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Abstract

With the recent bloom of focus on digital economy, the importance of personal data has seen a massive surge of late.
Keeping pace with this trend, the model of data market is starting to emerge as a process to obtain high-quality personal
information in exchange of incentives. To have a formal guarantee to protect the privacy of the sensitive data involved in
digital economy, differential privacy (DP) is the go-to technique, which has gained a lot of attention by the community
recently. However, it is essential to optimize the privacy-utility trade-off by ensuring the highest level of privacy protection
is ensured while preserving the utility of the data. In this paper, we theoretically derive sufficient and necessary conditions
to have tight (ϵ, δ)-DP blankets for the shuffle model, which, to the best of our knowledge, have not been proven before,
and, thus, characterize the best possible DP protection for shuffle models which can be implemented in data markets to
ensure privacy-preserving trading of digital economy.

1 Introduction and background

As mentioned in [1], privacy in digital economy is critical, es-
pecially for end-users who share their personal data. Differen-
tial privacy is a de-facto standard for privacy protection, how-
ever, it deteriorates the data utility. This trade-off between
privacy and utility is a long standing problem in differential
privacy.

An intermediate paradigm between the central and the lo-
cal models of differential privacy (DP), known as the shuffle
model [2], has recently gained popularity. As an initial step,
the shuffle model uses a local mechanism to perturb the data
individually like the local model of DP. After this local saniti-
zation, a shuffler uniformly permutes the noisy data to dissolve
their links with the corresponding data providers. This allows
the shuffle model to achieve a certain level of DP guarantee
using less noise than the local model ensuring that the shuffle
model provides better utility than the local model whilst re-
taining the same advantages. Thus, the shuffle model has an
advantage in the trade-off between privacy and utility for the
digital economy.

The privacy guarantees provided by the shuffle model have
been rigorously studied by community of late and various re-
sults have been derived, both analytical and numerical. Obvi-
ously, analytical bounds have the advantage that they provide
a concrete basis for reasoning and mathematically analysing
properties such as privacy-utility trade-off. However, in the
case of the shuffle model, most analytical bounds found in the
literature are far from being tight. In this paper, we cover this
gap and derive tight necessary and sufficient condition for hav-
ing the tightest (ϵ, δ)-bounds for the DP guarantee provided
by the shuffle model with the k-randomized response (k-RR)
local mechanism. We combine the idea of privacy blankets
introduced by Balle et al. in [3] and the concept of (ϵ, δ)-
adaptive differential privacy (ADP) proposed by Sommer et

al. in [4].

Definition 1.1 (Differential privacy [5, 6]). For a certain
query, a randomizing mechanism K taking datasets as input,
provides (ϵ, δ)-differential privacy (DP) if for all neighbouring
1 datasets, D1 and D2, and all S ⊆ Range(K), we have

P[K(D1) ∈ S] ≤ eϵ P[K(D2) ∈ S] + δ

Definition 1.2 (Adaptive differential privacy [4]). Let us fix
x0, x1 ∈ X , where X is the alphabet of the original (non-
privatized) data, and let us fix a member u in the dataset. For
a certain query, a randomizing mechanism K provides (ϵ, δ)-
adaptive differential privacy (ADP) for x0 and x1 if for all
datasets, D(x0) and D(x1), and all S ⊆ Range(K), we have

P[K(D(x0)) ∈ S] ≤ eϵ P[K(D(x1) ∈ S] + δ

whereD(x0) andD(x1) are datasets differing only in the entry
of the fixed member u: D(x) means that u reports x for every
x ∈ X , keeping the entries of all the other users the same.

Definition 1.3 (Tight DP (or ADP) [4]). Let K be an (ϵ, δ)-
DP (or ADP for chosen x0, x1 ∈ X ) mechanism. We say that
δ is tight for K (wrt ϵ and x0, x1 in case of ADP) if there is
no δ′ < δ such that K is (ϵ, δ′)-DP (or ADP for x0, x1).

