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Algorithms for Quantum Computation:
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AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract

A computer is generaily considered 10 be a universal
computational device; i.e., it is believed able to simulate
any physical computational device with a cost in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics
is taken into consideration. Several researchers, starting
with David Deutsch, have developed models for quantum

hanical comp and have i ] d their compu-
tational properties. This paper gives Las Vegas algorithms
Jor finding discrete logarithms and factoring integers on
a quantum computer that take a number of steps which is
polynomial in the input size, e.g., the number of digits of the
integer to be factored. These two problems are generally
considered hard on a classical computer and have been
used as the basis of several proposed cryptosystems. (We

[1, 2]. Although he did not ask whether quantum mechan-
ics conferred extra power to computation, he did show that
a Turing machine could be simulated by the reversible uni-
tary evolution of a quantum process, which is a necessary
prerequisite for q putation. Deutsch [9, 10] was
the first to give an explicit model of quantum computation.
He defined both Turing hines and
circuits and investigated some of their properties.
The next part of this paper discusses how quantum com-
putation relates to classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
classes for those readers who do not have this background.
There are generally two resources which limit the ability
of computers to solve large problems: time and space (i.e.,
memory). The field of analysis of algorithms considers
the asymptotic demands that algorithms make for these
resources as a function of the problem size 'Iheoretica.lq'




In other words..
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Introduction to Binary ECC

Basic overview
> Binary elliptic curves are elliptic curves defined over a binary
field Fan;
» We use polynomial representation and the operations are in F»
since Fon = Fs[z]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

» All computations are done mod m(z).
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Introduction to Binary ECC

Basic overview of operations
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GF add/sub

GF mul

GF div/inv
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Introduction to Binary ECC

Hardness of ECC
> Alice and Bob agrees in the same point P over a curve;
> Alice selects a secret integer o and Bob selects an integer 3;
» Then, they calculate and tell each other P, = [«]P and
Pg = [B]P;
» Finally, they calculate their shared point
Pag = [ B]P = [o]Pg = [B]Pa.
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» It perform computations based on probabilities of an object's
state before it is measured:;
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Quantum Computation - qubits

Qubit vs Classical bit
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Classical Bit Qubit
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Measure quantum state

I KNOW WHAT

DISQUALIFIED?!
IT'S JUST A THOUGHT
EXPERIMENT. OBSERVE
THE CAT IS FINE!
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Quantum
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Measuring collapses the state.
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Quantum gates

Identity gate: Hadamard Gate:
la) L 1 _Fa) PH:1<1 1>
v2 i\l -1
NOT gate:
_1\b

2 1-a) [b) - (PR
CNOT gate: |b> ‘b>
2) ~=1a) Toffoli gate:
Ib) —b— |2 @ b) offoli gate:

a) —4— [a)

|b) —— |b)

|c) —&— |ab @ c)
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n-Qubit system

Definition Example 2-qubit system

2 _
[¥) € € such that |[[¢) || = 1, » 4 basis states:

10) ©10), |0) ©[1),[1) @]0),

W= 3 alx) 1) ® ).
x€{0,1}" » |t is common to use just:
where 0) [1).]10)
jg: o] = 1.
x€{0,1}n
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Quantum computation and reversibility

Reversibility

Quantum evolution is unitary (or any operation that changes the
state needs to be unitary);
Unitary means:

uut =Uutu =1
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Quantum computation and reversibility

Reversibility

A unitary transformation taking basis states to basis states must be
a permutation.
if U|x) =|u) and Uly) = |u), then |x) = UL |u) = |y).
Therefore quantum mechanics imposes the constraint that
classically it must be reversible computation.
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Factoring prime numbers

Factoring Integers with Shor’s algorithm

» Develop by Peter Shor in
1994,

» Brings apocalypse to
cryptography;

» |t breaks RSA, ECDSA and
DSA;

» How many qubits and gates
do we need to run Shor's
algorithm?
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Shor's algorithm
In summary Shor's algorithm has two parts:

» A reduction of the factoring problem to the problem of
order-finding, which can be done on a classical computer;
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Shor's algorithm
In summary Shor's algorithm has two parts:

» A reduction of the factoring problem to the problem of
order-finding, which can be done on a classical computer;

> A quantum algorithm to solve the order-finding problem.
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Shor's algorithm

A toy example can be when we have N = 15. Let's see how Shor's
algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)

2 ged(a,N) = ged(2,15) =1

3 Find the period of function f(x) = a* mod N, which satisfies
f(x+r) = f(x);

4 Get r = 4 through the circuit below;

5 ged(az + 1, N) = ged(5,15) = 5;

6 ged(az — 1, N) = gcd(3,15) = 5;

7 For N = 15, the two decomposed prime numbers are 3 and 5.

Register 1

t qubits !
Register 2

L qubits
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Ressource Estimation

Break RSA (Integer Factoring)

From Gidney & Ekera(2019)3 uses “3n+ 0.002n/g(n) logical qubits,
0.3n 4 0.0005n3/g(n) Toffolis, and 500n? + n?/g(n) measurement
depth to factor n-bit RSA integers”

RSA Bits | Qubits | Toffoli + T Gates (billions)
1024 3092 0.4
2048 6189 2.7
3072 9287 9.9

3Craig Gidney and Martin Ekera. How to factor 2048 bit RSA integers in 8

hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019.

https://arxiv.org/abs/1905.09749
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Shor's circuit for finding elliptic curve discrete logarithm
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: QFT
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Shor's circuit for finding elliptic curve discrete logarithm

» Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat's little theorem);

“*Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721-735, 2020.https://arxiv.org/abs/1910.02849.
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> We use for multiplication Karatsuba from Iggy's paper?;
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qubits and gates.
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» Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat's little theorem);

> We use for multiplication Karatsuba from Iggy's paper?;
» The GCD-based inversion performed better in number of
qubits and gates.
» Implementation of quantum Point addition and Point
“doubling”;

“*Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721-735, 2020.https://arxiv.org/abs/1910.02849.
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Shor's circuit for finding elliptic curve discrete logarithm

» Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat's little theorem);

> We use for multiplication Karatsuba from Iggy's paper?;
» The GCD-based inversion performed better in number of
qubits and gates.

» Implementation of quantum Point addition and Point
“doubling”;

» Present the a quantum version of "window" addition;

» Q# implementation of Karatsuba and other functions.

*Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721-735, 2020.https://arxiv.org/abs/1910.02849.
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Ressource Estimation
Break Binary ECC (DLP)

From Banegas, Bernstein, von Hoof and Lange(2021)° we have
that for breaking binary ECC we have 7n+ [log(n)| + 9 qubits,
48n3 + 8n'°8(3)*1 1 35212 log(n) + 512n% 4 O(n'°8(3)) Toffoli gates
and O(n®) CNOT gates (More details in the presentation at
CHES2021).

Single step Total
n | qubits | TOF gates CNOT gates depth upper bound TOF gates
163 | 1,157 | 893,585 827,379 1,262,035 293,095,880
233 | 1,647 | 1,669,299 1,614,947 2,405,889 781,231,932
283 | 1,998 | 2,427,369 2,358,734 3,503,510 1,378,745,592
571 | 4,015 | 8,987,401 9,080,190 13,237,682 10,281,586,744
5Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum

cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)
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Other Quantum algorithms
» Simon's Algorithm (QFT);
» Ambaini's Algorithm (Element disticness);
» Claw finding Algorithm;
» Kuperberg's Algorithm (dihedral hidden subgroup problem);
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Questions

Thank you for your attention.
Questions?
gustavo@cryptme.in
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