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WHAT IS COMPLEXITY ?

Definition
The complexity of a problem is the cost of the optimal procedure among all the
ones that solve the problem and fit into a given model of computation.

It is allowed to freely use the intermediate results once they are computed.

A computation is said to be finished if the quantities that the computation is supposed
to compute are among the intermediate results.
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WHAT IS COMPLEXITY ?

The cost of a computation that solves a problem is an upper bound on the complexity
of that problem with respect to the given model.

Lower bounds can be often obtain by establishing relations between the complexity
of the problem and the invariants of the appropriate structure (algebraic, topological,
geometric or combinatorial).

We are interested in the so-called nonscalar model where additions, subtractions and
scalar multiplications are free of charge. The (nonscalar) cost of an algorithm is there-
fore the number of multiplications and divisions needed to compute the result.
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AN EXAMPLE: MULTIPLICATION OF 2 x 2 MATRICES

Let A, B be 2 x 2 following matrices

a, dr b1 bz
A= B = .
(03 a4> ’ (ba b4>
The standard algorithm returns the matrix C = AB by computing the following intermediate
results:

¢1 = a1by + azba, C2 = by + azbg,

€3 = azby + asba, C4 = azby + asby.

It requires 8 multiplications and 4 additions. Therefore, an upper bound for the complexity
(in the nonscalar model) is 8.

Giuseppe Cotardo GRACE Young Seminar October, 2021



AN EXAMPLE: MULTIPLICATION OF 2 x 2 MATRICES

We can compute C = AB using Strassen’s algorithm, which gives
¢ =5+5—-5+S5;, Cy = 5y + Sa4, c3 = 53+ Ss, Ca =S51+5S3—5+S¢
where the S;'s are the intermediate steps

S1 = (a1 + as)(b1 + ba), Sy = (az+as)br, Sz = ai(bs — ba),

S4 = as(bz — by), Ss = (a1 +az)bs,  S¢ = (az — a1)(b1 + by),
S7 = (az — 04)(b3 + b4).

It requires 7 multiplications and 18 additions.
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AN EXAMPLE: MULTIPLICATION OF 2 x 2 MATRICES

Algorithm | # multiplication | # additions
standard 8 4

Strassen’s 7 18

@ Remark

The complexity of multiplying 2 x 2 matrices (in the nonscalar model) is 7. The
upper-bound is given by Strassen (1969), the lower bound was proved by Wino-
grad (1971).
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LINEAR MAPS

Let A, B be vector spaces over the same field K and denote by A* the dual vector space of
Aie A" :={f: A— K |f linear}. For @ € A* and b € B, one can define a rank one

linear map
a®b:A— B:a— aa)b.

Definition
The rank 7(f) of a linear map f : A — B is the smallest integer R such that there
exist a1,...,agr € A*and by, ..., bg € Bsuch that

R
f= Zai ® b;.
i—1
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BILINEAR MAPS

Let A, B, C be vector spaces over the same field K. For o € A*, 3 € B* and ¢ € C, one can
define a rank one bilinear map

a®@pB®c:AxB— C:(a,b)— afa)p(b)c.

Definition
The rank 7(T) of a bilinear map T : A x B — Cis the smallest integer R such that
there exist ay,...,ag € A*, By,...,8r € B*and ¢, ..., cg € Csuch that

R
T=) ai®pec¢

i=1
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BILINEAR MAPS AND COMPLEXITY

If a bilinear map T has rank R then T can be executed by performing R multiplications
(and O(R) additions).

The rank of a bilinear map gives a measure of its complexity.
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BILINEAR MAPS AND COMPLEXITY

If a bilinear map T has rank R then T can be executed by performing R multiplications
(and O(R) additions).

The rank of a bilinear map gives a measure of its complexity.

y@ Example

Matrix multiplication of n x n matrices is a bilinear map:

,\/’n’mr1 : KHXH % KHXH KHXH.

We observed that R(M2,2) = 7 and it is known that 19 < R(M3z33) < 23.
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3-TENSORS

We assume n, m, k to be integers.

Definition

A 3-tensor is an element of KK @ K" @ K™,

If {a1,...,ak},{b1,...,bn},{c1,...,cm} are bases of KK, K", K™, respectively, then a ba-
sis for Kk @ K" @ K™ is

{al®b}®CZ1§’§k71§]§n71§€§m}

In particular we have dim(KK @ K" ® K™) = dim(K¥) dim(K") dim(K™) = knm.
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COORDINATE TENSORS

Atensor X := ). ar ® by ® ¢, can be represented as an array. That is as the map

i ;e
XA kb x{1,...,n} x{1,...,m} — K .—;‘.—/.—/.—/.—"’

TLLT]

--__"

givenby X = (Xjjp : 1<i<k,1<j<n1<¢<m).

Therefore, X is related to the the 3-dimensional array
XijZ = Z aérbircjr'
r

where a, := (ag : 1< ¢ <k),b, := (b : 1<i<n),c:=(ajr:1<j<m).

