Efficient Proofs of Computational Integrity from Code-Based Interactive Oracle Proofs

Sarah Bordage

Project-team GRACE
LIX, Ecole Polytechnique, Institut Polytechnique de Paris
Inria Saclay Ile-de-France

GT Codes et Cryptographie
June 17, 2021
Verifiable Computing

Please, run program F on input x for me.

I want to quickly check if your result is correct.

Powerful Prover

On input (F, x), output result y and proof of correctness π.

Weak Verifier

On input (F, x, y, π), accept iff π is a valid proof for statement "$y = F(x)$".

- **Completeness**: Verifier V always accepts honest proof.
- **Soundness**: For any malicious \tilde{P}, $\Pr[\tilde{P} \text{ convinces } V \text{ to accept incorrect statement}] = \text{negl}$.
- **Efficiency**: verification time, length of $\pi \ll$ time for computing $F(x)$.

Remark: sublinear time(V) requires $|\text{description of the computation}| \ll |\text{running time of the computation}|$, V should not “unroll” the computation.
A view of the “proofs-space” (by crypto assumptions)

<table>
<thead>
<tr>
<th>Year</th>
<th>CRHF, ROM</th>
<th>DLOG</th>
<th>KoE/AGM/GGM (pairing-based)</th>
<th>Group of unknown order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td>Pinocchio [PGHR]</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td>[BCTV]</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>ZKBoo [GMO]</td>
<td>[BCCGP]</td>
<td>[Groth16] [GM]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCI [BBC+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Ligero [AHIV]</td>
<td>Bulletproof [BBB+]</td>
<td>(ZK) vSQL [ZGK+]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyrax [WTS+]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>Stark [BBHR]</td>
<td></td>
<td>vRAM [ZGK+]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aurora [BCR+]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RedShift [KPV]</td>
<td></td>
<td>Marlin [CHM+]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Virgo [ZXZS]</td>
<td></td>
<td>Libra [XZZ+]</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Virgo++ [ZWZZ]</td>
<td></td>
<td>Mirage [KKPS]</td>
<td></td>
</tr>
</tbody>
</table>

Some implementations of succinct non-interactive arguments for general computations
1. IOP-based succinct non-interactive arguments

2. STARK Arithmetization

3. Reed-Solomon Proximity Testing
IOP-based succinct non-interactive arguments
Probabilistically Checkable Proofs

Given a relation \mathcal{R} of instance-witness pairs (x, w), denote $L_{\mathcal{R}} = \{x \mid \exists w, (x, w) \in \mathcal{R}\}$.

Probabilistically checkable proof system (PCP)

For verifiable computing, important measures are:

- $\text{time}(\mathcal{P})$,
- $\text{time}(\mathcal{V})$,
- query complexity q,
- proof length l.

Completeness: $\forall (x, w) \in \mathcal{R}, \exists \pi, \mathcal{V}^\pi(x) = 1$

Soundness: $\forall x \notin L_{\mathcal{R}}, \forall \tilde{\pi}, \Pr[\mathcal{V}^\pi(x) = 0] > 1/2$
PCP-based succinct interactive argument

\[\mathcal{P}(x, w) \xleftarrow{} \text{computationally bounded} \]

CRHF \(H : \{0, 1\}^* \rightarrow \{0, 1\}^\kappa \)

\[\pi \xleftarrow{} \mathcal{P}(x, w) \quad \text{root} = \text{MTree}_H(\pi) \]

\[\text{paths} = (\text{MProofs}_H(\pi[k]))_{k \in Q} \]

Sample unif. at random query set \(Q \) of size \(q \)

Check Merkle proofs

\[q = |Q|, l = |\pi| \]

From \(q \)-queries PCP of length \(l \):

- Communication = \(O_\kappa(q \log l) \),
- \(\text{time}(\mathcal{P}) = \text{time}(\mathcal{P}) + O_\kappa(l) \),
- \(\text{time}(\mathcal{V}) = \text{time}(\mathcal{V}) + O_\kappa(q \log l) \).

\[\Rightarrow [\text{Kilian}'92] \text{PCP} (\mathcal{P}, \mathcal{V}) + \text{collision-resistant hashings} \]

\[\leadsto \text{interactive argument} (\mathcal{P}, \mathcal{V}) \text{ for } \text{NP} \text{ with sublinear communication.} \]
PCP-based succinct non-interactive argument

\[\text{\(\Pi(x, w) \) \hfill computationally bounded \hfill \(\forall(x) \)}} \]

\[\text{RO \(H : \{0, 1\}^* \rightarrow \{0, 1\}^\kappa \)}} \]

\[\pi \leftarrow \mathcal{P}(x, w) \]
\[\text{root} = \text{MTree}_H(\pi) \]

\[Q \leftarrow H(x || \text{root}) \]

\[\text{paths} = (\text{MProofs}_H(\pi[k]))_{k \in Q} \]

\[Q \leftarrow H(x || \text{root}) \]

Check Merkle proofs

Output 1 iff \(\forall^\pi(x) = 1 \)

\[q = |Q|, l = |\pi| \]

From \(q \)-queries PCP of length \(l \):

- Communication = \(O_\kappa(q \log l) \),
- \(\text{time}(\Pi) = \text{time}(\mathcal{P}) + O_\kappa(l) \),
- \(\text{time}(\forall) = \text{time}(\forall) + O_\kappa(q \log l) \).

- [Kilian'92] PCP \((\mathcal{P}, \forall) \) + collision-resistant hashings
 \(\leadsto \) interactive argument \((\Pi, \forall) \) for \(\text{NP} \) with sublinear communication.

- [Micali'00] Kilian’s protocol + Fiat-Shamir paradigm \((H \text{ random oracle}; Q \leftarrow H(x, \text{root})) \)
 \(\leadsto \) succinct non-interactive argument for \(\text{NP} \) in the Random Oracle Model.
Interactive Oracle Proofs

[Ben–Sasson-Chiesa-Spooner’16, Reingold-Rothblum-Rothblum’16]

IOP system

$(\mathcal{P}, \mathcal{V})$ is an IOP system for relation \mathcal{R} with soundness error ε if

Completeness:
$\forall (x, w) \in \mathcal{R}, \Pr[\langle P(x, w), V^{\pi_1, \ldots, \pi_r}(x) \rangle = 1] = 1$.

