Efficient multivariate low-degree tests
via interactive oracle proofs of proximity

Sarah Bordage
Ecole Polytechnique, Institut Polytechnique de Paris & Inria
Joint work with Daniel Augot and Jade Nardi

WCC 2022
March 8, 2022
Proximity testing for a code

Given a (linear) code $C \subset \mathbb{F}^n$ and oracle access to $f \in \mathbb{F}^n$, algorithmically distinguish between

$$\begin{cases} f \in C \\ f \text{ is } \delta\text{-far from } C \end{cases}$$

with $q = o(n)$ queries to f.

Given domain L of size n, identify \mathbb{F}^n with \mathbb{F}^L: **codewords** of linear code $C \subset \mathbb{F}^n \leftrightarrow \text{functions}$ in \mathbb{F}^L.
Topic of this talk

Proximity testing for a code

Given a (linear) code $C \subset \mathbb{F}^n$ and oracle access to $f \in \mathbb{F}^n$, algorithmically distinguish between

\[
\begin{cases}
 f \in C \\
 f \text{ is } \delta\text{-far from } C
\end{cases}
\]

with $q = o(n)$ queries to f.

Given domain L of size n, identify \mathbb{F}^n with \mathbb{F}^L: **codewords** of linear code $C \subset \mathbb{F}^n \leftrightarrow \text{functions}$ in \mathbb{F}^L.

Multivariate polynomial codes

Assume $L \subset \mathbb{F}$ and $d < |L|$.

Topic of this talk

Proximity testing for a code

Given a (linear) code $C \subset \mathbb{F}^n$ and oracle access to $f \in \mathbb{F}^n$, algorithmically distinguish between

\[
\begin{aligned}
&\begin{cases}
 f \in C \\
 f \text{ is } \delta\text{-far from } C
\end{cases}
\end{aligned}
\text{ with } q = o(n) \text{ queries to } f.
\]

Given domain L of size n, identify \mathbb{F}^n with \mathbb{F}^L: codewords of linear code $C \subset \mathbb{F}^n \leftrightarrow \text{functions}$ in \mathbb{F}^L.

Multivariate polynomial codes

Assume $L \subset \mathbb{F}$ and $d < |L|$.

- **Tensor product of RS codes:**

 \[
 \text{RS}[L, d]^\otimes m = \{ f : L^m \to \mathbb{F} \mid \text{f evaluation of a poly in } \mathbb{F}[X_1, \ldots, X_m] \text{ with individual degrees } < d \}\]
Topic of this talk

Proximity testing for a code

Given a (linear) code $C \subset \mathbb{F}^n$ and oracle access to $f \in \mathbb{F}^n$, algorithmically distinguish between
\[
\begin{cases}
 f \in C \\
 f \text{ is } \delta\text{-far from } C
\end{cases}
\]
with $q = o(n)$ queries to f.

Given domain L of size n, identify \mathbb{F}^n with \mathbb{F}^L: codewords of linear code $C \subset \mathbb{F}^n \leftrightarrow$ functions in \mathbb{F}^L.

Multivariate polynomial codes

Assume $L \subset \mathbb{F}$ and $d < |L|$.

- **Tensor product of RS codes:**
 \[
 \text{RS}[L, d] \otimes_m = \{ f : L^m \to \mathbb{F} \mid \text{f evaluation of a poly in } \mathbb{F}[X_1, \ldots, X_m] \text{ with individual degrees } < d \}
 \]

- **Reed-Muller codes:**
 \[
 \text{RM}[L, d, m] = \{ f : L^m \to \mathbb{F} \mid \text{f evaluation of a poly in } \mathbb{F}[X_1, \ldots, X_m] \text{ of total degree } < d \}
 \]
Proximity testing for a code

Given a (linear) code $C \subset \mathbb{F}^n$ and oracle access to $f \in \mathbb{F}^n$, algorithmically distinguish between

$$\begin{cases} f \in C \\
 f \text{ is } \delta\text{-far from } C
\end{cases}$$

with $q = o(n)$ queries to f.

