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Abstract. We give a new practical algorithm to compute, in finite time,
a fixpoint (and often the least fixpoint) of a system of equations in the
abstract numerical domains of zones and templates used for static anal-
ysis of programs by abstract interpretation. This paper extends previous
work on the non-relational domain of intervals to relational domains. The
algorithm is based on policy iteration techniques– rather than Kleene it-
erations as used classically in static analysis– and generates from the
system of equations a finite set of simpler systems that we call policies.
This set of policies satisfies a selection property which ensures that the
minimal fixpoint of the original system of equations is the minimum of
the fixpoints of the policies. Computing a fixpoint of a policy is done by
linear programming. It is shown, through experiments made on a proto-
type analyzer, compared in particular to analyzers such as LPInv or the
Octagon Analyzer, to be in general more precise and faster than the usual
Kleene iteration combined with widening and narrowing techniques.

1 Introduction

One of the crucial steps of static analysis by abstract interpretation [CC76]
is the precise and efficient solving of the system of equations representing the
abstraction of the program properties we want to find out. This is generally done
by iteration solvers, based on Kleene’s theorem, improved using extrapolation
methods such as widening and narrowing operators [CC91]. These methods are
quite efficient in practice, but are not always very precise and are difficult to
tune as the quality and efficiency might depend a lot on the code under analysis.

In [CGG+05], some of the authors proposed a new method for solving these
abstract semantic equations, which is based on policy iteration. The idea of
policy iteration was introduced by Howard in the setting of Markov decision
processes (one player stochastic games), see [How60]. It reduces a fixpoint prob-
lem to a sequence of simpler fixpoints problems, which are obtained by fixing
policies (strategies of one player). This method was extended to a subclass of
(zero-sum) two player stochastic games by Hoffman and Karp [HK66]. However,
static analysis problems lead to more general fixed point equations, which may
be degenerate, as in the case of deterministic games [GG98]. The algorithm in-
troduced in [CGG+05] works in a general setting, it always terminates with a



fixpoint, the minimality of which can be guaranteed for the important subclass
of sup-norm nonexpansive maps, see theorem 3 and remark 5 of [CGG+05].
The experiments showed that in general, policy iteration on intervals was faster
and more precise than Kleene iteration plus (standard) widenings and narrow-
ings. In this paper, we extend the framework of [CGG+05] to deal with policy
iteration in relational domains, such as zones [Min01a], octagons [Min01b] and
TCMs (Template Constraint Matrices [SSM05b]). We describe a general finite
time algorithm that computes a fixpoint of functionals in such domains, and
often a least fixpoint. We did not treat polyhedral analyses [CH78], as general
polyhedra are in general not scalable.

There are two key novelties by comparison with [CGG+05]. The first one
is that the computation of closures (canonical representatives of a set of con-
straints), which was trivial in the case of intervals, must now be expressed in
terms of policies, in such a way that the selection property on which policy iter-
ation relies is satisfied. We solve this problem by means of linear programming
duality: we show in particular that every policy arising in a closure operation
can be identified to an extreme point of a polyhedron. Secondly, for each policy,
we have to solve a (simpler) set of equations, for which we use linear program-
ming [Chv83], and not Kleene iteration as in [CGG+05]. We have developped
a prototype; first benchmarks show that we gain in efficiency and in general
in precision with respect to Kleene iteration solvers, in zones (comparison was
made possible thanks to a prototype on the more refined domain of octagons of
A. Miné [Min05]), and in simple TCMs (using LPInv [SSM05a]). This is con-
jecturally true for general TCMs too, a claim which is not yet substantiated
by experimental results as we have not yet implemented general TCMs in our
analyzer.

The paper is organized as follows: In section 2, we recap some of the basics
of abstract interpretation and recall the main operations on the zone and TCMs
abstract domains. We then introduce our policy iteration technique for both do-
mains in section 3. Algorithmic and implementation issues are treated in section
4. We end up in section 5 by showing that policy iteration exhibits very good
results in practice.

2 Basics

2.1 Abstract Interpretation by Static Analysis

Invariants, that can be obtained by abstract interpretation based static analy-
sis, provide sound overapproximations of the set of values that program variables
can take at each control point of the program. They are obtained by computing
the least fixpoint of a system of abstract equations derived from the program to
analyze. The correctness of the approximation is in general1 guaranteed by the
theory of Galois Connections between the concrete domain (the set of variable

1 See [CC92] for more general frameworks.



values of the program) and the abstract domain (more easily tractable represen-
tatives of possible sets of values that the program can take).

For a complete lattice (Le,⊑e), we write ⊥e for its lowest element, ⊤e for
its greatest element, ⊔e and ⊓e for the meet and join operations, respectively.
We say that a self-map f of (Le,⊑e) is monotone if x ⊑e y ⇒ f(x) ⊑e f(y).
Existence of fixpoints is ensured by the Knaster-Tarski theorem which states
that every monotone self-map on a complete lattice has a fixpoint and indeed a
least fixpoint. The least fixpoint of a monotone self-map f on a complete lattice
will be denoted f−.