Soundness:
$\forall x \notin \mathcal{L}_{\mathcal{R}}, \forall \widetilde{P}, \Pr[\langle P(x, w), V^{\pi_1, \ldots, \pi_r}(x) \rangle = 1] \leq \varepsilon$.

Proof length $l = \sum |\pi_i|$
Query complexity $q = \text{number of queries to } \pi_1, \ldots, \pi_r$
IOP-based succinct non-interactive argument [Ben–Sasson-Chiesa-Spooner’16]

CRHF $H : \{0, 1\}^n \rightarrow \{0, 1\}^\kappa$

For each round i

$\pi_i \leftarrow \mathcal{P}(x, w)$

$\text{root}_i = \text{MTree}_H(\pi_i)$

Sample unif. at random query set Q_i

$\pi_i \mid Q_i \rightarrow \text{paths}_i = (\text{MProofs}_H(\pi_i[k]))_{k \in Q_i}$

Check Merkle proofs

Output 1 iff $\forall \pi_1, \ldots, \pi_r(x) = 1$

$q = \sum |Q_i|, l = \sum |\pi_i|$

From q-queries IOP with length l:

- Communication = $O_\kappa(q \log l)$,
- time(\mathcal{P}) = time(\mathcal{P}) + $O_\kappa(l)$,
- time(\mathcal{V}) = time(\mathcal{V}) + $O_\kappa(q \log l)$.

Interactive argument from Merkle Trees

IOP system (\mathcal{P}, \mathcal{V}) + hash functions \implies succinct interactive argument (\mathcal{P}, \mathcal{V})

information theoretic

collision-resistant
IOP-based succinct non-interactive argument [Ben–Sasson-Chiesa-Spooner’16]

CRHF $H : \{0, 1\}^n \rightarrow \{0, 1\}^\kappa$

For each round i

- $\pi_i \leftarrow \mathcal{P}(x, w)$
- $\text{root}_i = \text{MTree}_H(\pi_i)$

Sample unif. at random query set Q_i

- $Q_i \leftarrow \mathcal{P}(x, w)
- \text{paths}_i = (\text{MProofs}_H(\pi_i[k]))_{k \in Q_i}$

Check Merkle proofs

Output 1 iff $\mathcal{V}^{\pi_1, \ldots, \pi_r}(x) = 1$

From q-queries IOP with length l:
- Communication $= O_\kappa(q \log l)$,
- $\text{time}(\mathcal{P}) = \text{time}(\mathcal{P}) + O_\kappa(l)$,
- $\text{time}(\mathcal{V}) = \text{time}(\mathcal{V}) + O_\kappa(q \log l)$.

Remove interaction: Q_i deduced from $RO(x||\text{root}_1||\ldots||\text{root}_{i-1}||Q_0||\ldots||Q_{i-1})$

Non-interactive argument from Merkle Trees + Fiat-Shamir

IOP system \mathcal{P}, \mathcal{V} + hash functions \rightarrow succinct non-interactive argument $(\mathcal{P}, \mathcal{V})$
Computational integrity language \mathcal{L}:
Instances (F, x, y, T) such that running program F within T cycles on public input x and auxiliary (secret) witness w leads to output y.

STARK (Scalable Transparent ARGument of KNOWledge) [Ben-Sasson-Bentov-Horesh-Riabzev'18]

\rightarrow non-interactive argument of knowledge for “machine computations”, with or without zero-knowledge

<table>
<thead>
<tr>
<th>Prover</th>
<th>Verifier</th>
<th>Communication complexity</th>
<th>Setup</th>
<th>Post-Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_\kappa(T \log^2 T) \cdot H$</td>
<td>$O_\kappa(\log^2 T) \cdot H$</td>
<td>$O_\kappa(\log^2 T)$</td>
<td>transparent</td>
<td>yes</td>
</tr>
</tbody>
</table>

Construct an IOP system $(\mathcal{P}, \mathcal{V})$ for \mathcal{L} with:

$$
time(\mathcal{P}) = O(T \log^2 T) \quad \text{time}(\mathcal{V}) = \~O(n) + O(\log(T)), \quad l = O(T \log T), \quad q = O(\log T),$$

then apply [BCS'16] transformation.

Applications:
Allows verification of multiple programs in a single proof (StarkEx, Cairo).
One can build PQ signatures from ZK-STARKs (see Ziggy STARK).
STARK Arithmetization:
From computational integrity to low-degree testing
Toy example

Toy program

- **Public input:** $x \in \mathbb{F}$, steps T ($T \ll |\mathbb{F}|$)
- **Private output:** $K \in \mathbb{F}^T$, $K = (K_0, K_1, \ldots, K_{T-1})$

Program $F(x, T, K)$:

For $i = 0$ to $T - 1$:

\[x \leftarrow x^3 + K_i \]

return x

Execution trace

<table>
<thead>
<tr>
<th>x_0</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>K_1</td>
</tr>
<tr>
<td>x_2</td>
<td>K_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>x_{T-2}</td>
<td>K_{T-2}</td>
</tr>
<tr>
<td>x_{T-1}</td>
<td>K_{T-1}</td>
</tr>
<tr>
<td>x_T</td>
<td>0</td>
</tr>
</tbody>
</table>

Valid iff

\[
\begin{align*}
 x_0 &= x \\
 x_T &= y \\
 x_{i+1} &= x_i^3 + K_i
\end{align*}
\]

Computational integrity statement for ZK-STARK:

“Given program F, public input (x, T) and public output y, I know secret K such that $F(x, T, K) = y$.”
STARK: Toy example