Multivariate polynomial codes

Assume $L \subset \mathbb{F}$ and $d < |L|$.

- **Tensor product of RS codes:**
 $$\text{RS}[L, d]^\otimes m = \{ f : L^m \rightarrow \mathbb{F} \mid f \text{ evaluation of a poly in } \mathbb{F}[X_1, \ldots, X_m] \text{ with individual degrees } < d \}$$

- **Reed-Muller codes:**
 $$\text{RM}[L, d, m] = \{ f : L^m \rightarrow \mathbb{F} \mid f \text{ evaluation of a poly in } \mathbb{F}[X_1, \ldots, X_m] \text{ of total degree } < d \}$$

Proximity tests for polynomial codes \leftrightarrow **Low-degree tests**
Multivariate polynomial codes are locally testable

Axis-parallel tests
→ Test individual degree

Random line tests
→ Test total degree
(Require evaluation domain = \(\mathbb{F}^m \))
Multivariate polynomial codes are locally testable

- **Axis-parallel tests**
 - Test individual degree

- **Random line tests**
 - Test total degree
 (Require evaluation domain = \mathbb{F}^m)

- **Oracle access to f only**
 - At least d queries
Testing proximity in the PCP model

- Ask a prover to provide an **auxiliary proof** π
Testing proximity in the PCP model

Probabilistically Checkable Proof of Proximity (PCPP):

- Ask a prover to provide an auxiliary proof π
- Enable sublinear tests for non-locally testable codes (e.g. Reed-Solomon codes)
Testing proximity in the PCP model

Probabilistically Checkable Proof of Proximity (PCPP):

- Ask a prover to provide an **auxiliary proof** π
- Enable sublinear tests for **non-locally testable codes** (e.g. Reed-Solomon codes)
- Prover must compute in advance the answers to all possible queries \rightarrow **impractical**
An Interactive Oracle Proof of Proximity (IOPP) \((\mathcal{P}, \mathcal{V})\) for \(C\) with soundness error \(s : (0, 1] \rightarrow [0, 1]\) satisfies:

Completeness
If \(f \in C\), then \(\exists \mathcal{P} \Pr[\langle \mathcal{P}(f), \mathcal{V}^f \rangle = 1] = 1\).

Soundness
If \(f\) is \(\delta\)-far from \(C\), Then, for all unbounded \(\mathcal{P}', \Pr[\langle \mathcal{P}', \mathcal{V}^f \rangle = 1] \leq s(\delta)\).
Motivation: (ZK-)SNARKs

SNARKs are “succinct proofs” that enable to check correctness of a computation, with/without ZK.
Motivation: (ZK-)SNARKs

SNARKs are “succinct proofs” that enable to check **correctness of a computation**, with/without **ZK**.

SNARKs from IOPs using hash functions [BCS16]:
Motivation: (ZK-)SNARKs

SNARKs are “succinct proofs” that enable to check **correctness of a computation**, with/without **ZK**.

SNARKs from IOPs using hash functions [BCS16]:
- Oracles ← vector commitments (Merkle trees)
SNARKs are “succinct proofs” that enable to check correctness of a computation, with/without ZK.

SNARKs from IOPs using hash functions [BCS16]:
- Oracles ← vector commitments (Merkle trees)
- Non-interactive via \approx Fiat-Shamir transform
Motivation: (ZK-)SNARKs

Motivation:

SNARKs are “succinct proofs” that enable to check correctness of a computation, with/without ZK.

SNARKs from IOPs using hash functions [BCS16]:

- Oracles ← vector commitments (Merkle trees)
- Non-interactive via \approx Fiat-Shamir transform
- Features: **transparent setup, PQ security**

I claim that $y = F(x)$

I send you a short proof.
Motivation: (ZK-)SNARKs

SNARKs are “succinct proofs” that enable to check correctness of a computation, with/without ZK.