Let (Lc,⊑c) be the complete lattice representing the concrete domain and
(La,⊑a) the one representing the abstract domain. In most cases, the link be-
tween the two domains is expressed by a Galois connection [CC77], that is a pair
(α, γ) of maps with the following properties : α : Lc → La and γ : La → Lc are
both monotone, and α(vc) ⊑a va iff vc ⊑c γ(va). The map α is the abstraction
function, γ, the concretization function. These properties guarantee that α gives
the best upper approximation of a concrete property, in the abstract domain.

Figure 1 gives a C program (test2, left part) together with the semantic
equations (right part) for both zones and TCMs domain where Mi is the abstract
local invariant to be found at program line i. This would be our running example
throughout the paper.

The function context initialization creates an initial local invariant: typically
by initializing the known variables to the top element of the abstract lattice of
properties, or to some known value. The function Assignment(var ← val)(Mj)
is the (forward) abstract transformer which computes the new local invariant
after assignment of value val to variable var from local invariant Mi. Finally,
(·)∗ is the normalization, or closure, of an abstract value, see section 2.2.

Fig. 1. A program (left part) and its representation by equations
0 i = 150;

1 j = 175;

2 while (j >= 100){

3 i++;

4 if (j<= i){

5 i = i - 1;

6 j = j - 2;

7 }

8 }

9

M0 = context initialization
M2 = (Assignment (i← 150, j ← 175)(M0))

∗

M3 = ((M2 ⊔M8) ⊓ (j ≥ 100))∗

M4 = (Assignment (i← i + 1)(M3))
∗

M5 = (M4 ⊓ (j ≤ i))∗

M7 = (Assignment (i← i− 1, j ← j − 2)(M5))
∗

M8 = ((M4 ⊓ (j > i))∗ ⊔M7

M9 = ((M2 ⊔M8) ⊓ (j < 100))∗

Abstract versions fa of the concrete primitives fc such as assignment, con-
text initialization etc. are defined as fa(v) = α(fc(γ(v))), but in general we use
a computable approximation fa(v) such that α(fc(γ(v))) ⊑a fa(v). In particular
invariants are preserved: if x is a (resp. the least) fixpoint of fa then γ(x) is a
(resp. the least) (post) fixpoint of fc.



Kleene iteration It is well-known since Kleene that the least fixpoint of a continu-
ous function on a complete lattice is

⊔

n∈N
fn(⊥). This result gives an immediate

algorithm for computing the fixpoint : starting from the value x0 = ⊥, the k-th
iteration computes xk = xk−1⊔f(xk−1). The algorithm finishes when xk = xk−1.
For (only) monotonic functions, one may need more general ordinal iterations.
In practice though, as these iterations might not stabilize in finite time, it is cus-
tomary to use acceleration techniques, such as widening and narrowing operators
[CC91] in place of the union in the equation above: for instance, on intervals, we
can use the following widening ∇ and narrowing ∆ operators:

[a, b]∇[c, d] = [e, f ] with e =

{

a if a ≤ c

−∞ otherwise
and f =

{

b if d ≤ b

∞ otherwise,

[a, b]∆[c, d] = [e, f ] with e =

{

c if a = −∞
a otherwise

and f =

{

d if b =∞
b otherwise,

These ensure finite time convergence to a fixpoint, which is not necessarily
the least fixpoint: widening returns a post fixpoint while narrowing computes a
fixpoint from a post fixpoint. On intervals, and for our running example, figure
1, if these widening and narrowing operators are applied after 10 iterations (as
was done in [CGG+05] for matter of comparisons), we get the following iteration
sequence, where we only indicate what happens at control points 3, 7, 8 and 9.
We write (ikl , jk

l ) for the abstract values at line l and iteration k (describing the
concrete values of variables i and j). Widening takes place between iteration 9
and 10 and narrowing between 11 and 12.

(i13, j
1
3) = ([150, 150], [175, 175])

(i17, j
1
7) = ⊥

(i18, j
1
8) = ([151, 151], [175, 175])

(i19, j
1
9) = ⊥

. . .

(i93, j
9
3) = ([150, 158], [175, 175])

(i97, j
9
7) = ⊥

(i98, j
9
8) = ([151, 159], [175, 175])

(i99, j
9
9) = ⊥

(widening)
(i103 , j10

3 ) = ([150, +∞[, [175, 175])

(i107 , j10
7 ) = ([149, +∞[, [173, 173])

(i108 , j10
8 ) = ([151, +∞[, [173, 175])

(i109 , j10
9 ) = ⊥

(i113 , j11
3 ) = ([150, +∞[, ]−∞, 175])

(i117 , j11
7 ) = ([150, +∞[, ]−∞, 149])

(i118 , j11
8 ) = ([150, +∞[, ]−∞, 175])

(i119 , j11
9 ) = ([150, +∞[, ]−∞, 99])

(narrowing)
(i123 , j12

3 ) = ([150, +∞[, [100, 175])
(i127 , j12

7 ) = ([150, +∞[, [98, 149])
(i128 , j12

8 ) = ([150, +∞[, [98, 175])
(i129 , j12

9 ) = ([150, +∞[, [98, 99])

2.2 Two Existing Relational Abstract Domains

In this section we present some basics on the zone and TCM domains. In
particular the loss of precision due to widenings is discussed. For an exhau-
tive treatment see respectively the references [Min01a] and [SSM05b,SCSM06].