Toy program

- **Public input**: \(x \in \mathbb{F}, \) steps \(T (T \ll |\mathbb{F}|) \)
- **Private output**: \(K \in \mathbb{F}^T, K = (K_0, K_1, \ldots, K_{T-1}) \)

Program \(F(x, T, K) \):

For \(i = 0 \) to \(T - 1 \):

\[
\begin{align*}
 x &\leftarrow x^3 + K_i \\
\end{align*}
\]

return \(x \)

Execution trace

\(x_0 \)	\(K_0 \)
\(x_1 \)	\(K_1 \)
\(x_2 \)	\(K_2 \)
...	...
\(x_{T-2} \)	\(K_{T-2} \)
\(x_{T-1} \)	\(K_{T-1} \)
\(x_T \)	0

Valid iff

\[
\begin{align*}
 x_0 &= x \\
 x_T &= y \\
 x_{i+1} &= x_i^3 + K_i
\end{align*}
\]

Computational integrity statement for ZK-STARK:

“Given program \(F \), public input \((x, T) \) and public output \(y \), I know secret \(K \) such that \(F(x, T, K) = y \).”

... Today, we’ll discuss only the computational integrity part.

\(\rightarrow \) “Given program \(F \), public input \((x, T) \) and public output \(y \), there exists \(K \) such that \(F(x, T, K) = y \).”
\(\mathcal{P} \) and \(\mathcal{V} \) agree on \(\omega \in \mathbb{F}^\times \) of order \(T + 1 \), which defines \(G := \langle \omega \rangle \). They also define:

- “Contraint polynomial” \(C(X_0, X_1, Y_0) = Y_0 - (X_0^3 + X_1) \)
- “Boundaries” polynomial \(B \in \mathbb{F}[X]_{\leq 1} \) such that \(B(1) = x \) and \(B(\omega^T) = y \)
- Vanishing polynomial \(Z(X) = \prod_{i=0}^{T-1} (X - \omega^i) = \frac{X^{T+1} - 1}{X - \omega^T} \)

\(\mathcal{P} \) interpolates \(P_0, P_1 \in \mathbb{F}[X]_{\leq T} \) such that for all \(i \in \{0, ..., T\} \), \(P_0(\omega^i) = x_i \) and \(P_1(\omega^i) = K_i \).

Valid execution trace \iff\ \begin{align*}
 x_0 &= x, \\
 x_T &= y, \\
 C(x_i, K_i, x_{i+1}) &= 0, & \text{for } 0 \leq i < T
\end{align*}
Toy example: Arithmetization I

\(\mathcal{P} \) and \(\mathcal{V} \) agree on \(\omega \in \mathbb{F}^\times \) of order \(T + 1 \), which defines \(G := \langle \omega \rangle \). They also define:

- “Contraint polynomial” \(C(X_0, X_1, Y_0) = Y_0 - (X_0^3 + X_1) \)
- “Boundaries” polynomial \(B \in \mathbb{F}[X]_{\leq 1} \) such that \(B(1) = x \) and \(B(\omega^T) = y \)
- Vanishing polynomial \(Z(X) = \prod_{i=0}^{T-1} (X - \omega^i) = \frac{X^{T+1} - 1}{X - \omega^T} \)

\(\mathcal{P} \) interpolates \(P_0, P_1 \in \mathbb{F}[X]_{\leq T} \) such that for all \(i \in \{0, ..., T\} \), \(P_0(\omega^i) = x_i \) and \(P_1(\omega^i) = K_i \).

Valid execution trace \(\iff \begin{cases} x_0 = x, \\ x_T = y, \\ C(x_i, K_i, x_{i+1}) = 0, \text{ for } 0 \leq i < T \end{cases} \)

\(\iff \begin{cases} P_0(\omega^0) = B(\omega^0), \\ P_0(\omega^T) = B(\omega^T), \\ C(P_0(\omega^i), P_1(\omega^i), P_0(\omega^{i+1})) = 0, \text{ for } 0 \leq i < T \end{cases} \)
Toy example: Arithmetization I

\(\mathcal{P} \) and \(\mathcal{V} \) agree on \(\omega \in \mathbb{F}^\times \) of order \(T + 1 \), which defines \(G := \langle \omega \rangle \). They also define:

- “Contraint polynomial” \(C(X_0, X_1, Y_0) = Y_0 - (X_0^3 + X_1) \)
- “Boundaries” polynomial \(B \in \mathbb{F}[X]_{\leq 1} \) such that \(B(1) = x \) and \(B(\omega^T) = y \)
- Vanishing polynomial \(Z(X) = \prod_{i=0}^{T-1} (X - \omega^i) = \frac{X^{T+1} - 1}{X - \omega^T} \)

\(\mathcal{P} \) interpolates \(P_0, P_1 \in \mathbb{F}[X]_{\leq T} \) such that for all \(i \in \{0, ..., T\} \), \(P_0(\omega^i) = x_i \) and \(P_1(\omega^i) = K_i \).

Valid execution trace

\[\iff \begin{cases} x_0 = x, \\ x_T = y, \\ C(x_i, K_i, x_{i+1}) = 0, \text{ for } 0 \leq i < T \end{cases} \]

\[\iff \begin{cases} P_0(\omega^0) = B(\omega^0), \\ P_0(\omega^T) = B(\omega^T), \\ C(P_0(\omega^i), P_1(\omega^i), P_0(\omega^{i+1})) = 0, \text{ for } 0 \leq i < T \end{cases} \]

\[\iff \begin{cases} (X - 1)(X - \omega^T) \text{ divides } P_0(X) - B(X) \\ Z(X) \text{ divides } C(P_0(X), P_1(X), P_0(hX)) \end{cases} \]
Valid execution trace \iff

\[
\begin{align*}
Q_0(X) &= \frac{P_0(X) - B(X)}{(X-1)(X-\omega^T)} \in \mathbb{F}_q[X]_{\leq T-2} \\
Q_1(X) &= \frac{C(P_0(X), P_1(X), P_0(hX))}{Z(X)} \in \mathbb{F}_q[X]_{\leq 2T}
\end{align*}
\]
Valid execution trace $\iff\begin{cases} Q_0(X) = \frac{P_0(X) - B(X)}{(X-1)(X-\omega^T)} \in \mathbb{F}_q[X] \leq T - 2 \\ Q_1(X) = \frac{C(P_0(X), P_1(X), P_0(hX))}{Z(X)} \in \mathbb{F}_q[X] \leq 2T \end{cases}$

Reed-Solomon encoding

$\text{RS}[\mathbb{F}, D, k] \subset \mathbb{F}^D$: evaluations on $D \subset \mathbb{F}$ of polynomials of degree $< k$.