SNARKs from IOPs using hash functions [BCS16]:

- Oracles ← vector commitments (Merkle trees)
- Non-interactive via ≈ Fiat-Shamir transform
- Features: transparent setup, PQ security
- Key component = IOP of Proximity for codes, with
 - good query/soundness trade-off
 - efficient prover
Motivation: (ZK-)SNARKs

SNARKs are “succinct proofs” that enable to check **correctness of a computation**, with/without **ZK**.

SNARKs from IOPs using hash functions [BCS16]:

- Oracles ← vector commitments (Merkle trees)
- Non-interactive via \approx Fiat-Shamir transform
- Features: transparent setup, **PQ security**
- **Key component = IOP of Proximity** for codes, with
 - good query/soundness trade-off
 - efficient prover
- **Size of SNARK:**
 - linear in query complexity of IOP
 - polylog in proof length of IOP
IOPPs for testing proximity to multivariate polynomial codes.

Length is N, number of variables is m.

Regarding SNARKs applications, constant rate codes \rightarrow shorter proofs ($m = \text{constant}$)

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Prover</th>
<th>Verifier</th>
<th>Query</th>
<th>Length</th>
<th>Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BBHR18]</td>
<td>RS ($m = 1$)</td>
<td>$< 11N$</td>
<td>$< 11 \log N$</td>
<td>$< 2 \log N$</td>
<td>$< N$</td>
<td>$< \log N$</td>
</tr>
<tr>
<td>This work</td>
<td>RS$^\otimes m$</td>
<td>$< 11N$</td>
<td>$< 11 \log N$</td>
<td>$< 2 \log N$</td>
<td>$< N$</td>
<td>$< \log N$</td>
</tr>
<tr>
<td>This work</td>
<td>RM</td>
<td>$< (2m + 7)N$</td>
<td>$< 2^m \left(\frac{5}{4} + \frac{7}{m}\right) \log N$</td>
<td>$< \frac{2^m \log N}{m}$</td>
<td>$< \frac{N}{2^m - 1}$</td>
<td>$< \frac{\log N}{m}$</td>
</tr>
</tbody>
</table>

(Complexities counted in \mathbb{F}-ops and field elements)
Reed-Solomon IOP of Proximity
Reed-Solomon IOPP

DEF RS code
Given $L \subset \mathbb{F}$, $d < |L|$,
$\text{RS}[L,d] = \{f_{|L}: L \to \mathbb{F} \mid f \in \mathbb{F}[X], \deg f < d\}$

The **FRI** protocol is a “Fast Reed-Solomon IOPP” [BBHR18]

Setting:
- L is coset of mult. or add. subgroup of \mathbb{F},
 - $|L| = \text{power of 2}$
- $d = \text{power of 2}$
Reed-Solomon IOPP

Def RS code

Given $L \subset F, d < |L|$,
$RS[L, d] = \{ f|_L : L \to F \mid f \in F[X], \deg f < d \}$

The **FRI** protocol is a “**Fast Reed-Solomon IOPP**” [BBHR18]

Setting:
- L is coset of mult. or add. subgroup of F, $|L| = \text{power of 2}$
- $d = \text{power of 2}$

Recursively halve the size of the problem via “random folding”.

D/e.scf/f.sc

RS code

The FRI protocol is a “Fast Reed-Solomon IOPP” [BBHR18]

Setting:
- L is coset of mult. or add. subgroup of F, $|L| = \text{power of 2}$
- $d = \text{power of 2}$

Recursively halve the size of the problem via “random folding”.

D/e.scf/f.sc

RS code
Halve the size of the problem

Assume \mathbb{F} has a multiplicative subgroup L of order 2^n. The square map $q : x \mapsto x^2$ is 2-to-1 from L to $q(L)$.
Halve the size of the problem

Assume F has a multiplicative subgroup L of order 2^n. The square map $q : x \mapsto x^2$ is 2-to-1 from L to $q(L)$.

Goal: proximity to $\text{RS}[L,d] \rightarrow$ proximity to $\text{RS}[q(L),d/2]$.
Halve the size of the problem

Assume \(\mathbb{F} \) has a multiplicative subgroup \(L \) of order \(2^n \).
The square map \(q : x \mapsto x^2 \) is 2-to-1 from \(L \) to \(q(L) \).

