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Abstract

With the recent bloom of data, there is a huge surge in threats against individuals’ private information. Various
techniques for optimizing privacy-preserving data analysis are at the focus of research in the recent years. In this paper,
we analyse the impact of sampling on the utility of the standard techniques of frequency estimation, which is at the core
of large-scale data analysis, of the locally deferentially private data-release under a pure protocol. We study the case in a
distributed environment of data sharing where the values are reported by various nodes to the central server, e.g., cross-
device Federated Learning. We show that if we introduce some random sampling of the nodes in order to reduce the cost
of communication, the standard existing estimators fail to remain unbiased. We propose a new unbiased estimator in the
context of sampling each node with certain probability and compute various statistical summaries of the data using it. We
propose a way of sampling each node with personalized sampling probabilities as a step to further generalisation, which
leads to some interesting open questions in the end. We analyse the accuracy of our proposed estimators on synthetic
datasets to gather some insight on the trade-off between communication cost, privacy, and utility.

1 Introduction

To address the age-old battle between privacy and utility, var-
ious optimisation techniques to analyse the data. There is a
massive explosion of data in the recent few years, and with
the plethora of data that is being generated everyday, their
threats against their privacy is increasing manifold. Hence,
the age-old battle between privacy and utility of data has be-
come all the more important catering to the urge to dissect
and analyse users’ personal data for various kinds of analytics.
Differential privacy (DP) [1, 2] have become the standard for
privacy protection in the last few years. To efface the need of a
central trusted curator, a local variant of DP called the Local
Differential Privacy (LDP) [3] has been intensively studied of
late. With LDP, users get an opportunity to obfuscate their
data locally and this noisy data from the end of the users is re-
ported to the central server. The privacy level can be adjusted
according to the requirement of the users by , by adding some
tuning the privacy parameter ε of the LDP mechanism.

The idea of LDP aligns well with the modern day dis-
tributed machine learning, where the idea is to reduce the
dependency on a potentially adversarial central server for car-
rying out the model training. This gave the rise to the concept
of Federated Learning (FL) [4], where a local model is trained
independently at various nodes and the updates are communi-
cated to the central server to train the main model, aggregat-
ing all the local updates. In particular, cross-device Federated
Learning [5, 6, 7, 8, 9], the data from the users are used to
train a local model on individual devices and the model up-
date is communicated to the central server, making sure that

one’s personal data never leaves their device. However, in
such a setting, often the communication cost is compromised
by reporting the updates from every node to estimate the fre-
quency of each value in the domain, and subsequently other
statistical summaries of the data, in the central server.

Recently, a substantial focus of FL community focus has
been on optimizing sampling techniques [10, 11, 12, 13, 14, 15].
Another branch of recent work has been in the direction of fre-
quency estimation under LDP protocols [14, 16]. In this work,
we aimed to incorporate the idea of sampling under LDP pro-
tocols and analyze its potential impact on standard frequency
estimation techniques.

In this paper, we aim to look at the impact of introduc-
ing some sampling techniques on such estimates of LDP data.
With millions of users holding data, a useful tool for the ser-
vice providers is to gather a right number of data points which
would be optimal and sufficient for performing various kinds
of analysis. In summary, as a main contribution of this work,
we point out that the standard estimators fail to stay unbi-
ased when sampling techniques are introduced in a distributed
learning framework. Hence, we propose a new unbiased esti-
mator generalising the existing work by Wang et al. in [14].
We analyse the trade-off between the communication cost and
the utility and performance of our estimator under a pure
LDP protocol through experiments on synthetic datasets. We
illustrate, empirically, the usefulness of sampling by showing
that sampling a huge number of users does not drastically
improve the quality of the analysis performed after a certain
point, therefore, implying the necessity of setting appropriate
sampling probabilities to optimize the trade-off between com-
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munication cost, privacy, and the quality of the estimators,
which contribute massively in the analytics.