We assume $|D| \geq 2(T + 1)$, $|D| = \Theta(T)$, and $D \cap G = \emptyset$.

\mathcal{P} sends oracle functions $f_0, f_1, g_0, g_1 \in \mathbb{F}^D$, supposedly evaluations on D of $P_0(X), P_1(X), Q_0(X), Q_1(X)$, respectively.

Valid execution trace $\iff\begin{cases} f_0, f_1 \in \text{RS}[\mathbb{F}, D, T + 1] \\ g_0 \in \text{RS}[\mathbb{F}, D, T - 1] \\ g_1 \in \text{RS}[\mathbb{F}, D, 2T + 1] \end{cases}$
Toy example: Arithmetization III

Assume $f_0, f_1 \in \text{RS}[\mathbb{F}, D, T + 1]$. Then,

- $(x_0 \neq x \text{ or } x_T \neq y) \implies \Delta(g_0, \text{RS}[\mathbb{F}, D, T - 1]) \geq 1 - \frac{T + 1}{|D|}$
- $\exists i, x_{i+1} \neq x_i^3 + K_i \implies \Delta(g_1, \text{RS}[\mathbb{F}, D, 2T + 1]) \geq 1 - \frac{3T + 1}{|D|}$

Arithmetization:

- **valid execution trace** \leadsto **RS codewords**
- **incorrect execution trace** \leadsto **words far from any RS codewords**
Assume $f_0, f_1 \in \text{RS}[\mathbb{F}, D, T + 1]$. Then,

- $(x_0 \neq x$ or $x_T \neq y) \implies \Delta(g_0, \text{RS}[\mathbb{F}, D, T - 1]) \geq 1 - \frac{T + 1}{|D|}$ \quad Δ relative Hamming distance
- $\exists i, x_{i+1} \neq x_i^3 + K_i \implies \Delta(g_1, \text{RS}[\mathbb{F}, D, 2T + 1]) \geq 1 - \frac{3T + 1}{|D|}$

Arithmetization: \L\left\{\begin{array}{l}
\text{valid execution trace \sim RS codewords} \\
\text{incorrect execution trace \sim words far from any RS codewords}
\end{array}\right.$

Consistency at a random location

\mathcal{V} samples $s \in D$ and requests $f_0(s), f_1(s), f_0(\omega \cdot s), g_0(s), g_1(s)$, computes $B(s)$ and $Z(s)$ (in $O(\log T)$ \mathbb{F}-ops), then checks:

1. $g_0(s) \cdot (s - 1) \cdot (s - \omega^T) \stackrel{?}{=} f_0(s) - B(s)$ \quad soundness error $\leq \frac{T}{|D|}$
2. $g_1(s) \cdot Z(s) \stackrel{?}{=} C(f_0(s), f_1(s), f_0(\omega \cdot s))$ \quad soundness error $\leq \frac{3T}{|D|}$

\mathcal{V} rejects if one of the test fails.

Low-degree compliance

Instead of RS membership test: \mathcal{V} must be able to test proximity to RS code with $O(\log T)$ queries.
Reed-Solomon Proximity Testing
Reed-Solomon Proximity Testing

Reed-Solomon proximity testing

<table>
<thead>
<tr>
<th>Input:</th>
<th>a code $\text{RS}[^F, D, k]$, a parameter δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input oracle:</td>
<td>$f : D \to ^F$</td>
</tr>
<tr>
<td>Completeness:</td>
<td>If $f \in \text{RS}[^F, D, k]$, then the test always accepts.</td>
</tr>
<tr>
<td>Soundness:</td>
<td>If $\Delta \left(f, \text{RS}[^F, D, k]\right) > \delta$, then the test accepts with probability $\leq \text{err}(\delta)$.</td>
</tr>
</tbody>
</table>

Δ relative Hamming distance
Reed-Solomon Proximity Testing

Reed-Solomon proximity testing

Input: a code $RS[F, D, k]$, a parameter δ
Input oracle: $f : D \rightarrow F$
Completeness: If $f \in RS[F, D, k]$, then the test always accepts.
Soundness: If $\Delta(f, RS[F, D, k]) > \delta$, then the test accepts with probability $\leq \text{err}(\delta)$.
Δ relative Hamming distance

Naive proximity test

1. Query $k + 1$ entries of $f \in F^D : f(x_0), \ldots, f(x_k)$,
2. Compute poly $P(X)$ of degree $< k$ by interpolating $\{(x_i, f(x_i)); 0 \leq i \leq k - 1\}$
3. Tester accepts iff $P(x_k) = f(x_k)$.
 Soundness: \forall accepts with proba $\Pr_{x_k}[P(x_k) \neq f(x_k)] \leq 1 - \Delta(f, RS[F, D, k])$.
 Problem: query complexity $k + 1$ is linear in $|D|$ with $|D| = \Theta(k)$.