Goal: proximity to \(\text{RS}[L,d] \rightarrow \text{proximity to } \text{RS}[q(L),d/2] \).

Given **arbitrary** function \(f : L \rightarrow \mathbb{F} \),
Assume \mathbb{F} has a multiplicative subgroup L of order 2^n. The square map $q : x \mapsto x^2$ is 2-to-1 from L to $q(L)$.

Goal: proximity to $\text{RS}[L,d] \rightarrow$ proximity to $\text{RS}[q(L),d/2]$.

Given arbitrary function $f : L \rightarrow \mathbb{F}$,

- Decompose f into two parts:

 $$f(x) = g_0(x^2) + xg_1(x^2), \text{ with } \deg g_i \leq \frac{\deg f}{2}.$$
Assume \(\mathbb{F} \) has a multiplicative subgroup \(L \) of order \(2^n \). The square map \(q : x \mapsto x^2 \) is 2-to-1 from \(L \) to \(q(L) \).

Goal: proximity to \(\text{RS}[L,d] \rightarrow \text{proximity to RS}[q(L),d/2] \).

Given arbitrary function \(f : L \rightarrow \mathbb{F} \),
- Decompose \(f \) into two parts:
 \[
 f(x) = g_0(x^2) + xg_1(x^2), \text{ with } \deg g_i \leq \frac{\deg f}{2}.
 \]
- For \(z \in \mathbb{F} \), define \(\text{Fold} [f,z] : q(L) \rightarrow \mathbb{F} \) by
 \[
 \text{Fold} [f,z](y) = g_0(y) + zg_1(y).
 \]
Assume \mathbb{F} has a multiplicative subgroup L of order 2^n. The square map $q : x \mapsto x^2$ is 2-to-1 from L to $q(L)$.

Goal: proximity to $\text{RS}[L,d] \rightarrow$ proximity to $\text{RS}[q(L),d/2]$.

Given arbitrary function $f : L \rightarrow \mathbb{F}$,
- Decompose f into two parts:

 $$f(x) = g_0(x^2) + xg_1(x^2)$$

 with $\deg g_i \leq \frac{\deg f}{2}$.

- For $z \in \mathbb{F}$, define $\text{Fold}[f,z] : q(L) \rightarrow \mathbb{F}$ by
 $$\text{Fold}[f,z](y) = g_0(y) + zg_1(y).$$

How to compute $\text{Fold}[f,z]$?

Any $y \in q(L)$ has 2 distinct square roots $x, -x \in L$.

Assume \mathbb{F} has a multiplicative subgroup L of order 2^n. The square map $q : x \mapsto x^2$ is 2-to-1 from L to $q(L)$.

Goal: proximity to $\text{RS}[L, d] \rightarrow$ proximity to $\text{RS}[q(L), d/2]$.

Given **arbitrary** function $f : L \to \mathbb{F}$,

- Decompose f into two parts:
 $$f(x) = g_0(x^2) + x g_1(x^2), \text{ with } \deg g_i \leq \frac{\deg f}{2}.$$

- For $z \in \mathbb{F}$, define $\text{Fold}[f, z] : q(L) \to \mathbb{F}$ by
 $$\text{Fold}[f, z](y) = g_0(y) + z g_1(y).$$

How to compute $\text{Fold}[f, z]$?

Any $y \in q(L)$ has 2 distinct square roots $x, -x \in L$.

Linear system $\implies g_0(y) = \frac{f(x) + f(-x)}{2}$ and $g_1(y) = \frac{f(x) - f(-x)}{2x}$.