Q Remark

This representation of X is called coordinate tensor and allows to identify the
space Kk @ K" @ K™ with Kkxnxm,
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MATRIX REPRESENTATION

Consider the map p : KK x Kkxnxm _ gkxnxm . (y x) +— S~ (v-a,) ® by ® ¢, and
notice that this map yields a 3-tensor of the form Z, Ar @ by ® ¢, where )\, € K, which
can be identify as the 2-tensor > \/by ® ¢/, since K ® K" and K" are isomorphic.

As a consequence, we can identify the tensor X with the
array of n x m matrices X = (Xy | ... | X¢), where

Xs = p(es,X) = Z(ar)sbr X Cr

r

and es is the s-th element of the canonical basis for K, for
all1 <s <k H
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3-TENSORS

Let X = (X1 ... | Xk) € Kk*"M pe a 3-tensor.

Definition
The first slice space ss;(X) of X is defined as the span (X, ..., Xi) over K. We say
that ss1(X) is nondegenerate if dim(ss;(X)) = k.

Definition
X is said to be simple (or rank one) if there exist a € K", b € K" and ¢ € K™ such
that X =a® b @ c.

Definition
The tensor rank trk(X) of X is defined as the smallest R such that X can be ex-
pressed as sum of R simple tensors.
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PERFECT BASE

Let X = (X1]| ... | Xk) € Kk*"*M be a 3-tensor.

Definition
Let A := {Aq,...,Ar} C K" be aset of R linearly independent rank-1 matrices.
We say that A is a perfect base (or R-base) for the tensor X if

SS1(X) < <A1, 000 ,AR> o

—o | Lemma

The following are equivalent.

> trk(X) <R.

» There exists an R-base for X.
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AN EXAMPLE

Let X € F2*2*2 be the 3-tensor defined as

1 0]0 1
X'_<O 1‘3 1)'

One can check that trk(X) = 3 and a 3-base for X is given by

446 o) G963}

6 2)-G2 G2
61262 G363

In particular, we have
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EQUIVALENT 3-TENSORS

LetX = (Xi| ... [Xc)and Y = (V1] ... | Y) be 3-tensors in KKxnxm,

Definition
We say that X, Y are equivalent if there exist P € GL,(K) and Q € GLy(K) such
that ssq(X) = Pssy(Y)Q:= {PNQ: N € ssy(Y)}.
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EQUIVALENT 3-TENSORS

LetX = (Xi| ... [Xc)and Y = (V1] ... | Y) be 3-tensors in KKxnxm,

Definition
We say that X, Y are equivalent if there exist P € GL,(K) and Q € GLp,(K) such
that ssq(X) = Pssy(Y)Q:= {PNQ: N € ssy(Y)}.

Remark

For any pair of matrices P € GL,(K) and Q € GLn,(K), if A is a perfect base for X
then {PAQ: A € A} is a perfect base for the 3-tensor PX Q.
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APPLICATIONS OF TENSOR DECOMPOSITION

» Cumulants
(Statistics)

t2
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APPLICATIONS OF TENSOR DECOMPOSITION
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APPLICATIONS OF TENSOR DECOMPOSITION

» Cumulants
(Statistics)

» Fluorescence spectroscopy
(Chemistry)

» Interpretation of MRI
(Medicine)

» Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)

» Storage and Encoding
(Coding Theory)
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APPLICATIONS OF TENSOR DECOMPOSITION

» Cumulants
(Statistics)

» Fluorescence spectroscopy
(Chemistry)

» Interpretation of MRI
(Medicine)

» Blind source separation
(e.g. Cocktail Party Problem)

(Digital Signal Processing) Low tensor rank 3-tensors
perform well in terms of storage

» Storage and Encoding and encoding complexity!
(Coding Theory)
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

—~
<

Tensor rank is np-complete, J. Hdstad o
International Colloquium on Automata, Languages, and Programming, Springer, 1989. =
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

—
Tensor rank is np-complete, J. Hdstad "‘u'“
International Colloquium on Automata, Languages, and Programming, Springer, 1989. \—/

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

o~
S
Tensor rank is np-complete, J. Hdstad "‘u"\

International Colloguium on Automata, Languages, and Programming, Springer, 1989. =

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.

Uniqueness: it is an important issue with problems coming from spectroscopy and signal
processing. If the rank is sufficiently small, uniqueness is assured with probability one.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X. g
a e

Tensor rank is np-complete, J. Hdstad o
International Colloguium on Automata, Languages, and Programming, Springer, 1989. =

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.

Uniqueness: it is an important issue with problems coming from spectroscopy and signal
processing. If the rank is sufficiently small, uniqueness is assured with probability one.