How to achieve logarithmic verification time? \forall will need some auxiliary proof from \mathcal{P}...
We also want a fast prover (linear in $|D|$) \rightsquigarrow IOP of Proximity (IOPP) for RS code.
Reed-Solomon IOP of Proximity

RS IOP of Proximity

- **Input:** a code $\text{RS}[F, D, k]$, a parameter δ
- **Input oracle:** $f : D \rightarrow F$
- **Completeness:** If $f \in \text{RS}[F, D, k]$, then $\exists \mathcal{P} \Pr[\langle \mathcal{P}, \mathcal{V} \rangle = 1] = 1$
- **Soundness:** If $\Delta \left(f, \text{RS}[F, D, k] \right) > \delta$, then $\forall \tilde{\mathcal{P}} \Pr[\langle \tilde{\mathcal{P}}, \mathcal{V} \rangle = 1] \leq \text{err}(\delta)$

Δ relative Hamming distance

Fast Reed-Solomon IOPP: FRI Protocol

[Ben–Sasson-Bentov-Horesh-Riabzev'18]

- # rounds $< \log |D|$
- # queries $< 2\log |D|$
- prover time $< 6|D|$
- verifier time $< 21\log |D|$
- proof length $< |D|/3$
- soundness “$\approx 1 - \delta$”
Halving the size of the problem by folding

Assume there exists \(\omega \in \mathbb{F}^\times \) of order a large power of 2.
Given \(k = 2^r \) and evaluation domain \(D = \langle \omega \rangle \) of size \(n = |D| \) and closed under negation

How to check proximity of \(f_0 : D \to \mathbb{F} \) to the code \(\text{RS}[\mathbb{F}, D, k] \)?

Define sequence of RS codes: \(\text{RS}_i := \text{RS}[\mathbb{F}, D_i, k/2^i] \) with \(D_0 = D \) and \(D_i := \langle \omega^{2^i} \rangle \)
(same rate \(\rho = k/n \))
Halving the size of the problem by folding,

Assume there exists $\omega \in \mathbb{F}^\times$ of order a large power of 2.
Given $k = 2^r$ and evaluation domain $D = \langle \omega \rangle$ of size $n = |D|$ and closed under negation.

How to check proximity of $f_0 : D \rightarrow \mathbb{F}$ to the code $\text{RS}[\mathbb{F}, D, k]$?

Define sequence of RS codes: $\text{RS}_i := \text{RS}[\mathbb{F}, D_i, k/2^i]$ with $D_0 = D$ and $D_i := \langle \omega^{2^i} \rangle$ (same rate $\rho = k/n$)

For each round i, reduce proximity to RS_i to RS_{i+1}:

- Split $f_i(X)$ into u_0, u_1, such that $f_i(X) = u_0(X^2) + X u_1(X^2)$
- For $\alpha \in \mathbb{F}$, define $\text{FOLD}_i[\alpha] : D_{i+1} \rightarrow \mathbb{F}$ by $\text{FOLD}_i[\alpha] (y) = u_0(y) + \alpha \cdot u_1(y)$

Completeness

For all $\alpha \in \mathbb{F}$, $\text{FOLD}_i[\alpha] \subseteq \text{RS}_{i+1}$
Halving the size of the problem by folding

Assume there exists $\omega \in \mathbb{F}^\times$ of order a large power of 2.
Given $k = 2^r$ and evaluation domain $D = \langle \omega \rangle$ of size $n = |D|$ and closed under negation

How to check proximity of $f_0 : D \to \mathbb{F}$ to the code $\text{RS}[\mathbb{F}, D, k]$?

Define sequence of RS codes: $\text{RS}_i := \text{RS}[\mathbb{F}, D_i, k/2^i]$ with $D_0 = D$ and $D_i := \langle \omega^{2^i} \rangle$
(same rate $\rho = k/n$)

For each round i, reduce proximity to RS_i to RS_{i+1}:

- Split $f_i(X)$ into u_0, u_1, such that $f_i(X) = u_0(X^2) + X u_1(X^2)$
- For $\alpha \in \mathbb{F}$, define $\text{FOLD} [f_i, \alpha] : D_{i+1} \to \mathbb{F}$ by $\text{FOLD} [f_i, \alpha] (y) = u_0(y) + \alpha \cdot u_1(y)$

Completeness

For all $\alpha \in \mathbb{F}$, $\text{FOLD} [\text{RS}_i, \alpha] \subseteq \text{RS}_{i+1}$

Observe: for all $x \in D_i$,

$$\text{FOLD} [f_i, \alpha] (x^2) = \frac{f_i(x) + f_i(-x)}{2} + \frac{\alpha f_i(x) - f_i(-x)}{2x}.$$

Local computability

For any $y \in D_{i+1}$, compute $\text{FOLD} [f_i, \alpha] (y)$ with only 2 queries to f_i.

\(17/24\)
Folding preserves distance to the code

Let $\varepsilon = \varepsilon(|F|, n, \rho) = O_{\rho} \left(\frac{n^2}{|F|} \right)$.

Distance preservation

Let $\delta < 1 - \sqrt{\rho}$. If $\Delta(f_i, RS_i) > \delta$, then

$$\Pr_{\alpha \in F} [\Delta(Fold [f_i, \alpha], RS_{i+1}) < \delta] < \varepsilon$$

Proof relies on:

Theorem [Ben-Sasson-Carmon-Ishai-Kopparty-Saraf'20]

Let $C \subseteq F^D$ be a RS code of rate ρ and let $u_0, u_1 : D \to F$. For any $\delta < 1 - \sqrt{\rho}$, if

$$\Pr_{\alpha \in F} [\Delta(u_0 + \alpha u_1, C) < \delta] > 1 - \varepsilon,$$

then, there exist $c_0, c_1 \in C$ and $T \subset D$ such that

- $|T| \geq (1 - \delta) |D|$
- $u_0|_T = c_0|_T$ and $u_1|_T = c_1|_T$
Folding preserves distance to the code - proof sketch

Distance preservation

Let $\delta < 1 - \sqrt{\rho}$. If $\Delta(f_i, RS_i) > \delta$, then

$$\Pr_{\alpha \in \mathbb{F}} [\Delta(Fold[f_i, \alpha], RS_{i+1}) < \delta] < \varepsilon$$

Proof sketch:

Idea: assume $Fold[f_i, \alpha]$ is δ-close of RS_{i+1} for many α’s,

\leadsto reconstruct a codeword $v \in RS_i$ which is δ-close to f_i.