These domains enable one to express linear relations between variables, all sub-
polyhedral ([CH78]): in zones, linear relations involve only differences between
variables, whereas in TCM, they involve finitely many linear combinations of the
variables. Unlike in the case of polyhedral domains, these linear combinations
are given a priori.

In the sequel we consider a finite set V = {v1, . . . , vn} of real valued variables.
Let I = R∪{−∞,∞} be the extension of the set R of real values with two special
values −∞ (will be used to model a linear relation without solution in R) and
∞ (linear relation will be satisfied by any value). The operators ≤,≥, min, max

are extended as usual to deal with these values.

Zone Abstract Domain To represent constraints like v ≤ c we extend V by
a virtual fresh variable v0 whose value is always zero so that v ≤ c becomes
equivalent to vi − v0 ≤ c. Let us denote V0 = V ∪ {v0}. A zone is then a vector
c = (c0,0, c0,1, c0,2, . . . cn,n) where ci,j ∈ I stands for the constraint vi − vj ≤ ci,j

for vi, vj ∈ V0. The concretization of c is the set of real values of variables in
V whose pairwise differences vi − vj are bounded by the coordinates ci,j of c.
Formally, γ(c) = {(x1, . . . , xn) ∈ R

n | xi − xj ≤ ci,j , −c0,i ≤ xi ≤ ci,0}.

TCM Abstract Domain A Template Constraint Matrix T (TCM) is an ordered
set T = {e1, . . . , em} of linear relations ei(x) = ai,1x1 + . . . + ai,nxn where
(ai,1, . . . , ai,n) and x = (x1, . . . , xn) are real valued vectors of length n = |V |. In
practice this TCM T can be represented by a matrix M of dimension m×n and
such that its entry (i, j) is ai,j . Hence the ith line of this matrix is the vector
(ai,1, . . . , ai,n). For the sake of simplicy, we sometimes identify a TCM T with
its representation by matrix in the sequel where Ti will denote its ith row.

The TCM Abstract Domain consists of the set of all possible m-dimensional
vectors c = (c1, . . . , cm) with ci ∈ I. The concretization of an element c in the
domain is the set of real values x = (x1, . . . , xn) that satisfy ei(x) + ci ≥ 0 with
ci 6= +∞ for all i. Thus, γ(c) = {(x1, . . . , xn) ∈ R

n | ei(x) + ci ≥ 0 ∧ ci 6= +∞}.
In particular, γ(c) = ∅ if ci = −∞ for some i. Thus the TCM domain keeps track
of the bounds for a fixed set of pre-defined linear constraints. A linear assertion
(a conjunction of linear relations) of the form ei(x) + ci ≥ 0 will be denoted
e(x) + c ≥ 0 with e = (e1, . . . , em) and c = (c1, . . . , em).

A precise fixpoint detection in static analysis can be made by use of one TCM
per control point in the program to analyse. As it complicates the presentation
but does not change our theoretical results, we present operations in the case of
one TCM. In the case of several TCMs, operation results or operands have to
be expressed in the same TCM. This operation is called projection.

Linear Programming The emptiness of the concretization can be checked using
Linear Programming (see [Chv83] for an systematic treatment).

Let e(x) + c ≥ 0 be a linear assertion. A linear programming (LP) problem
consists in minimizing a linear relation f(x), called the objective function, sub-
ject to the constraint of e(x) + c ≥ 0. The concretization emptiness problem
corresponds to the case where f(x) is the constant map 0. A LP problem may



have three answers: the problem is infeasible, or there is one optimal solution,
or the problem is unbounded (f(x) can be decreased down to −∞). A linear
programming problem can be solved either by the simplex algorithm (whose
theoretical complexity is exponential, but which is efficient in practice) or by
modern interior point methods, which are polynomial time and practically effi-
cient.

Order and extrema To get a lattice structure, the zone and TCM domains are
extended with a supremum⊤ = (⊤, . . . ,⊤) (whose concretization is I

n itself) and
an infimum ⊥ which is any vector with at least one coordinate whose value is −∞
(its concretization is empty). If γ(c) of a zone or TCM c is not empty, c is said to
be consistent otherwise it is inconsistent. The order ⊑ is the vector order: c1 ⊑ c2

iff c1(i) ≤ c2(i) for every i = 1, .., |c1| = |c2|. We have c1 ⊑ c2 =⇒ γ1(c1) ⊆ γ2(c2)
but the converse is not true. This problem is addressed by the closure operation.

Closure Several zones or TCMs vectors may have the same concrete domain.
As a canonical representative, the closed one is chosen. The closure c∗ of a
consistent zone or TCM vector c is the ⊑-minimal zone or TCM vector such
that γ(c∗) = γ(c).

Closure on zones If c = (c0,1, . . . , cn,n) is a consistent zone then c∗ = (c∗0,0, . . . c
∗
n,n)

is such that c∗i,j = min1≤k≤n−1{cii1 + . . . + cik−1j |∀i1, . . . , ik−1 ∈ {1, . . . , n}} . A
zone c is consistent iff every diagonal coordinate of c∗ is zero. It follows that the
consistency and closure problems reduce to an all pairs shortest path problem.