Halve the size of the problem
Key properties of folding operators

1. **Completeness:**
 \[f \in \text{RS}[L,d] \implies \text{Fold} [f,z] \in \text{RS}[q(L),d/2] \text{ for all } z. \]

2. **Local computability:**
 Each entry of \(\text{Fold} [f,z] \) depends on \(l = 2 \) entries of \(f \).
The 3 key properties

Key properties of folding operators

1. Completeness:
 \[f \in RS[L, d] \implies \text{Fold} [f, z] \in RS[q(L), d/2] \text{ for all } z. \]

2. Local computability:
 Each entry of \(\text{Fold} [f, z] \) depends on \(l = 2 \) entries of \(f \).

3. Distance preservation:
 \[f \text{ is } \delta \text{-far from } RS[L, d] \implies \text{Fold} [f, z] \text{ is } \delta' \text{-far from } RS[q(L), d/2] \text{ w.h.p over } z \quad (\delta' \approx \delta) \]
Honest prover computes:

\[
\begin{align*}
 f_1 &= \text{Fold}[f_0, z_0] \\
 f_2 &= \text{Fold}[f_1, z_1] \\
 & \quad \vdots \\
 f_r &= \text{Fold}[f_{r-1}, z_{r-1}] \equiv c \in \mathbb{F}
\end{align*}
\nThe prover computes the following steps:

- \(f_0 = f : L \rightarrow \mathbb{F} \)
- \(z_0 \leftarrow \mathbb{F} \)
- \(f_1 = \text{Fold}[f_0, z_0] \)
- \(z_1 \)
- \(f_2 = \text{Fold}[f_1, z_1] \)
- \(z_2 \)
- \(\vdots \)
- \(f_r = \text{Fold}[f_{r-1}, z_{r-1}] \equiv c \in \mathbb{F} \)
Global consistency test:

Sample \(s \in L \) and check

\[
\begin{align*}
 f_1(s^2) &\overset{?}{=} \text{Fold}[f_0, z_0](s^2) \\
 f_2(s^4) &\overset{?}{=} \text{Fold}[f_1, z_1](s^4) \\
 &\vdots \\
 f_r(s^{2^r}) &\overset{?}{=} \text{Fold}[f_{r-1}, z_{r-1}](s^{2^r})
\end{align*}
\]

Final test: \(f_r \equiv c \in \mathbb{F} \)
Honest prover computes:

\[f_1 = \text{Fold}[f_0, z_0] \]
\[f_2 = \text{Fold}[f_1, z_1] \]
\[\vdots \]
\[f_r = \text{Fold}[f_{r-1}, z_{r-1}] \equiv c \in \mathbb{F} \]

Global consistency test:

Sample \(s \in L \) and check

\[f_1(s^2) \overset{?}{=} \text{Fold}[f_0, z_0](s^2) \]
\[f_2(s^4) \overset{?}{=} \text{Fold}[f_1, z_1](s^4) \]
\[\vdots \]
\[f_r(s^{2^r}) \overset{?}{=} \text{Fold}[f_{r-1}, z_{r-1}](s^{2^r}) \]

Final test: \(f_r \overset{?}{=} c \in \mathbb{F} \)

Completeness: If \(f \in C \), Verifier accepts.

Soundness: \(\exists \delta_0 \in (0, 1), \forall \delta < \delta_0, \Pr[\text{accept} | f \text{ is } \delta\text{-far}] \approx (1 - \delta) \) (assuming \(|\mathbb{F}| \) is large enough.)
Honest prover computes:

\[f_1 = \text{Fold}[f_0, z_0] \]

\[f_2 = \text{Fold}[f_1, z_1] \]

\[\vdots \]

\[f_r = \text{Fold}[f_{r-1}, z_{r-1}] \equiv c \in \mathbb{F} \]

Global consistency test:

Sample \(s \in L \) and check

\[f_1(s^2) \overset{?}{=} \text{Fold}[f_0, z_0](s^2) \]

\[f_2(s^4) \overset{?}{=} \text{Fold}[f_1, z_1](s^4) \]

\[\vdots \]

\[f_r(s^{2^r}) \overset{?}{=} \text{Fold}[f_{r-1}, z_{r-1}](s^{2^r}) \]

Final test: \(f_r \overset{?}{=} c \in \mathbb{F} \)

Completeness: If \(f \in C \), Verifier accepts.