Distance preservation

Let $\delta < 1 - \sqrt{\rho}$. If $\Delta(f_i, \text{RS}_i) > \delta$, then

$$\Pr_{\alpha \in \mathbb{F}}[\Delta(\text{FOLD}[f_i, \alpha], \text{RS}_{i+1}) < \delta] < \epsilon$$

Proof sketch:

Idea: assume $\text{FOLD}[f_i, \alpha]$ is δ-close of RS_{i+1} for many α's,

\leadsto reconstruct a codeword $v \in \text{RS}_i$ which is δ-close to f_i.

- Apply BCIKS'20 on $\text{FOLD}[f_i, \alpha] = u_0 + \alpha u_1 \implies \exists v_0, v_1 \in \text{RS}_{i+1}$ such that

$$T = \{y \in D_{i+1} \mid u_0(y) = v_0(y) \text{ AND } u_1(y) = v_1(y)\}$$

is of size $|T| \geq (1 - \delta) |D_{i+1}|$,

- Consider polynomial $r(X) = v_0(X^2) + Xv_1(X^2)$ of degree $< k/2^i$,

- Then, the evaluation of $r(X)$ on D_i agrees with f on the set $\{x \in D_i \mid x^2 \in T\}$ of size $\geq (1 - \delta) |D_i|$.
FRI Protocol: COMMIT phase

Honest prover computes:

\[f_1 = \text{FOLD}[f_0, \alpha_0] \]
\[f_2 = \text{FOLD}[f_1, \alpha_1] \]
\[\vdots \]
\[f_r = \text{FOLD}[f_{r-1}, \alpha_{r-1}] \]
FRI Protocol: QUERY phase

Global consistency test:

Sample \(s \in D_0 \) and check

\[f_1(s^2) \overset{?}{=} \text{FOLD } [f_0, \alpha_0] (s^2) \]

\[f_2(s^4) \overset{?}{=} \text{FOLD } [f_1, \alpha_1] (s^4) \]

\[\vdots \]

\[f_r(s^{2^r}) \overset{?}{=} \text{FOLD } [f_{r-1}, \alpha_{r-1}] (s^{2^r}) \]

Final test: \(f_r \notin RS_r \)

output: 1 or 0
FRI Protocol: Soundness

What can go wrong?

- **COMMIT:**
 Event $\text{BAD}_i = \text{“at round } i, \text{ FOLD } [\cdot, \alpha_i] \text{ does not preserve distance to the code.”}\]

- **QUERY:** chosen queried path does not catch any errors.

\[
\Pr [\mathcal{V} \text{ accepts}] \leq \Pr_{\alpha_i \in F} \left[\bigcup_{i=0}^{r-1} \text{BAD}_i \right] + \Pr_{s \in D} \left[\mathcal{V} \text{ accepts } | \bigcap_{i=0}^{r-1} \overline{\text{BAD}_i} \right]
\]

\[
\leq \text{err}_{\text{commit}} + \text{err}_{\text{query}}
\]
FRI Protocol: Soundness

What can go wrong?

- **COMMIT:**
 Event BAD_i = “at round i, FOLD \cdot, α_i does not preserve distance to the code.”

- **QUERY:** chosen queried path does not catch any errors.

\[
\Pr[\mathcal{V} \text{ accepts}] \leq \Pr_{\alpha_i \in \mathbb{F}} \left[\bigcup_{i=0}^{r-1} \text{BAD}_i \right] + \Pr_{s \in D} \left[\mathcal{V} \text{ accepts } | \bigcap_{i=0}^{r-1} \text{BAD}_i \right]
\]

Theorem: Soundness [Ben–Sasson-Kopparty-Saraf’18, Ben–Sasson-Carmon-Ishai-Kopparty-Saraf’20]

For any $\delta < 1 - \sqrt{\rho}$, if $\Delta(f, RS[\mathbb{F}, D, k]) > \delta$, then \mathcal{V} accepts with proba at most

\[
\text{err}(\delta) < \text{err}_{\text{commit}} + (\text{err}_{\text{query}})^l
\]

\[
< r \cdot \varepsilon(|\mathbb{F}|, n, \rho) + (1 - \delta)^l
\]

after l repetitions of the QUERY phase.
Let $\delta_i = \min \left(\Delta(f_i, RS_i), 1 - \sqrt{\rho} \right)$.

Bounding err_{commit}:

$BAD_i = \Delta(F/\!o.\!sc/\!l.\!sc/\!d.\!sc \left[f_i, \alpha_i \right], RS_{i+1}) < \delta_i$.

By distance preservation: $\Pr[BAD_i] \leq \varepsilon$, thus $\Pr \left[\bigcup_{i=0}^{r-1} BAD_i \right] \leq r \cdot \varepsilon$.
Let $\delta_i = \min \left(\Delta(f_i, RS_i), 1 - \sqrt{\rho} \right)$.

Bounding $\text{err}_{\text{commit}}$:

$\text{BAD}_i = "\Delta(\text{FOLD} [f_i, \alpha_i], RS_{i+1}) < \delta_i".$

By distance preservation: $\Pr[\text{BAD}_i] \leq \varepsilon$, thus $\Pr \left[\bigcup_{i=0}^{r-1} \text{BAD}_i \right] \leq r \cdot \varepsilon$.

Bounding $\text{err}_{\text{query}}$:

Suppose no BAD_i occurs.

Consider graph with vertices $D_0 \cup D_1 \cup \cdots \cup D_r$, and we’ll say that:

- $y \in D_{i+1}$ is **green** if $f_{i+1}(y) = \text{FOLD} [f_i, \alpha_i](y)$
- $y \in D_{i+1}$ is **red** if $f_{i+1}(y) \neq \text{FOLD} [f_i, \alpha_i](y)$

\forall accepts iff every vertices of the queried path are green.
Let \(\delta_i = \min \left(\Delta(f_i, RS_i), 1 - \sqrt{\rho} \right) \).