2 Preliminaries

Definition 2.1 (Differential privacy [1, 2]). For a certain
query, a randomizing mechanism R provides ε-differential pri-
vacy (DP) if, for all neighbouring1 datasets, D and D′, and
all S ⊆ Range(R), we have

P[R(D) ∈ S] ≤ eε P[R(D′) ∈ S]

Definition 2.2 (Local differential privacy [3]). Let X and Y
denote the spaces of original and noisy data, respectively. A
randomizing mechanism R provides ε-local differential privacy
(LDP) if, for all x, x′ ∈ X , and all y ∈ Y, we have

P[R(x) = y] ≤ eε P [R(x′) = y]

Definition 2.3 (Pure LDP protocols). [14] A LDP mecha-
nism R is pure iff there exist p∗ > q∗ such that for all v1 and
v2 6= v1:

P [R(v1) ∈ {y: v1 ∈ Support(y)}] = p∗, and

P [R(v2) ∈ {y: v1 ∈ Support(y)}] = q∗ (1)

where for any input x ∈ X , the set {y ∈ Y:x ∈ Support(y)}
is the set of outputs in Y that support the input x with a
non-zero probability of being observed via the mechanism R,
i.e., {y:x ∈ Support(y)} = {y:P [R(x) = y] 6= 0}.

Definition 2.4 (Direct Encoding [17]). Let X be a dis-
crete domain of size d. Then direct encoding (DE) a.k.a.
k-randomized response (k-RR) mechanism, RDE, is a locally
differentially private mechanism that stochastically maps the
domain X onto itself (i.e., Y = X ), given by

RDE(y|x) =

{
p = c eε , if x = y

q = c, , otherwise

for any x, y ∈ X , where c = 1
eε+d−1 .

In this work we focus in the setting of DE where it per-
turbs and fix a discrete domain X of size m for our analysis,
supposing DE perturbs values from X and to some noisy val-
ues in X . Let there are n ∈ N nodes, each holding some value
from X obfuscated by DE. Let the Support function for DE be
SupportDE(i) = {i}, i.e., each obfuscated output value i ∈ X
supports the input i ∈ X .

Remark 1. Setting Support(i) = {i}, p∗ = p, and q∗ = q, DE
becomes is pure LDP protocol, shown by Wang et al. in [14].

Wang et al. [14] proposed an unbiased frequency estima-
tor, cDE(i), of the original value i going through a pure LDP
protocol as:

c(i) =

∑
j

1Support(yj)(i)− nq∗

p∗ − q∗
(2)

where yj denotes the noisy value reported by the jth node.
Thus, using (2) in the context of DE, for any value i ∈ X we
obtain:

cDE(i) =

n∑
j=1

1{Xj=i} − nq

p− q
(3)

where 1E is the indicator function for any event E such that

1E =

{
1 if E happens

0, otherwise

We explore this idea to investigate the behaviour of cDE if
each node is independently sampled to report its value, per-
turbed with DE, with some probability π. Let S be the ran-
dom variable representing the number of nodes which have
been reported to the central server. Hence P(S > n) = P(S <
0) = 0. Taking the same estimator cDE(i) in the setup of ran-
dom sampling of each node with an independent probability
of π, we get:

E (cDE(i)) = E


S∑
j=1

1Support(yj)(i)− nq∗

p∗ − q∗



= E


S∑
j=1

1{Xj=i} − nq

p− q


=

E(S)E(1{Xj=i} − nq)
p− q

[Wald’s Equation [18]]

=
nπ(fip+ (1− fi)q)− nq

p− q

= nfiπ −
nq(1− π)

p− q
(4)

We see that putting π = 1 in (4), implying every node is
sampled in each round, gives us the same result as in [14].

Theorem 2.1. If we introduce some sampling probability π < 1
for each node, cDE becomes a biased frequency estimator.

Proof. We recall that 1 ≥ p ≥ q ≥ 0 by the definition of pure

LDP protocols, and 0 ≤ π ≤ 1. Therefore, nq(1−π)
p−q ≥ 0, and

hence, E(cDE(i)) ≤ nfiπ ≤ nfi and equality is attained iff
π = 1.

3 Unbiased frequency estimation

Motivated from Theorem 2.1, we proceed to device an unbi-
ased estimator for DE, gDE, incorporating the random sam-
pling aspect, defined as follows:

gDE(i) =
cDE(i)

π
+
nq(1− π)

(p− q)π
(5)

Theorem 3.1. If each node has an independent sampling prob-
ability of π, gDE is an unbiased estimator of the frequencies of
the values in X observed under DE.

Proof. Immediate from (4) in Theorem 2.1 and using the lin-
earity of expectation.

1differing in exactly one place
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For the simplicity of notation, let fi be the random variable
representing the fraction of times the value i ∈ X is reported
to the central server. In [14] Wang et al. define the approxi-
mate variance of any random variable which is a function of
fi, say RV (fi), as Var∗(RV (fi)) = lim

fi→0
Var(RV (fi)).