Soundness: \(\exists \delta_0 \in (0, 1), \forall \delta < \delta_0, \text{Pr}[\text{accept } | f \text{ is } \delta\text{-far}] \approx (1 - \delta)^t. \) (assuming \(|\mathbb{F}| \) is large enough.)
How to fold multivariate polynomials
The tensor structure enables to fold along **one variable at a time**.
The tensor structure enables to fold along **one variable at a time**.

- $\text{RS}^\otimes m \rightarrow \text{RS}^\otimes m - 1$:

...
Folding tensor product of RS codes

The tensor structure enables to fold along one variable at a time.

- RS$^\otimes m \rightarrow$ RS$^\otimes m-1$:
 - Write $f : \prod_{i=1}^{m} L_i \rightarrow \mathbb{F}$ as
 $$f(x_1, x_2, \ldots, x_m) = g_0(x_1^2, x_2, \ldots, x_m) + x_1 g_1(x_1^2, x_2, \ldots, x_m)$$
Folding tensor product of RS codes

The tensor structure enables to fold along one variable at a time.

- RS$^\otimes m \rightarrow$ RS$^\otimes m - 1$:
 \[(q : x \mapsto x^2) \]

 - Write $f : \prod_{i=1}^{m} L_i \rightarrow \mathbb{F}$ as
 \[f(x_1, x_2, \ldots, x_m) = g_0(x_1^2, x_2, \ldots, x_m) + x_1 g_1(x_1^2, x_2, \ldots, x_m) \]

 - For $z \in \mathbb{F}$, define $\text{Fold} \ [f, z] : q(L_1) \times \prod_{i=2}^{m} L_i \rightarrow \mathbb{F}$ by
 \[\text{Fold} \ [f, z] (y, x) = g_0(y, x) + zg_1(y, x) \]
The tensor structure enables to fold along **one variable at a time**.

- **RS**$^\otimes m \rightarrow$ RS$^\otimes m-1$:
 - Write $f : \prod_{i=1}^{m} L_i \rightarrow \mathbb{F}$ as
 $$f(x_1, x_2, \ldots, x_m) = g_0(x_1^2, x_2, \ldots, x_m) + x_1 g_1(x_1^2, x_2, \ldots, x_m)$$
 - For $z \in \mathbb{F}$, define $\text{Fold}[f, z] : q(L_1) \times \prod_{i=2}^{m} L_i \rightarrow \mathbb{F}$ by
 $$\text{Fold}[f, z](y, x) = g_0(y, x) + zg_1(y, x)$$
 - After $\log d$ rounds, expected x_1-degree = 0
Folding tensor product of RS codes

The tensor structure enables to fold along one variable at a time.

- **RS$^{\otimes m}$ → RS$^{\otimes m-1}$:**
 - Write $f : \prod_{i=1}^{m} L_i \rightarrow \mathbb{F}$ as
 \[
 f(x_1, x_2, \ldots, x_m) = g_0(x_1^2, x_2, \ldots, x_m) + x_1 g_1(x_1^2, x_2, \ldots, x_m)
 \]
 - For $z \in \mathbb{F}$, define $\text{Fold}[f, z] : q(L_1) \times \prod_{i=2}^{m} L_i \rightarrow \mathbb{F}$ by
 \[
 \text{Fold}[f, z](y, x) = g_0(y, x) + zg_1(y, x)
 \]
 - After $\log d$ rounds, expected x_1-degree $= 0$

- **RS$^{\otimes m-1}$ → RS$^{\otimes m-2}$**, starting with $f : \prod_{i=2}^{m} L_i \rightarrow \mathbb{F}$
Folding tensor product of RS codes

The tensor structure enables to fold along one variable at a time.