Definition 1.4 (Shuffle model [7, 8]). Let X and Y be dis-
crete alphabets for the original and the noisy data respectively.
For any dataset of size n ∈ N, the shuffle model is defined as
M : Xn 7→ Yn, M = S ◦ Rn, where

i) R : X 7→ Y is a local randomizer, stochastically map-
ping each element of the input dataset, sampled from
X , onto an element in X , providing ϵ0-local differential
privacy.

ii) S : Yn 7→ Yn is a shuffler that uniformly permutes the
finite set of messages of size n ∈ N, that it takes as an
input.

1 differing in exactly one entry
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2 Tight differential privacy blanket
analysis

In [3] Balle et al. introduced the concept of privacy blan-
kets for shuffle models, deriving some quantifiable privacy es-
timates for them in terms of (ϵ, δ)-DP. In this work, a notion
of strong adversaries was assumed, and the authors derived
a precise condition for having ϵ ∈ R+ and a corresponding
space of δ ∈ R+ that ensure a (ϵ, δ)-DP guarantee (Theorem
5.3 of [3]. Although this work gives a straightforward and suf-
ficient condition for having a space of ϵ and δ to encase the
shuffle model with diffenrential privacy guarantees, it is cru-
cial to note that no explicit theoretical condition exists that
can ensure the tightness2 of such privacy blankets.

In the same year, Sommer et al. in [4] gave an explicit con-
dition for having a δ for a chosen ϵ that would foster a tight
(ϵ, δ)-ADP, for a couple of given inputs, on any probabilistic
mechanism (Lemma 5 in [4]).

For comparing utilities between the shuffle model and other
privacy mechanisms under a certain level of privacy, having a
slack (ϵ, δ)-privacy coverage would not suffice as we would not
be able to guage the best privacy guarantee provided without
having the tight bounds. Therefore, in this paper, we have
investigated and analysed the explicit conditions under which
the result of Balle et al. in [3]) improves and ensures a tight
privacy blanket for the shuffle model using k-RR mechanism
as its local randomizer. In particular, drawing parallels be-
tween Lemma 5 of [4], we derived a necessary and sufficient
condition for Theorem 5.3 of [3] to ensure a tight (ϵ, δ)-DP
guarantee.

We analyze the two cases of Lemma 5 in [4] separately:

Case 1 :
1

eϵ0
≤ (eϵ − 1)2

(eϵ + 1)2(eϵ0 − e−ϵ0)2
(1)

Case 2 :
1

eϵ0
>

(eϵ − 1)2

(eϵ + 1)2(eϵ0 − e−ϵ0)2
(2)

Setting C = 1 − e−2 ≈ 0.86, Lemma 5 in [4]) proves that
M guarantees (ϵ, δ)-DP for every choice of ϵ ∈ R+ and δ ∈ R+

satisfying:

δ ≥

{
(eϵ+1)2(eϵ0−e−ϵ0 )2

4n(eϵ−1)
e
−Cn 1

eϵ0 for Case 1.

(eϵ+1)2(eϵ0−e−ϵ0 )2

4n(eϵ−1)
e
−Cn

(eϵ−1)2

(eϵ+1)2(eϵ0−e−ϵ0 )2 for Case 2.

(3)

Note that for a given ϵ > 0, if δ1 and δ2 both satisfy Lemma
5 [4], then max{δ1, δ2} will provide a slack privacy blanket,
making it hard to quantify a definite differential privacy level
for M. It is imperative to have a tight privacy parameter in
order to proceed with any sort of privacy-utility analysis and
lay down a notion of comparison between M and other DP
mechanisms. Hence, to investigate the existence of a tight δ
for a chosen ϵ and to examine the precise conditions under
which Result 1 by Balle et al. can provide a tight differential
privacy guarantee for M, we consider the minimum δ satis-
fying (3) for a given ϵ and equate it to Lemma 5 of [4]) and
maximize it over all pairs of input values to translate the ADP
guarantee of Sommer et al.’s result to the standard notion of
DP.