Theorem 3.2. In the event of independently sampling the
nodes with some probability π, the approximate variance of
cDE is given by:

Var∗(gDE(i)) =
Var∗(cDE(i))

π2
=
n(q − q2π)

(p− q)2π

Proof. We start by deriving the actual variance of gDE.

Var (cDE(i)) = Var


S∑
j=1

1{Xj=i} − nq

p− q


[S is the r.v. representing the number of nodes sampled]

=

Var

(
S∑
j=1

1{Xj=i} − nq

)
(p− q)2

=

Var

(
S∑
j=1

1{Xj=i}

)
(p− q)2

=
E(S) Var(1{X1=i}) + E((1{X1=i})

2 Var(S)

(p− q)2

[Random sums of RVs [18]]

=
nπfip(1− p) + nπ(1− fi)q(1− q)

(p− q)2

+
(fip+ (1− fi)q)2(nπ(1− π))

(p− q)2

∴ Var∗(cDE(i)) = nπ
q(1− q) + q2(1− π)

(p− q)2

= nπ
q − q2π
(p− q)2

Now we observe that Var(gDE(i)) =
Var(cDE(i))

π2 , by defini-
tion of gDE. Therefore,

Var∗(gDE(i)) =
Var∗(cDE(i))

π2
=
n(q − q2π)

(p− q)2π

Observe Var∗(gDE(i)) ≥ Var∗ cDE(i)), with equality iff
π = 1, as we would expect since we are introducing more ran-
domness and less information in gDE(i) compared to cDE(i)
by engendering random sampling of each node.

Definition 3.1 (Normalized variance). The normalised vari-
ance of any random variable X is defined as

Varnorm(X) =
Var(X)

E(X)

Normalized variance can be useful when comparing two
random variables with different means, in order to account for
larger variance for larger means.

Theorem 3.3. Var∗norm(gDE(i)) = O
(

1
π3n

)
Proof.

Varnorm (gDE(i)) = Var

(
gDE(i)

E(S)

)
= Var

(
gDE(i)

nπ

)
=

Var(gDE(i))

n2π2

=⇒ Var∗
(
gDE(i)

nπ

)
=

Var∗(gDE(i))

n2π2

=
n(q − q2π)

(p− q)2n2π3
[Th.3.2] =

q − q2π
(p− q)2π3n

= O
(

1

π3n

)

We note that for small value of π, the normalized variance
of the estimator gDE would blow up as it is of the order 1

π3n .
But this is not unexpected, as with a low sampling probabil-
ity, it is more likely that we would give rise to fewer nodes
that are actually sampled to report their values, giving rise to
less information for the central server, which should result in
a greater variance. We acknowledge a trade-off between the
bias of an estimator and its increasing variance. In particular,
we see that without compensating for the bias of cDE to obtain

gDE by scaling it with 1
π and adding up nq(1−π)

π(p−q) , for a small

sampling probability π, we would have the bias which will
grow up to be a tremendously low a quantity, always giving a
massively conservative and negative estimate for the value of
i as observed, especially if the number of nodes involved (n)
is huge (e.g. in millions), which is often the case in federated
learning. Precisely, observe from (4) that as lim

π→0
cDE = nq

p−q ,

implying that we would be getting a constant and negative
estimate for every i ∈ X , which would make the analysis in-
volving the frequencies rather absurd.

Now we look to improve upon the proposed unbiased fre-
quency estimator gDE. Let S be the random variable repre-
senting the number of nodes sampled in a round if each node
is independently sampled with probablity π. We proceed to
define an improved frequency estimator of the elements of X
under DE through a very natural approach of replacing n by
S in the definition of cDE.

Let ĉDE(i) =

S∑
j=1

1{Xj=i}−Sq

π(p−q) . In order to use ĉDE as the

frequency estimator for any element i ∈ X , it is crucial to
probe if it has any bias.

Theorem 3.4. ĉDE is an unbiased estimator of the frequen-
cies of the elements of X being perturbed via DE which are
reported by the nodes which are sampled independently.

Proof.

E


S∑
j=1

1{Xj=i} − Sq

π(p− q)


=

E(S)E(1{Xj=i})− E(Sq)

π(p− q)
[Wald’s Equation [18]]

=
nπ(fip+ (1− fi)q)− nπq

π(p− q)
= nfi
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Theorem 3.5. Var(ĉDE(i)) ≥ Var(gDE(i)), i.e., gDE gives a
better (more confident) estimate for the frequencies than ĉDE,
which is a naive and immediate extension from cDE.