- $\text{RS}^\otimes m \rightarrow \text{RS}^\otimes m-1$:
 - Write $f : \prod_{i=1}^{m} L_i \rightarrow \mathbb{F}$ as
 \[
 f(x_1, x_2, \ldots, x_m) = g_0(x_1^2, x_2, \ldots, x_m) + x_1 g_1(x_1^2, x_2, \ldots, x_m)
 \]
 - For $z \in \mathbb{F}$, define $\text{Fold}[f, z] : q(L_1) \times \prod_{i=2}^{m} L_i \rightarrow \mathbb{F}$ by
 \[
 \text{Fold}[f, z](y, x) = g_0(y, x) + z g_1(y, x)
 \]
 - After $\log d$ rounds, expected x_1-degree $= 0$

- $\text{RS}^\otimes m-1 \rightarrow \text{RS}^\otimes m-2$, starting with $f : \prod_{i=2}^{m} L_i \rightarrow \mathbb{F}$

- ... $\rightarrow \text{RS code of dimension 1}$
Folding tensor product of RS codes

The tensor structure enables to fold along **one variable at a time**.

- **RS**$^\otimes m \rightarrow$ RS$^\otimes m-1$:

 \(q : x \mapsto x^2 \)

 > Write \(f : \prod_{i=1}^{m} L_i \rightarrow \mathbb{F} \) as

 \[
 f(x_1, x_2, \ldots, x_m) = g_0(x_1^2, x_2, \ldots, x_m) + x_1g_1(x_1^2, x_2, \ldots, x_m)
 \]

 > For \(z \in \mathbb{F} \), define Fold \([f, z] : q(L_1) \times \prod_{i=2}^{m} L_i \rightarrow \mathbb{F} \) by

 \[
 \text{Fold} [f, z] (y, x) = g_0(y, x) + zg_1(y, x)
 \]

 > After \(\log d \) rounds, expected \(x_1 \)-degree = 0

- **RS**$^\otimes m-1 \rightarrow$ RS$^\otimes m-2$, starting with \(f : \prod_{i=2}^{m} L_i \rightarrow \mathbb{F} \)

- ... \rightarrow RS code of dimension 1

- **Completeness** ✔️ **Local computability** ✔️ **Distance preservation** ✔️
In the total degree case, we fold along every variable at the same time.
In the total degree case, we fold along *every variable at the same time.*
In the total degree case, we fold along every variable at the same time.

Multivariate decomposition

Let \(f(X) \in \mathbb{F}[X_1, \ldots, X_m] \). There is a unique sequence of polynomials \((g_u)_{u \in \{0,1\}^m}\) such that

\[
f(X) = \sum_{u \in \{0,1\}^m} X^u g_u(X_1^2, \ldots, X_m^2), \quad \deg g_u \leq \left\lfloor \frac{\deg f - w_H(u)}{2} \right\rfloor
\]
In the total degree case, we fold along **every variable at the same time**.

Multivariate decomposition

Let $f(\mathbf{X}) \in \mathbb{F}[X_1, \ldots, X_m]$.
There is a unique sequence of polynomials $(g_u)_{u \in \{0,1\}^m}$ such that

$$f(\mathbf{X}) = \sum_{u \in \{0,1\}^m} \mathbf{X}^u g_u(X_1^2, \ldots, X_m^2), \quad \deg g_u \leq \left\lfloor \frac{\deg f - \omega_H(u)}{2} \right\rfloor$$

The folding of $f : L^m \to \mathbb{F}$ is a function $\text{Fold} [f, z] : q(L)^m \to \mathbb{F}$ defined using the g_u's.

Reduce $\text{RM}[L, d, m] \rightarrow \text{RM}[q(L), d/2, m]$.

Subtlety: need to be careful about the distinct degree bounds on the g_u's.
In the total degree case, we fold along every variable at the same time.

Multivariate decomposition

Let \(f(\mathbf{X}) \in \mathbb{F}[X_1, \ldots, X_m] \).

There is a unique sequence of polynomials \((g_u)_{u \in \{0,1\}^m}\) such that

\[
 f(\mathbf{X}) = \sum_{u \in \{0,1\}^m} X^u g_u(X_1^2, \ldots, X_m^2), \quad \deg g_u \leq \left\lfloor \frac{\deg f - w_H(u)}{2} \right\rfloor
\]

The folding of \(f : L^m \rightarrow \mathbb{F} \) is a function \(\text{Fold}[f, z] : q(L)^m \rightarrow \mathbb{F} \) defined using the \(g_u \)'s.