Bounding \(\text{err}_{\text{commit}} \):

\(\text{BAD}_i = \text{"} \Delta(\text{FOLD}[f_i, \alpha_i], RS_{i+1}) < \delta_i \text{"}. \)

By distance preservation: \(\Pr[\text{BAD}_i] \leq \varepsilon \),
thus \(\Pr \left[\bigcup_{i=0}^{r-1} \text{BAD}_i \right] \leq r \cdot \varepsilon \).

Bounding \(\text{err}_{\text{query}} \):

Suppose no \(\text{BAD}_i \) occurs.

Consider graph with vertices \(D_0 \cup D_1 \cup \cdots \cup D_r \), and we'll say that:

- \(y \in D_{i+1} \) is **green** if \(f_{i+1}(y) = \text{FOLD}[f_i, \alpha_i](y) \)
- \(y \in D_{i+1} \) is **red** if \(f_{i+1}(y) \neq \text{FOLD}[f_i, \alpha_i](y) \)

\(\leadsto V \) accepts iff every vertices of the queried path are green.

\[
\Pr[V \text{ accepts}] = \frac{6}{16} = \frac{3}{8}
\]
Let $\delta_i = \min \left(\Delta(f_i, RS_i), 1 - \sqrt{\rho} \right)$.

Bounding $\text{err}_{\text{commit}}$:
BAD$_i = \"\Delta(\text{FOLD} [f_i, \alpha_i], RS_{i+1}) < \delta_i\"$.

By distance preservation: $\Pr[\text{BAD}_i] \leq \varepsilon$, thus $\Pr\left[\bigcup_{i=0}^{r-1} \text{BAD}_i \right] \leq r \cdot \varepsilon$.

Bounding $\text{err}_{\text{query}}$:

Suppose no BAD$_i$ occurs.
Consider graph with vertices $D_0 \cup D_1 \cup \cdots \cup D_r$, and we’ll say that:

- $y \in D_{i+1}$ is **green** if $f_{i+1}(y) = \text{FOLD} [f_i, \alpha_i](y)$
- $y \in D_{i+1}$ is **red** if $f_{i+1}(y) \neq \text{FOLD} [f_i, \alpha_i](y)$

\mathcal{V} accepts iff every vertices of the queried path are green.

$\Pr[\mathcal{V} \text{ accepts}] = \frac{6}{16} = \frac{3}{8}$
Soundness analysis I

Let \(\delta_i = \min \left(\Delta(f_i, RS_i), 1 - \sqrt{\rho} \right) \).

Bounding \(\text{err}_{\text{commit}} \):

\(\text{BAD}_i = \text{“} \Delta(\text{FOLD}[f_i, \alpha_i], RS_{i+1}) < \delta_i \text{”} \).

By distance preservation: \(\Pr[\text{BAD}_i] \leq \varepsilon \),

thus \(\Pr\left[\bigcup_{i=0}^{r-1} \text{BAD}_i \right] \leq r \cdot \varepsilon \).

Bounding \(\text{err}_{\text{query}} \):

Suppose no \(\text{BAD}_i \) occurs.

Consider graph with vertices \(D_0 \cup D_1 \cup \cdots \cup D_r \), and we’ll say that:

- \(y \in D_{i+1} \) is **green** if \(f_{i+1}(y) = \text{FOLD}[f_i, \alpha_i](y) \)
- \(y \in D_{i+1} \) is **red** if \(f_{i+1}(y) \neq \text{FOLD}[f_i, \alpha_i](y) \)

\(\Downarrow \) \(\mathcal{V} \) accepts iff every vertices of the queried path are green.

\[\Pr[\mathcal{V} \text{ accepts}] = \frac{6}{16} = \frac{3}{8} \]

Modify the entries of \(f_1, \ldots, f_{r-1} \) to keep only the **last red vertex** along the path.

Modification process does not affect **green** vertices \(\Downarrow \) rejection proba does not increase.
Considering the modified oracles, define $E_{i+1} = \{ y \in D_{i+1} \mid y \text{ is red, i.e. } f_{i+1}(y) \neq \text{FOLD}[f_i, \alpha_i](y) \}$.

If no BAD_i occurs, \forall rejects with proba at most

$$\Pr_{s \in D_0} \left[\exists i \in \{1, \ldots, r\}, s^2_i \in E_i \right] = \sum_{i=1}^{r} \Pr_{s \in D_0} \left[s^2_i \in E_i \right] = \sum_{i=1}^{r} \frac{|E_i|}{|D_i|}.$$
Soundness analysis II

Considering the modified oracles, define $E_{i+1} = \{ y \in D_{i+1} \mid y \text{ is red, i.e. } f_{i+1}(y) \neq \text{FOLD}[f_i, \alpha_i](y) \}$.

If no BAD_i occurs, ν rejects with proba at most

$$\Pr_{s \in D_0} \left[\exists i \in \{1, \ldots, r\}, s^{2^i} \in E_i \right] = \sum_{i=1}^{r} \Pr_{s \in D_0} \left[s^{2^i} \in E_i \right] = \sum_{i=1}^{r} \frac{|E_i|}{|D_i|}.$$

Triangular inequality:

$$\Delta(\text{FOLD}[f_i, \alpha_i], f_{i+1}) + \Delta(f_{i+1}, \text{RS}_{i+1}) \geq \Delta(\text{FOLD}[f_i, \alpha_i], \text{RS}_{i+1}) \geq \delta_i.$$
Soundness analysis II

Considering the modified oracles, define $E_{i+1} = \{y \in D_{i+1} \mid y \text{ is red, i.e. } f_{i+1}(y) \neq \text{FOLD}[f_i, \alpha_i](y)\}$.

