ⊗ Sequence Alignment

PMcomp: sequence similarity
+ pseudo-energies of A and B → opt

pseudo-energy composed of "base pair energies"

Dynamic Programming

Base Pair Maximization [Nussinov] \otimes Sequence Alignment

PMcomp: sequence similarity
+ pseudo-energies of A and B → opt

pseudo-energy composed of "base pair energies"

Dynamic Programming

Base Pair Maximization [Nussinov] \otimes Sequence Alignment

PMcomp – THE Lightweight Sankoff Algorithm?

compatibility

Sankoff: same shape

PMcomp: all base pairs match

PMcomp – THE Lightweight Sankoff Algorithm?

compatibility

Sankoff: same shape

PMcomp: all base pairs match

PMcomp – THE Lightweight Sankoff Algorithm?

compatibility

Sankoff: same shape

PMcomp: all base pairs match

PARSE — THE Lightweight Sankoff Algorithm

(PARSE = \underline{P} rediction and \underline{A} lignment of \underline{R} NAs using \underline{S} tructure \underline{E} nsembles)

• lightweight (PMcomp pseudo-energy)

complete (Sankoff's compatibility)

"complete": allows base pair indels

PARSE — THE Lightweight Sankoff Algorithm

(PARSE = \underline{P} rediction and \underline{A} lignment of \underline{R} NAs using \underline{S} tructure \underline{E} nsembles)

lightweight (PMcomp pseudo-energy)

&

complete (Sankoff's compatibility)

"complete": allows base pair indels

SPARSE · S.Will

PARSE Algorithm

PARSE Algorithm

PARSE Algorithm

LocARNA's Trick: Ensemble-based Sparsification

• Sparsify structure ensemble

• improves time and space; each by $O(n^2)$

LocARNA's Trick: Ensemble-based Sparsification

Sparsify structure ensemble

• improves time and space; each by $O(n^2)$

LocARNA's Trick: Ensemble-based Sparsification

Sparsify structure ensemble

• improves time and space; each by $O(n^2)$

- only base pairs with probabilities $> \theta_1$
- only **bases** with unpaired probabilities in loops $> \theta_2$
- only base pairs with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

- (*) confer LocARNA's "old" sparsification:
 - match only base pairs with probabilities $> \theta_1$

- only base pairs with probabilities $> \theta_1$
- only **bases** with unpaired probabilities in loops $> \theta_2$
- only base pairs with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

- (*) confer LocARNA's "old" sparsification:
 - match only base pairs with probabilities $> \theta_1$

- only base pairs with probabilities $> \theta_1$
- only bases with unpaired probabilities in loops $> \theta_2$
- only base pairs with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

- (*) confer LocARNA's "old" sparsification:
 - match only base pairs with probabilities $> \theta_1$

- only base pairs with probabilities $> \theta_1$
- only **bases** with unpaired probabilities in loops $> \theta_2$
- only base pairs with probabilities in loops $> \theta_3$

requires complete prediction (Sankoff/PARSE)

w/ complete: a_3 in loop a_2 \checkmark w/o complete: a_3 in loop a_1 \checkmark

$$a_2 X \implies a_3 - b_2 X$$

Thresholds in Recursions Cases

Thresholds in Recursions Cases

Modify Evaluation to Save Time

Quadratic Time

Q: How many matrices M^{ab} compute (i, k)?

Count base pairs a where $\Pr^A[i \text{ in loop of } a] > \theta_2$

 \Rightarrow less than $1/ heta_2$

A: each (i, k) in only constant number of matrices

Quadratic Time

Q: How many matrices M^{ab} compute (i, k)?

Count base pairs a where $\Pr^A[i \text{ in loop of } a] > \theta_2$

A: each (i, k) in only constant number of matrices

Quadratic Time

Q: How many matrices M^{ab} compute (i, k)?

Count base pairs a where $\Pr^A[i \text{ in loop of } a] > \theta_2$

A: each (i, k) in only constant number of matrices

(S)PARSE improves prediction over LocARNA

LocARNA:

SPARSE:

	((- (((((((((()))))).((
P	ACAA-CUCUGGAGAGUGU	UUACGAAG-GUAAA	CCACC	
Ε	B UCGACCCUCGCGGGAGACAUC	GGGAUUCGAUCCCG	AGGCC	
	((.((((((((((()))))).((
	(((((((((((
P	A CACGAAGCAAAUAUUUGUUCU	UUUUUGAAGAAUGA	AUAUG	
Ε	B GAAGGCGCAACCG	CCC	CGGA	
	(((((((_))).	
)))))))))))).)).		
P	A CAACUUUCUGGUAUAAGGACA	CAACUUUCUGGUAUAAGGACAGAGAUUUCUUC		
Ε	B -AACGCUCAGGCAAAAGGACC	GCGCGGG		

-..))))...))......

Run times and speedup

Bralibase 2.1, pairwise alignments (k2)

Alignment Accuracy (Bb 2.1, k2)

Structure Prediction Accuracy (BB 2.1, k2)

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SA&F
- SPARSE = **Sparsified** PARSE
 - Novel ensemble-based sparsification (in-loop probabilities)
 - No sequence-based heuristics
 - Speeds up SA&F: **Quadratic Time** $[\leftarrow O(n^6)]$

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SA&F
- SPARSE = Sparsified PARSE
 - Novel ensemble-based sparsification (in-loop probabilities)
 - No sequence-based heuristics
 - Speeds up SA&F: **Quadratic Time** $[\leftarrow O(n^6)]$

Conclusions

SPARSE: very efficient RNA alignment without sequence-based heuristics

- PARSE is THE lightweight Sankoff variant (cf. PMcomp)
 - predicts deleted/inserted base pairs; like original SA&F
- SPARSE = Sparsified PARSE
 - Novel ensemble-based sparsification (in-loop probabilities)
 - No sequence-based heuristics
 - Speeds up SA&F: Quadratic Time [← O(n⁶)]

Thanks

... for your attention

... to my coauthors

- Christina Schmiedl
 - Milad Miladi
 - Mathias Möhl
 - Rolf Backofen

 ${\sf Appendix}$

Computing "In Loop" Probabilities

from McCaskill matrices: Q_b , Q_m

similar: Pr[k unpaired in loop of (i,j)]

[ExpARNA-P; Schmiedl et al., BMC Bioinformatics 2014]

Alignment and Prediction Accuracy (Bralibase 2.1, 3-way alignments)

SPARSE Improves Over LocARNA for Specific Families

(shown: IRES HCV, pairwise)