Closure on TCMs Let c = (c1, . . . , cm) be a consistent vector on the TCM T

seen as a matrix of dimension m×n. Let us denote c|R the subvector of c in which
∞ coordinates are deleted. Let T|R be the corresponding submatrix of lines Ti

of T such that ci 6= ∞. Closure c∗ of c is the vector (c∗1, . . . , c
∗
m) such that c∗i

is the solution of the LP problem “minimize c|Rλ subject to T|Rλ = Ti, λ ≥ 0”.
It has been shown in [SSM05b] that as c is consistent no LP problem may be
unbounded2. Hence as γ(c∗) = γ(c) 6= ∅ we conclude all these m LP problems
have an optimal solution or an infeasible solution. An infeasible solution would
just mean that the bound c∗i for the constraint is∞, in otherwords the constraint
is unbounded.

Meet and Join The ⊔ operation is a pointwise maximum between the vector
coordinates: c1⊔c2 = (max{c1(1), c2(1)}, . . . , max{c1(k), c2(k)}). This operation
is the best approximation for the union in the TCM domain (lub) and preserves
closure. In the context of polyhedra this definition corresponds to the so called
weak join of polyhedra [SCSM06] as it does not involve addition of any new
constraints.

The ⊓ operation is a pointwise mimimum operation between the vector co-
ordinates: c1 ⊓ c2 = (min{c1(1), c2(1)}, . . . , min{c1(k)), c2(k)}). This operation
is exact but does not preserve closure.

2 if it were not the case, this would contradict γ(c) = γ(c∗) as we would have γ(c∗) = ∅
and γ(c) 6= ∅ by hypothesis.



Widening on zones c1▽c2 = c with ci = c1(i) if c2(i) ≤ c1(i) otherwise ci =∞.
An important remark about the widening is that its use forbids to close the
left operand otherwise termination is not guaranteed. The consequence when
computing a fixpoint with a Kleene iteration is as follows. After a widening,
closure is forbidden so that for a pair vi − vj whose bound becomes +∞, this
difference will remain unbounded until the end of the Kleene iteration. This
situation occurs on the left part of the computation table below, where the
triple (i39, j

3
9 , i39− j3

9) stands for the zone {150 ≤ x1−x0 ≤ 158∧175 ≤ x2−x0 ≤
175∧−25 ≤ x1−x2 ≤ −17}∪{x−x ≤ 0}. At iteration [10] a widening iteration
is computed. It can be seen that the result on every constraint involving the
upper bound of i from control point [3] remains unbounded (this is a special
case where zones computing a widening gives a closed zone but it is not true in
general as shown in A. Mine’s thesis [Min04]). In the worst case, every pair is
concerned by the widening so that the constraint set becomes a set of intervals.
This drawback does not exist with the policy iteration as we do not use the
widening operator.

(i13, j
1
3 , i13 − j1

3) = ([150, 150], [175, 175],
[−25, 25])

(i17, j
1
7 , i17 − j1

7) = ⊥
(i18, j

1
8 , i18 − j1

8) = ([151, 151], [175, 175],
[−24, 24])

(i19, j
1
9 , i19 − j1

9) = ⊥
. . .

(i93, j
9
3 , i93 − j9

3) = ([150, 158], [175, 175],
[−25,−17])

(i97, j
9
7 , i97 − j9

7) = ⊥
(i98, j

9
8 , i98 − j9

8) = ([151, 159], [175, 175],
[−24,−16])

(i99, j
9
9 , i99 − j9

9) = ⊥
(widening)

(i103 , j10
3 , i103 − j10

3 ) = ([150,∞], [175, 175],
[−∞,−25]

(i104 , j10
4 , i104 − j10

4 ) = ([149,∞], [173, 173],
[−∞,−24]

. . .

c1
3 = (−150, 150,−175, 175,

−25, 25)
c1
7 = ⊥

c1
8 = (−151, 151,−175, 175,

−24, 24)
c1
9 = ⊥

. . .

c9
3 = (−150, 158,−175, 175,

−17, 25)
c9
7 = ⊥

c9
8 = (−151, 158,−175, 175,

−16, 24)
c9
9 = ⊥

(widening)
c10
3 = (−150,−175, 175, 25)

c10
4 = (−149,−173, 175, 24)

. . .

Widening on TCMs It corresponds to the computation of a vector c′, |c′| ≤ |c1|
from c1’s coordinates such that γ(c′) ⊆ γ(c2). There are two cases to consider:
either c1 or c2 is inconsistent and c1▽c2 is simply c1⊔c2. Otherwise let us denote
bi to be the solution of the LP problem “minimize ei(x)+ c1(i) subject to e(x)+
c2 ≥ 0”. If bi is positive then c(i) = bi otherwise the linear expression ei is deleted
from T. Deleting a linear expression avoids the problem described on zones which
is that after a widening, closures are no more allowed in a Kleene iteration.
Nevertheless deleting a linear expression in a TCM impoverishes the expressiness
of the abstract domain. The major drawback of the widening operator when



used with Kleene iteration is not solved. For instance on the program of Figure
1, Kleene iterations with TCM T = {x1,−x1, x2,−x2, x1 − x2, x2 − x1} (which
models zones) are shown on the right part of the computation table above.
Results are identical to those in the case of zones, when widening occurs: from
iteration [10] on, the TCM reduces to T ′ = T \{−x1, x2 − x1} so that further
vectors have only four coordinates.