Proof.

Var (ĉDE(i))

= Var


S∑
j=1

1{Xj=i} − Sq

π(p− q)



=

Var

(
S∑
j=1

1{Xj=i}

)
+ Var(S)q2

π2(p− q)2

= Var(gDE(i)) +
Var(S)q2

π2(p− q)2

(6)

It follows immediately that Var(gDE(i)) + Var(S)q2

π2(p−q)2 ≥

Var(gDE(i) as Var(S)q2

π2(p−q)2 ≥ 0.

Theorem 3.6. For every i ∈ X , we have 0 ≤ gDE(i) ≤ n iff
0 ≤ cDE(i) ≤ n on an average, i.e., ensuring our proposed
frequency estimate evaluating a reasonable frequency for any
i ∈ X is equivalent to that of the estimate proposed by Wang
et al.

Proof. We proceed to show this in two parts:

(i) 0 ≤ cDE(i)⇔ 0 ≤ gDE(i) on an average

(ii) n ≥ cDE(i)⇔ n ≥ gDE(i) on an average

Proceeding with (i), we obtain:

cDE(i) ≥ 0⇔

n∑
j=1

1{Xj=i} − nq

p− q
≥ 0

⇔
n∑
j=1

1{Xj=i} − nq ≥ 0 [p ≥ q for pure LDP]

⇔
n∑
j=1

1{Xj=i} ≥ nq ⇔ E

 n∑
j=1

1{Xj=i}

 ≥ nq
⇔ n(fip+ (1− fi)q) ≥ nq ⇔ p ≥ q (7)

That’s the trivial condition assumed to make DE a pure LDP
protocol.

Now focussing on gDE, we get:

gDE(i) ≥ 0⇔

S∑
j=1

1{Xj=i} − nq

π(p− q)
+
nq(1− π)

(p− q)π
≥ 0

⇔
S∑
j=1

1{Xj=i} − nqπ ≥ 0 [p ≥ q for pure LDP]

⇔
S∑
j=1

1{Xj=i} ≥ nqπ (8)

Taking the expectation of both sides:

⇔ E

 S∑
j=1

1{Xj=i}

 ≥ nqπ
⇔ nπ(fip+ (1− fi)q) ≥ nqπ

⇔ p ≥ q (9)

Establishing (i), now we shift to prove (ii):

cDE(i) ≤ n⇔

n∑
j=1

1{Xj=i} − nq

p− q
≤ n

⇔
n∑
j=1

1{Xj=i} − nq ≤ n(p− q)

⇔
n∑
j=1

1{Xj=i} ≤ np

⇔ E

 n∑
j=1

1{Xj=i}

 ≤ np
⇔ n(fip+ (1− fi)q) ≤ np

⇔ q ≤ p (10)

But q ≤ p is the trivial condition assumed to make direct
encoding a pure LDP protocol.

gDE(i) ≤ n⇔

S∑
j=1

1{Xj=i} − nq

π(p− q)
+
nq(1− π)

(p− q)π
≤ n

⇔
S∑
j=1

1{Xj=i} − nqπ ≤ n(p− q)π [p > q for pure]

⇔
S∑
j=1

1{Xj=i} ≤ npπ

⇔ E

 S∑
j=1

1{Xj=i}

 ≤ npπ
⇔ nπ(fip+ (1− fi)q) ≤ npπ ⇔ q ≤ p (11)

4 Experimental results

We performed experiments on synthetic datasets to evalu-
ate and visualize the performance of our estimator and ob-
served that, indeed, as we increase π, the estimation by
gDE(i) approximates the original distribution better. We
considered 50,000 data points sampled from a domain X of
size 100, following the distributions Binomial(100, 0.5) and
Binomial(50, 0.6)+Binomial(50, 0.4). We considered two ex-
tremes of the sampling probabilities for each node by setting
π = 0.1 and π = 0.9. Figures 1 & 2 illustrate the performance
of our estimator in these two settings for the two different
datasets.

We computed the total variation (TV) distance between
the original distribution and ĉDE(i) for the synthetically gen-
erated dataset sampled from a Bin(100, 0.5) distribution and
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illustrated the results in Figure 3, along with communica-
tion cost for sampling probabilities ranging from π = 0.1 to
π = 0.9. We can see a clear trade-off between the communi-
cation cost and the TV distance.