If no BAD_i occurs, \mathcal{V} rejects with proba at most

$$\Pr_{s \in D_0} \left[\exists i \in \{1, \ldots, r\}, s^{2^i} \in E_i \right] = \sum_{i=1}^{r} \Pr_{s \in D_0} \left[s^{2^i} \in E_i \right] = \sum_{i=1}^{r} \frac{|E_i|}{|D_i|}.$$

Triangular inequality:

$$\Delta(\text{FOLD}[f_i, \alpha_i], f_{i+1}) + \Delta(f_{i+1}, \text{RS}_{i+1}) \geq \Delta(\text{FOLD}[f_i, \alpha_i], \text{RS}_{i+1}) \geq \delta_i$$

We deduce that for all $i < r - 1$, $\frac{|E_{i+1}|}{|D_{i+1}|} \geq \delta_i - \delta_{i+1}$, since:

- If $\delta_{i+1} < \delta_i$, then $\delta_{i+1} < 1 - \sqrt{\rho}$, and thus $\delta_{i+1} = \Delta(f_{i+1}, \text{RS}_{i+1})$.
- Otherwise $\delta_i - \delta_{i+1} \leq 0$, thus it's clear.
Considering the modified oracles, define $E_{i+1} = \{ y \in D_{i+1} \mid y \text{ is red, i.e. } f_{i+1}(y) \neq \text{FOLD}[f_i, \alpha_i](y) \}$.

If no BAD_i occurs, \mathcal{V} rejects with proba at most

$$
\Pr_{s \in D_0} \left[\exists i \in \{1, \ldots, r\}, s_0^i \in E_i \right] = \sum_{i=1}^r \Pr_{s \in D_0} \left[s_0^i \in E_i \right] = \sum_{i=1}^r \frac{|E_i|}{|D_i|}.
$$

Triangular inequality:

$$
\Delta(\text{FOLD}[f_i, \alpha_i], f_{i+1}) + \Delta(f_{i+1}, RS_{i+1}) \geq \Delta(\text{FOLD}[f_i, \alpha_i], RS_{i+1}).
$$

We deduce that for all $i < r - 1$, $\frac{|E_{i+1}|}{|D_{i+1}|} \geq \delta_i - \delta_{i+1}$, since:

- If $\delta_{i+1} < \delta_i$, then $\delta_{i+1} < 1 - \sqrt{\rho}$, and thus $\delta_{i+1} = \Delta(f_{i+1}, RS_{i+1})$.
 $\delta_i = \min \left(\Delta(f_i, RS_i), 1 - \sqrt{\rho} \right)$
- Otherwise $\delta_i - \delta_{i+1} \leq 0$, thus it’s clear.

Thus, \[
\sum_{i=1}^r \frac{|E_i|}{|D_i|} \geq \sum_{i=0}^{r-1} (\delta_i - \delta_{i+1}) \geq \delta_0 - \delta_r = \delta_0.
\]
Considering the modified oracles, define $E_{i+1} = \{y \in D_{i+1} \mid y \text{ is red, i.e. } f_{i+1}(y) \neq \text{FOLD}[f_i, \alpha_i](y)\}$.

If no BAD$_i$ occurs, \mathcal{V} rejects with proba at most

$$\Pr_{s \in D_0} \left[\exists i \in \{1, \ldots, r\}, s^{2^i} \in E_i \right] = \sum_{i=1}^r \Pr_{s \in D_0} \left[s^{2^i} \in E_i \right] = \sum_{i=1}^r \frac{|E_i|}{|D_i|}.$$

Triangular inequality:

$$\Delta(\text{FOLD}[f_i, \alpha_i], f_{i+1}) + \Delta(f_{i+1}, \text{RS}_{i+1}) \geq \Delta(\text{FOLD}[f_i, \alpha_i], \text{RS}_{i+1}).$$

We deduce that for all $i < r - 1$, $\frac{|E_{i+1}|}{|D_{i+1}|} \geq \delta_i - \delta_{i+1}$, since:

- If $\delta_{i+1} < \delta_i$, then $\delta_{i+1} < 1 - \sqrt{\rho}$, and thus $\delta_{i+1} = \Delta(f_{i+1}, \text{RS}_{i+1})$. $\delta_i = \min \left(\Delta(f_i, \text{RS}_i), 1 - \sqrt{\rho} \right)$
- Otherwise $\delta_i - \delta_{i+1} \leq 0$, thus it’s clear.

Thus, $\sum_{i=1}^r \frac{|E_i|}{|D_i|} \geq \sum_{i=0}^{r-1} (\delta_i - \delta_{i+1}) \geq \delta_0 - \delta_r = \delta_0$.

Conclude: If $\delta = \Delta(f_0, \text{RS}_0) > 0$, then $\Pr(\mathcal{V} \text{ accept}) \leq O_\rho \left(\frac{n^2}{|F|} \right) + (1 - \min \left(\delta, 1 - \sqrt{\rho} \right))$. □
Conclusion

In a nutshell:

Arithmetization:

- valid execution trace \rightsquigarrow RS codewords
- incorrect execution trace \rightsquigarrow words far from any RS codewords

Low-degree test: key-ingredient is a “folding operator” such that:

- codeword of big RS code \mapsto codeword of small RS code
- locally computable
- word far from big RS code \mapsto words far from small RS code (w.h.p)

What about other codes?

Proximity testing to algebraic codes via IOPP, with linear prover and logarithmic verifier:

- Algebraic Geometry codes (joint work with Jade Nardi)
- Reed-Muller and Tensor Products of RS codes (joint work with Daniel)

The challenging part is to construct folding operators satisfying “distance preservation.”
In a nutshell:

Arithmetization:

- valid execution trace \leadsto RS codewords
- incorrect execution trace \leadsto words far from any RS codewords

Low-degree test: key-ingredient is a “folding operator” such that:

- codeword of big RS code \mapsto codeword of small RS code
- locally computable
- word far from big RS code \mapsto words far from small RS code (w.h.p)

What about other codes?

Proximity testing to algebraic codes via IOPP, with linear prover and logarithmic verifier:

- Algebraic Geometry codes (joint work with Jade Nardi)

 https://eccc.weizmann.ac.il/report/2020/165/

- Reed-Muller and Tensor Products of RS codes (joint work with Daniel)

The challenging part is to construct folding operators satisfying “distance preservation”.