3 Policy Iteration for Relational Abstract Domains

The aim of policy iteration is to compute a fixpoint of some monotonic function
F which is a combination of “simpler” monotonic maps g, for which we can hope
for fast algorithms to compute their least fixpoints. For complete lattices such
as the interval domain [CGG+05], the maps g do not contain the intersection
operator. F is the intersection of a certain number of such g maps, and the goal
of policy iteration techniques is to ensure (and find) the simpler g which has
as least fixpoint, a fixpoint of F (not the least one in general). We will prove
that if we have a “selection property”, definition 1, then we can compute the
least fixpoint of F from the least fixpoints of the maps g, theorem 2. The policy
iteration algorithm will traverse in a clever manner the space of these g maps to
find efficiently a fixpoint of F .

To present policy iteration in a uniform manner for zone and TCM we use
notion of closed domains. A closed domain (L,⊥,⊤,⊑,⊔,⊓) is such that L is
an abstract domain and L contains only closed elements of L. As closure is only
defined for consistent elements, we introduce the bottom element ⊥ representing
all inconsistent elements to equip L with a lattice structure. Top element is ⊤.
The order ⊑ is ⊥⊑c⊑⊤ for every c and for c1, c2 6= ⊥ c1⊑c2 iff c1 ⊑ c2. Operators
are as follows:

x⊓y = z with z = ⊥ if x = ⊥ or y = ⊥ ; z = (x ⊓ y)∗ otherwise.
x⊔y = z with z = x if y = ⊥ ; z = y if x = ⊥ ; z = x ⊔ y otherwise.
Note that both zone and TCM closure closure satisfy that x∗ = x∗∗ ⊑ x and

they are monotonic.

3.1 Selection Property

Remember (see [CGG+05]), that in intervals, policies are of four types ll, rr, lr

and rl defined below. When I = [−a, b] and J = [−c, d], ll(I, J) = I (l is for
“left”), rr(I, J) = J (r for “right”), lr(I, J) = [−a, d] and rl(I, J) = [−c, b]. The
maps g are derived from F by replacing the operator ∩ (intersection) by any of
these four operators.

Thus, F ([a, b]) = ([1, 2] ∩ [a, b]) ∪ ([3, 4] ∩ [a, b]), where [a, b] is an interval of
real values, will have 16 policies as there are 4 options for each intersection; G
is composed of: llll([a, b]) = [1, 2] ∪ [3, 4], lrll([a, b]) = [1, b] ∪ [3, 4], rlll([a, b]) =
[2, b] ∪ [3, 4], rrll([a, b]) = [a, b] ∪ [3, 4], lllr([a, b]) = [1, 2] ∪ [3, b], lrlr([a, b]) =
[1, b] ∪ [3, b], rllr([a, b]) = [a, 2] ∪ [3, b], rrlr([a, b]) = [a, b] ∪ [3, b], llrl([a, b]) =
[1, 2] ∪ [a, 4], lrrl([a, b]) = [1, b] ∪ [a, 4], rlrl([a, b]) = [a, 2] ∪ [a, 4], rrrl([a, b]) =



[a, b] ∪ [a, 4] , llrr([a, b]) = [1, 2] ∪ [a, b], lrrr([a, b]) = [1, b] ∪ [a, b], rlrr([a, b]) =
[a, 2] ∪ [a, b], rrrr([a, b]) = [a, b] ∪ [a, b]

We then say that F satisfies the selection property since F is such that for
all intervals x F (x) = min{g(x) | g ∈ G}. We extend this definition to deal with
relational domains:

Definition 1. Let G denote a finite or infinite set of monotone self maps on the
complete lattice L, we say that a monotone self map F satisfies the selection
property if the two following properties are satisfied:

(1) F = F ∗ = (inf{g | g ∈ G})
(2) for all x ∈ L, there exists h ∈ G (a policy) such that F (x) = h(x).

In condition (1), F = F ∗ holds as g(x) are closed and we have property that
x∗ = x∗∗. Hence the least fixpoint of F is a least fixpoint of some policy:

Theorem 2. Let F be a monotone self map on a complete lattice L, satisfying
the selection property for a set of monotone self maps G. Then the least fixpoint
of F is reached by the least fixpoint of some policy:

F− = inf{(g−)∗ | g ∈ G}

Proof. To prove this theorem we need to show that

(1) F− ⊑ (g−)∗ for all g ∈ G
(2) F− is a fixed point of some policy

(1) Let g be a policy. By definition 1, we have F (x) ⊑ g∗(x) for all x. By
Tarski’s theorem, the least fixed point of a monotone self map h on L is given
by h− = inf{x ∈ L | h(x) ⊑ x}. Since F (x) ⊑ g∗(x), we can deduce that every
post fixed point of g∗(x) is also a post fixed point of F. Therefore by Tarski’s
theorem, we conclude that that

F− ⊑ (g∗)−

Since the * and g are monotonic, we have g∗((g−)∗) ⊑ g∗((g−)) = (g(g−))∗ =
(g−)∗. Therefore (g−)∗ is a post fixed point of g∗. So by Tarskis’s theorem we
have