Figure 1: Data sampled from Bin(100, 0.5)

Figure 2: Data sampled from Bin(50, 0.6) +Bin(50, 0.4)

Figure 3: Total variation distance between our proposed esti-
mator and distribution of the original data, and communica-
tion cost = O(nπ) varying with different sampling probabili-
ties

5 Generalized sampling probabilities

In all the previous results, we assumed that the values from
each node is sampled independently with the same probabil-
ity π. Now we enable us with the flexibility not to require the
sampling probability of each node to be the same, opening
doors to a lot of interesting paths of research ahead. We ex-
plore the setting where the jth node is sampled independently
with probability πj for every node j ∈ {1, 2, . . . , n}. Note that
if we have π = π1 = π2 = . . . πn, we are left with the sampling
environment that we addressed previously.

Let S be the random variable representing the total num-
ber of nodes sampled under this flexible setting of having per-
sonalized sampling probabilities. We proceed to derive an un-
biased frequency estimator in such a generalized case.

Theorem 5.1. Let h(i) =

S∑
j=1

1{Xj=i}−nq

p−q , where Xj is the ran-

dom variable denoting the value reported by the jth node.

Then, setting T (i) as nh(i)
n∑
j=1

πj

+
nq

(
n−

n∑
j=1

πj

)
n∑
j=1

πj(p−q)
, it becomes an

unbiased frequency estimator of every value i ∈ X with

Var∗(T (i)) =

n2
n∑
j=1

(qπj(1− qπj))

(
n∑
j=1

πj)2(p− q)2

Remark 2. Putting π = π1 . . . = πn reduces Var∗(T (i)) to
Var∗(gDE(i)) and further, putting π1 = . . . πn = 1 reduces
Var∗(T (i)) to Var∗(cDE(i)) as in [14], as expected.

Proof. First we aim to show that T (i) is an unbiased estimator
for any i ∈ X .

E(h(i)) = E


S∑

j=1

1{Xj=i} − nq

p− q



=

E

(
n∑

j=1

1{Xj is sampled}1{Xj=i} − nq

)
p− q

[As sampling & privatization are independent]

=

n∑
j=1

E
(
1{Xj is sampled}

)
E
(
1{Xj=i}

)
− nq

p− q

=

n∑
j=1

P
(
1{Xj is sampled}

)
P
(
1{Xj=i}

)
− nq

p− q

=

n∑
j=1

πj(fip+ (1− fi)q)− nq

p− q =

n∑
j=1

πjfi −
q(n−

n∑
j=1

πj)

p− q

Note that E(S) = E
(
1{xj is sampled}

)
=

n∑
j=1

πj ≤ n. There-

fore,
q(n−

n∑
j=1

πj)

p−q ≥ 0. Hence, we define T (i) = nh(i)
n∑
j=1

πj

+

nq(n−
n∑
j=1

πj)

n∑
j=1

πj(p−q)
as the frequency estimate of the true value i. Be-

cause of linearity of expectation, we get E(T (i)) = nfi, giving
us an unbiased estimator for the general case where each node
can have a different probability of being sampled. Putting
π = π1 = π2 = . . . πn reduces T (i) to gDE(i) which is what we
would expect.

Now we focus on computing Var∗ (T )(i)) by first evaluat-
ing the actual variance of T (i). We obtain:

Var(T (i)) = Var

 nh(i)
n∑

j=1

πj

+

q

(
n−

n∑
j=1

πj

)
n∑

j=1

πj(p− q)

 =
n2 Var(h(i))

(
n∑

j=1

πj)2
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=
n2

(
n∑

j=1

πj)2
Var


S∑

j=1

1{Xj=i} − nq

p− q

 =

n2 Var

(
S∑

j=1

1{Xj=i}

)
(

n∑
j=1

πj)2(p− q)2

=

n2 Var

(
n∑

j=1

1{Xj is sampled}1{Xj=i}

)
(

n∑
j=1

πj)2(p− q)2

=
n2

(
n∑

j=1

πj)2(p− q)2

(
n∑

j=1

(Var
(
1{Xj is sampled}

)
Var

(
1{Xj=i}

)
+ Var

(
1{Xj is sampled}

)
E
(
1{Xj=i}

)2
+E

(
1{Xj is sampled}

)2
Var

(
1{Xj=i}

))

=

n2
n∑

j=1

(π(1− π)((fip(1− p) + (1− fi)q(1− q))

(
n∑

j=1

πj)2(p− q)2

+
(fip+ (1− fi)q)2)