As we are interested to examine if we can find ϵ > 0 and,
correspondingly, δ > 0 that provide a tight DP guarantee for
M, we define the constants κi, i ∈ {1, . . . , 8}, that will become
handy to simplify the mathematical results derived and used
in the paper, as follows:

κ1 :=
(eϵ0 − e−ϵ0)2eCne−ϵ0

4
(4)

κ2 := 1 +
eϵ0 − 1

n+ (eϵ0 − 1)π(x0)(n− 1)
(5)

κ3 :=
n+ (eϵ0 − 1)(nπ(x0) + 1− π(x0))

eϵ0 + k − 1
(6)

κ4 := 2 artanh

(
2 sinh (ϵ0)

eϵ0/2

)
(7)

κ5 :=
sinh2 ϵ0

n
(8)

Definition 2.1 (Critical Polynomial). For a given privacy pa-
rameter, ϵ0, of the k-RR mechanism used in M and n samples
drawn from X following a distribution π, let P1(x), P2(x) ∈
R[x] be polynomials defined as:

P1(x) := κ1κ2(x+ 1)2, P2(x) := κ3(κ2 − x)(x− 1)

Let P (x) := P1(x) − P2(x). We call P (x) to be our critical
polynomial.

Definition 2.2 (Critical Equation). Let the critical equation
H(x) be defined as:

H(x) := 2κ5κ2e
−Cx2

4κ5 + x2κ3(κ2 + 1)− xκ3(κ2 − 1)

Theorem 2.1. For ϵ > max{κ4, lnκ2}, taking δ as in (3)
asymptotically provides tight (ϵ, δ)-ADP guarantee for M wrt
x0, x1 as n → ∞.

Theorem 2.2. For lnκ2 < ϵ < κ4, taking δ as in (3) asymptot-
ically provides a tight (ϵ, δ)- ADP blanket for M wrt x0, x1,
as n → ∞.

For any xi ∈ X as the primary input of u, let S1(xi) de-
note the space [κ4, lnκ2(xi)) ⊂ R and S2(xi) denote the space
(0,min{κ4, lnκ2(xi)}) ⊂ R.
Theorem 2.3. a) If κ4 < lnκ2(xi) for all xi ∈ X , and if

P (x) = 0 has a real solution in [eκ4 , κ2), then S1 :=⋂
xi∈X

S1(xi) ̸= ϕ. Moreover, for every ϵ ∈ S1, choosing δ

as in (3) ensures a tight (ϵ, δ)-DP blanket for M.

b) If H(x) = 0 has a real solution in (0, µ), where

µ = min
{
tanh (κ4

2 ), tanh ( lnκ2(xi)
2 )

}
, then setting S2 :=⋂

xi∈X
S2(xi) ̸= ϕ. Moreover, for every ϵ ∈ S2, choosing δ

ensures a tight (ϵ, δ)-DP blanket for M.

3 Discussion and future work

The theoretical conditions derived in this work to make Balle
et al.’s bounds for privacy blankets of shuffle models give us
an analytical insight to the cases when we could obtain the
best privacy guarantee for shuffle models using k-RR local
randomizers. Studying the space of the tight DP guarantees

2as in Definition 1.3
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for the shuffle models could be a possible breakthrough in this
area, as this could then be used to tune the hyperparamters
such as the privacy level of the local randomizer (ϵ0) and the
number of samples (n) for implementing the shuffle model in
various areas of privacy-preserving data analysis. Naturally,
this would also help to maximize the utility for a given level
of privacy, once the best DP guarantee for the shuffle model
is illustrated, aiding to resolve the privacy-utility trade-off for
shuffle models of DP.

We plan on studying more generalized forms of shuffle
models using different local randomizers and comparing their
utilities with the central models. Also, wish to extend this
work in the context of digital markets by implementing shuf-
fle models and exploiting its DP guarantees in the context of
differentially private data market and privacy pricing [9, 10].
In [9], Jung et al. proposed a federated data trading frame-
work in which data providers coalesce to form a federations
to increase their bargaining power in data trading. An im-
mediate extension would be to analyse the mechanism of [9]
under the environment of shuffle models implement by each
federation and study a data pricing mechanism based on the
privacy amplification by shuffling.
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