(g∗)− ⊑ (g−)∗

From this relation and F− ⊑ (g∗)− we get F− ⊑ (g−)∗ Since this relation is
true for all g, we get the desired relation

F− ⊑ (inf{g− | g ∈ G})∗

(2) By the selection property there exists a policy h such that F− = F (F−) =
h(F−). So F− is a fixed point of h hence is greater than h− which implies
h− ⊑ F−. By definition of ∗, we have (h−)∗ ⊑ h− ⊑ F−. Therefore,

(inf{(g−) | g ∈ G})∗ ⊑ F−

. ⊓⊔



This theorem proves that algorithm 1 computes a fixpoint of an application
F that satisfies the selection property. Starting from an initial policy provided
by a function initial policy this algorithm computes iteratively the least fixpoint
x of some policy gk (done at iteration k). If x is a fixpoint of F then algorithm
terminates otherwise a new policy gk+1 is selected for iteration k + 1 in such a
way that g∗k+1

= x (this is always possible as F has the selection property).

Algorithm 1 Policy iteration algorithm

k← 1 ; g1 ← initial policy(G)
while true do

xk ← (g−

k
)∗

if xk = F (xk) then

return xk

else

find g such that F (xk) = g∗(xk)
k← k + 1 ; gk ← g

end if

end while

Algorithm 1 may not return the least fixpoint. However, for some classes
of monotone maps, including sup-norm non-expansive maps, an extension of
algorithm 1 does provide the least fixpoint, see theorem 3 and remark 5 in
[CGG+05]: when a fixpoint for F is detected at iteration n it is possible to scan
all the remaining policies g that belong to G\{g1, . . . , gn} and to compute their
least fixpoint and finally returning the least one between all of them.

The following theorem states that algorithm 1 is correct and computes a
decreasing chain of post fixpoints of an application satisfying the selection por-
perty:

Theorem 3. Let F be a monotone self map on the complete lattice L satisfying
the selection property for a set of maps G. We have the two following properties:

(i) If algorithm 1 finishes then the returned value is a fixpoint of F

(ii) The sequence of least fixpoints of maps gk ∈ G generated by the algorithm 1
is a strictly decreasing chain, that is

(g−k+1
)∗ ⊏ (g−k )∗

Proof. Correctness of the algorithm (property (i)) is trivial as it terminates only
if the test xk = F (xk) is satisfied.

We prove the property (ii) by induction on the number n of iterations of the
algorithm that is the length of the sequence of successive gk. The basis case,
n = 0, is trivial. For the induction case, we suppose that the algorithm has been
iterated n times and that the sequence is such that (g−k+1

)∗ ⊑ (g−k )∗ for k < n.
If F ((g−n )∗) = (g−n )∗ then algorithm terminates and the property is true.

Otherwise the map gn+1 is such that F ((g−n )∗) = gn+1((g
−
n )∗) (1)



Moreover, by condition (1) of F we get F ((g−n )∗) ⊑ gn((g−n )∗) so that
gn+1((g

−
n )∗) ⊑ gn((g−n )∗). Since ∗ is monotonic we have gn+1((g

−
n )∗) ⊑ gn((g−n )∗) ⊑

gn((g−n )) = g−n . Therefore

gn+1((g
−
n )∗) ⊑ g−n (2)

Now as F = (infg∈G g)∗ we have F ∗ = (infg∈G g)∗∗ and since for all x

x∗ = x∗∗ we deduce F ∗ = F . So from (1) we get gn+1((g
−
n )∗) = (gn+1((g

−
n )∗))∗.

By monotonicity of ∗ and from (2) we have gn+1((g
−
n )∗) = (gn+1((g

−
n )∗))∗ ⊑

(g−n )∗ that is (g−n )∗ is a post fixed point of gn+1. And as it not a fixed point of
gn+1, by Tarski’s theorem we conclude that

(g−n+1)
∗ ⊑ g−n+1 ⊏ (g−n )∗

⊓⊔

If G is finite and has n policies then algorithm 1 finishes within at most n

iterations:

Corollary 4. If the set G is finite then algorithm 1 returns a fixpoint of F and
the number of iterations of algorithm 1 is bounded by the height of {g−|g ∈ G}
which in turn is bounded by the cardinality of G.

3.2 Operations with policy

We show that the meet and closure operations of any map can be expressed as
an infimum of simpler maps.

Meet policies The meet c = c1 ⊓ c2 of two vectors (zones or TCM vectors) c1

and c2 of length k is obtained by taking the pointwise minimum between each
pair of coordinates. That is the ith coordinate of the result comes either from
the left or right operand coordinate.

We use this remark to build a family of meet policies in the following way:
Let L ⊑ {1, . . . , k} be a set of coordinates whose corresponding policy will be
denoted ⊓L. The set L contains every index i for which we take the ith coordinate
of the left operand: if i ∈ L then c(i) = c1(i) otherwise c(i) = c2(i).

We have trivially c1⊓c2 =
⋂

L⊆{1,..,k} c1⊓L c2 that is ⊓ satisfies the selection
property for the set of ⊓L policies.

Closure policies Remember that the closure of a consistent zone or TCM c is
the minimal c∗ such that γ(c) ⊑ γ(c∗).