Reduce \(\text{RM}[L, d, m] \rightarrow \text{RM}[q(L), d/2, m] \).

Subtlety: need to be careful about the distinct degree bounds on the \(g_u \)'s.

- ✔ Completeness
- ✔ Local computability (with \(l = 2^m \))
- ✔ Distance preservation
What we have:

- Inspired by FRI protocol for RS-IOPP, we give concrete IOPPs for $\text{RS}^{\otimes m}$ and RM codes with similar parameters.

Theorem [Augot-Bordage-Nardi’21]

$\text{RS}[L, d]^{\otimes m}$ has an IOPP (P, V) satisfying

\[
\begin{align*}
\text{# rounds} & = m \log d \\
\text{# queries} & = 2m \log d + 1 \\
\text{prover time} & \leq 11|L^m| \\
\text{verifier time} & \leq 11m \log d \\
\text{proof length} & < |L^m|
\end{align*}
\]

Theorem [Augot-Bordage-Nardi’21]

$\text{RM}[L, d, m]$ has an IOPP (P, V) satisfying

\[
\begin{align*}
\text{# rounds} & = \log d \\
\text{# queries} & = 2^m \log d + 1 \\
\text{prover time} & < (2m + 7)|L^m| \\
\text{verifier time} & < 2^m(\frac{5}{4}m + 7)(\log |L|) \\
\text{proof length} & < |L^m|/(2^m - 1)
\end{align*}
\]

Future directions:

- Narrow the gap between theoretically feasible and practical IOPP with sublogarithmic query complexity? (in theory, $O(1)$ queries)
- Practical IOPP for $C^{\otimes m}$ where C is a generic linear code?

Thank you!
What we have:

- Inspired by FRI protocol for RS-IOPP,
 we give concrete IOPPs for RS^\otimes_m and RM codes with similar parameters.
- Folding-based IOPP framework definition of sequence of codes with folding operators
Conclusion

What we have:

- Inspired by FRI protocol for RS-IOPP, we give concrete IOPPs for $\text{RS}^{\otimes m}$ and RM codes with similar parameters.
- Folding-based IOPP framework defines sequence of codes with folding operators.
 - also yields to IOPP for AG codes (next talk)
Conclusion

What we have:

- Inspired by FRI protocol for RS-IOPP, we give concrete IOPPs for $\text{RS}^{\otimes m}$ and RM codes with similar parameters.
- Folding-based IOPP framework definition of sequence of codes with folding operators
 - also yields to IOPP for AG codes (next talk)
Conclusion

What we have:

- Inspired by FRI protocol for RS-IOPP, we give concrete IOPPs for $\text{RS}^{\otimes m}$ and RM codes with similar parameters.
- Folding-based IOPP framework definition of sequence of codes with folding operators also yields to IOPP for AG codes (next talk)

Future directions: narrow the gap between theoretically feasible and practical

- Practical IOPP with sublogarithmic query complexity? (in theory, $O(1)$ queries)
- Practical IOPP for $\text{C}^{\otimes m}$ where C is a generic linear code?
Conclusion

What we have:

- Inspired by FRI protocol for RS-IOPP, we give concrete IOPPs for $\text{RS}^{\otimes m}$ and RM codes with similar parameters.
- Folding-based IOPP framework also yields to IOPP for AG codes (next talk)

Future directions: narrow the gap between theoretically feasible and practical

- Practical IOPP with sublogarithmic query complexity? (in theory, $O(1)$ queries)
- Practical IOPP for $C^{\otimes m}$ where C is a generic linear code?
Conclusion

What we have:

- Inspired by FRI protocol for RS-IOPP, we give concrete IOPPs for $\text{RS}^\otimes m$ and RM codes with similar parameters.
- Folding-based IOPP framework definition of sequence of codes with folding operators

Future directions: narrow the gap between theoretically feasible and practical

- Practical IOPP with sublogarithmic query complexity? (in theory, $O(1)$ queries)
- Practical IOPP for $C^\otimes m$ where C is a generic linear code?

Thank you!