(
n∑

j=1

πj)2(p− q)2
+ π2(fip(1− p) + (1− fi)q(1− q)))

=⇒ Var∗(T (i)) =

n2
n∑

j=1

(qπj(1− qπj))

(
n∑

j=1

πj)2(p− q)2

6 Conclusion and way forward

Sampling of nodes and its impact on accuracy of the trained
models, statistical analysis of the data, and aspects of privacy
have been at the epicentre of research in the areas of feder-
ated learning. The results in this paper enable us to have an
unbiased estimate for the frequency of elements of a domain
of values which are held by the users. We also get an insight
on how the sampling affects the utility of the estimators and
the accuracy of estimating the true distribution of the data.

In Figure 3, we observe that after a point, the TV distance
doesn’t decrease significantly compared to how much the com-
munication cost increases, raising some interesting open ques-
tions: Should we go on till sampling every single node? Where
should we stop? In fact, the first plot of Figure 3 shows sam-
pling each node with probability 0.1 and sampling every single
node do not engender a drastic difference in the TV distance.
In particular, we would like to highlight some interesting open
questions leading on from this work:

i) Uniform sampling : As we proposed an unbiased fre-
quency estimator of the values which are sampled from
the users with any arbitrary probability distribution, it
would be an interesting area of analysis to first get an
initial idea of the sampling distribution in the first round
using T , and then use that to our advantage to revise
the sampling probabilities of each value inversely pro-
portional to their frequencies so that we can ensure that

a sample of the dataset we wish to derive doesn’t over-
represent a certain value and under-represent some oth-
ers. In the context of FL, this can be a key area for
ensuring a fair model which is not heavily influenced by
the mode of the data, making the model more biased to-
wards the majorities, which might not be the desirable
outcome for certain tasks, e.g., facial recognition, text
prediction, etc. It would be a challenging area to investi-
gate how such a mechanism would perform in the aspect
of the communication cost vs utility trade-off against the
state-of-the-art differentially private FL techniques [10],
especially for high dimensional data.

ii) Shuffling : Privacy amplification methods have been re-
cently studied a lot involving the shuffle model. If we
look to apply shuffling to the LDP data using DE as
the local randomizer, that should mean we should have
a high level of central differential privacy guarantee us-
ing a lower intensity of local noise using the recent ad-
vancements and studies for deriving the amplified for-
mal central differential privacy guarantees using shuf-
fling [19, 20, 21, 22]. As the estimators we proposed,
both cDE and T , are functions function of the underly-
ing LDP mechanism used – in particular, the obfuscating
probability distribution which is dependant on ε – it is
obvious that a higher value of ε will engender a better
bound. The introduction of shuffling would guarantee
that the privacy of the users would not be compromised,
as we can tune the final level of central DP guarantee
quite high for even a high value of the privacy param-
eter of DE, which is the local randomizer used in this
process.

Thus, it would be an interesting comparison to have be-
tween variance bounds of the estimated frequencies of
the shuffle model with DE using our proposed estimates,
and the variance of the observed data under the central
Gaussian mechanism, which is essentially the maximum
likelihood estimate of the original distribution of the
data, under the same level of the privacy parameters.
Depending on the behaviour, we could hypothesize on
the requirement of the number of samples and the sam-
pling probabilities that would ensure a tighter variance
for our proposed estimates.

iii) Personalised sampling : Another very interesting direc-
tion this work leads on to is to see if techniques like the
Lagrange multiplies could be used to find the optimal
sampling distribution (π1, . . . , πn) that would minimize
the variance of the estimator that we derived under the
constraint that (π1, . . . , πn) is a probability distribution.
In other words, we would like to focus on the optimiza-
tion problem where we wish to Var∗(T )(i) for every value
i ∈ X such that 0 ≤ πj ≤ 1 for every j ∈ {1, . . . , n}

and
n∑
j=1

. The problem would be straightforward if we

wished to minimize Var∗(T )(i) for some fixed i, but be-
comes increasingly challenging when we are dealing with
minimizing all the variances at an the minimum, under
some multi-dimensional metric, giving us the optimal
(π1, . . . , πn). This approach would enable us to find the

6



optimal sampling probability that would give the mini-
mum variance for our proposed unbiased estimators.
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[22] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,
K. Talwar, and A. Thakurta, “Amplification by shuffling:
From local to central differential privacy via anonymity,”
in Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. SIAM, 2019, pp. 2468–
2479.

7