Closure policies for zones For a consistent zone c let c
p
ij = ci,i1 + ci2,i3 + . . . +

cik−1,ik
+ cik,j with cipip+1

a coordinate of c and p = i, i1, ..., ik, j and a sequence
of variable indices called a path from i to j.

By definition, c∗i,j is the minimal c
p
ij amongst all pathes p from i to j. As

mentioned in Section 2.2 the minimal c
p
ij can be obtained for a path length |p|

less than the number of variables. Hence c∗i,j =
⋂

p,|p|≤n c
p
i,j which satisfies the

selection property.



Example Take the example of figure 1. Our policy analyzer finds (in one policy
iteration) the loop invariant at control point [9] left below, whereas a a typical
static analyzer using Kleene iteration finds a less precise invariant (right below,
using A. Mine’s octagon analyzer).







150 ≤ i ≤ 174
98 ≤ j ≤ 99

−76 ≤ j − i ≤ −51















150 ≤ i

98 ≤ j ≤ 99
j − i ≤ −51
248 ≤ j + i

Consider now the program shown left below. The fixpoint found by our
method (after two unfoldings) is given right below. This is incomparable to the
fixpoint found in octogons (below), but its concretisation is smaller in width.
This example needs two policies to converge.

0 void main() {

1 i = 1; j = 10;

2 while (i <= j){

3 i = i + 2;

4 j = j - 1; }

5 }

Policy iteration:

5 ≤ i ≤ 10, 4 ≤ j ≤ 8, −3 ≤ j−i ≤ −1

Kleene on octagons:

6 ≤ i ≤ 12,
9

2
≤ j ≤ 10, −3 ≤ j−i ≤ −1

At [5] the initial policy chosen (see section 4.2) gives the invariant of the
right part below. The value of the functional on the invariant found using this
initial policy (and this is the only control point at which we have not reached
the least fixpoint) is on the left below:

{

5 ≤ i ≤ 11, 2 ≤ j ≤ 8
−3 ≤ j − i ≤ −1

{

5 ≤ i ≤ 10, 4 ≤ j ≤ 8
−3 ≤ j − i ≤ −1

It is easy to see that the entry describing the maximum of i has to be changed
to a length two closure, and the minimum of the entry describing the minimum
of j has to be changed to a length two closure, the rest of the equations being
unchanged.

Closure policies for TCM Let c = (c1, . . . , cm) be a consistent TCM vector on T

seen as a matrix of dimension m×n. Closure c∗ of c is the vector (c∗1, . . . , c
∗
m) such

that c∗i is the solution of the LP problem “minimize c|Rλ subject to T|Rλ = Ti,
λ ≥ 0”. As we had mentioned before, this LP problem has an optimal solution
or an infeasible solution. An infeasible solution means that the constraint ei

is unbounded and so we set c∗i to ∞. Otherwise, it has been shown that the
optimal solution is reached at a vertex of the polyhedron T ∗

|R = Ti, λ ≥ 0 (no

of vertices or extreme points will be finite). Call this polyhedron Pi. Hence we
have c∗(i) = inf{x ∈ R | x is a vertex of Pi}. A policy map is then any map
that returns any vector whose ith coordinate is a vertex of polyhedron Pi so that
c∗ = inf{(λc | λ is a vertex of Pi}.



In this paper we only deal with two operations - meet and closure. However
in general we can deal with all transfer functions involved in Linear relation
analysis. The basic idea is to express the transfer function as a Linear mini-
mization problem and then take the policies corresponding to the vertices of the
polyhedron, as we did for the closure operation.

4 Algorithmic issues

Algorithm 1 gives a general method to compute a fixpoint of some map F that
satifies the selection property (Definition 1). In this section we give a method
(based on linear programming rather than Kleene iteration as in [CGG+05])
to compute least fixpoints of the policies. We give also some heuristics for the
choice of intial policies on zone and TCM domain.

4.1 Least Fixpoint Computation, for a given policy

Each iteration k of algorithm 1 needs to compute the least fixpoint of a policy
gk, where every entry of gk is a finite supremum of affine maps. By Tarski’s
theorem, this least fixpoint is the minimal vector x such that gk(x) ≤ x. If this
least fixed point is finite, it can be found by solving a linear program: we minimize
the linear form

∑

1≤i≤p xi over the constraints gk(x) ≤ x, where x1, . . . , xp are
the variables composing the vector x. If the value of the latter linear program is
unbounded, some entries of the least fixpoint x of gk must be equal to −∞. Note
that the simplex method provides at least one of these entries, because, when
a linear program is unbounded, the simplex method returns a half-line included
in the feasible set, on which the objective function is still unbounded. Hence,
the least fixed point can be found by solving a sequence of linear programs.
The method we use takes into account the “block upper triangular form” of the
system gk(x) ≤ x to reduce the execution time. In fact, the size of “blocks” turns
out to be small, in practice, so the linear programs that we call only involve small
subsets of variables.

Each block Ci is solved in order. The result of the linear program corre-
sponding to any Ci would either be a finite solution, infeasible solution or an
unbounded solution. These are handled as follows :

(i) Finite solution : In this case we set the values of xj , for all j ∈ Ci to those at
the extreme point where the least solution was obtained. Next we propagate
these values in the other subblocks.

(ii) Infeasible solution : In this case we set each xj to +∞ for all j ∈ Ci. These
values are then propagated as the above.

(iii) Unbounded solution : This is a very rare case. Unboundedness means that
one or more variables xj(j ∈ Ci) are not bounded from below i.e. their
minimum value is -∞. In order to find a value for these variables, we solve
the linear program again with the same constraints but with the objective
function being just xj (this is done for all j ∈ Ci). If the corresponding linear
program returns unbounded, xj is set to -∞. As in the above cases the value
of each xj is then.



4.2 Initial policy for zones and TCM

For meet policy, we do as for intervals in [CGG+05]: we choose the left coordinate
(respectively the right constraint) if the right coordinate (respectively the left
entry) does not bring any information on a constraint between variables, i.e. is
+∞. We also give priority to constant entries. In case of a tie, we choose first
the left coordinate. In the case of zone closure, we begin by paths of length one
that is the zone itself. Initial closure policy on TCM chooses any vertex. The
choice may sometimes depend on the LP programming method. For instance
with a simplex algorithm that enumerates vertices in an order that decreases
the objective function the first considered vertex may be taken as an initial
policy.

5 Experiments

A prototype has been developped for experiments. It takes C programs, con-
structs abstract semantic equations on the zone domain, solves them by the
policy iteration algorithm of this article, and outputs the local invariants in text
format. The front end is based on CIL [CIL], the equations are solve using the
GLPK library [GLP] through its OCAML binding [Mim].

In this section, we show some experiments on simple programs, which can
be found at http://www.di.ens.fr/~goubault/GOUBAULTpapers.html. These
programs are briefly described below. We write in the columns from left to
right, the number of lines, of variables, of while loops, the maximum depth
of nested loops. Then we give the number of “elementary operations”/policy
iteration that our analyzer used, the number of elementary operations/Kleene
iterations in the case of the octagon analyzer, and the number of elementary oper-
ations/Kleene iterations for LPInv. These elementary operations are estimated,
as follows: we indicate below columns “compl./#pols” (resp. compl./iter.oct.,
compl./iter. LPInv) the number of calls to the simplex solver: s/the average di-
mension: d (number of variables involved)/the average simplex iteration number:
k (resp. the number of closure operations: c/assignment operations: a, and the
same format as for our analyzer for the LPInv analyzer). These operations ac-
count for the main complexity in the three analyzers: the number of operations
is of the order sd2k for our analyzer and LPInv, and cn3 + an, where n is the
number of variables, for the octagon analyzer. We can see that the complexity is
far less for our analyzer. The octagon analyzer spends a lot of operations doing
closure operations, that we do not have to do. LPInv needs to solve the same
order or even more linear programming problems, but more complex (i.e. need-
ing more iterations to converge) and with a much higher dimensionality. Our
method needs very few policies to converge, hence has few linear programming
problems, which are very simple (very low dimensionality in particular) because
of the SCC algorithm of Section 4.1.



Program lines vars loops depth compl./#pols. compl./iters.oct. compl./iters.LPInv
test1 11 2 1 1 20/2 1132/7 14014/6

113/1.02/0.17 138/14 88/11.14/1.28
test1b 15 2 1 1 20/2 548/6 12952/6

113/1.02/0.17 130/14 78/11.6/1.23
test2 15 2 1 1 40/1 1268/12 31828/16

86/1.03/0.43 309/16 267/10.5/1.08
test3 14 2 1 1 34/1 1364/12 62348/16

96/1.03/0.33 333/16 282/14/1.12766
test4 13 2 2 2 68/3 906/4 50940/16

124/1.27/0.34 220/13 302/11.75/1.20
ex3 20 5 1 1 49/1 56250/8 22599614/16

212/1.56/0.09 225/13 1251/67.9/3.92
ex5 23 5 5 1 392/1 49370/23 33133177/20

659/1.49/0.27 394/24 3007/67.96/2.38

The results that our analyzer, A. Miné’s octagon analyzer and LPInv (which
uses octagons in our case) obtain are shown in the longer version of the paper
available at http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.We can
see that although our analyzer is much faster, and computes in a less precise
domain (zones) than octagons, it provides very similar invariants than both an-
alyzers. It is even far more precise for test2 and test3 as already explained in
section 2.2. It provides in general better results than LPInv. The Octagon ana-
lyzer is better for programs of the style of test1 since in that case, constraints
on forms of the type i + j (in zones, but not in octagons) are useful for getting
invariants. Still, it suffices to unroll two times the main loop (test1b) to have
comparable or even better results, with our analyzer.

6 Conclusion

We have described in this paper a new algorithm to compute efficiently and
precisely, fixed points in relational abstract domains such as zones and TCMs,
thus applicable to a large variety of situations.

There are two directions in which we would like to go from here. The first
one is to extend this work to other domains, like the relational ones of [GP06],
or domains dealing with pointers and general aliasing properties. The second
direction of interest is the use of policy iteration algorithms to have better “in-
cremental” analyzes [CDEN06]. As a matter of fact, one can hope that given
a program P (identified with the abstract functionnal giving its semantics), a
policy π giving the least fixpoint of P , light perturbations P ′ of P will only
perturbate very little policy π. Hence π will be a very good initial policy guess
for the policy iteration algorithm run on P ′.
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