Noise: in order to talk about noise in data, we must have a distance function. In some
applications, these functions come from science, in other case they are chosen by con-
venience. For example, in signal processing, assuming that the noise has a certain be-
haviour (iid or Gaussian) can determine a distance function.
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TENSOR RANK OF F,m-LINEAR CODES




RANK-METRIC CODES

In the following, we assume n < m without loss of generality.

Definition

A (matrix rank-metric) code is a subspace C < Fg*™. The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(c) : ¢ € C,c # 0}) and for
C := {0}, we define d(C) to be n + 1. The maximum-rank of C is defined as

maxrk(C) = max{rk(c) : ¢ € C}.
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RANK-METRIC CODES

In the following, we assume n < m without loss of generality.

Definition

A (matrix rank-metric) code is a subspace C < Fg*™. The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(c) : ¢ € C,c # 0}) and for
C := {0}, we define d(C) to be n + 1. The maximum-rank of C is defined as
maxrk(C) = max{rk(c) : ¢ € C}.

It is well-know that the dual C* of C is a code.
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RANK-METRIC CODES

In the following, we assume n < m without loss of generality.

Definition

A (matrix rank-metric) code is a subspace C < Fg*™. The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(c) : ¢ € C,c # 0}) and for
C := {0}, we define d(C) to be n + 1. The maximum-rank of C is defined as

maxrk(C) = max{rk(c) : ¢ € C}.

It is well-know that the dual C* of C is a code.

E Proposition (Kruskal - 1977)
We have that trk(C) > dimp,(C) 4 d(C) — 1.

Codes meeting this bound are called MTR (Minimal Tensor Rank).
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[Fgm-LINEAR RANK-METRIC CODES

Let T := {m,...,7m} be a basis of Fgm over Fq and v € .. We define by I'(v) € Fg*™
the vector defined by

m
vi=Y T(V)ij-
=1

n

qms We define

The map v — [ (v) is an F,4-isomorphism. Moreover, for a subspace V of F
r(v):={r(v):vevkh

Definition

A vector (rank-metric) code is a subspace C < Fgn. The minimum distance d(C)
of C is the minimum distance of '(C) for any choice of a basis I' of Fgn /F,.
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[Fgm-LINEAR RANK-METRIC CODES

Let T := {m,...,7m} be a basis of Fgm over Fq and v € .. We define by I'(v) € Fg*™
the vector defined by

m
vi=Y T(V)ij-
=1

n

qms We define

The map v — [ (v) is an F,4-isomorphism. Moreover, for a subspace V of F
r(v):={r(v):vevkh

Definition

A vector (rank-metric) code is a subspace C < Fgn. The minimum distance d(C)
of C is the minimum distance of '(C) for any choice of a basis I' of Fgn /F,.

A vector code C is MTR if trk(C) = dimp,(C) + d(C) — 1.
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DELSARTE- GABIDULIN CODES

Definition
Let 4, .., Bn be elements of Fym linearly independent over F,;. We define the
k-dimensional F4n-Delsarte-Gabidulin code Gy (51, . . ., Bn) as

Gk(Brs -5 Bn) = {(F(Br), .- F(Bn)) : f € Gk},

1

“fo, .. fke1 € Fgm}.

where G := {fox + fix9 + -+ + fi_ x4
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DELSARTE- GABIDULIN CODES

Definition
Let 4, .., Bn be elements of Fym linearly independent over F,;. We define the
k-dimensional F4n-Delsarte-Gabidulin code Gy (51, . . ., Bn) as

Gk(Brs -5 Bn) = {(F(Br), .- F(Bn)) : f € Gk},

1

where G := {fox + fix9 + -+ + fi_ X o, fin € Fgm}.

Proposition (Sheekey - 2016)

Let 31, ..., Bn be elements of Fym linearly independent over F,. The dual of the
code Gi(51, . . ., Bn) is equivalent to Gn_ s(51, . - -, Bn)-
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AN EXAMPLE

Let « be a primitive element of Fs; and let

C:=G (a4,a7) = {(f (a4) ,f (a7)) fe{fox:foc€ ]Fss}}
= {fo (a4,a7) fo €Fs} = <(a4,a7)>]F5 )

Let [ := {1, @, a?} be a Fs-basis of Fss, N := I ((a*,”)) and M the companion matrix of
the minimal polynomial of «, i.e.

0O 10
N::<(3) g ?g)’ M:=10 0 1
2 20

One can check that

r(c):<N,NM,NM2>F5=<<2 i i)(? j 5)(2 g 2>>F5'
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DELSARTE- GABIDULIN CODES

2= | Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)
Letg > m + n — 2 and « be primitive element of Fym. For any code C < IFZ,,.
equivalent to Gi(1, «, ..., &) we have

trk(C) =m+n—1

and, in particular, C is MTR.

Algebras Having Linear Multiplicative Complexities, C. M. Fiduccia, Y. Zalcstein
Journal of the ACM (JACM), ACM, 1977.
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DELSARTE- GABIDULIN CODES

2= | Proposition (Byrne, C. - 2021)
letg > m+n—2,n € {2,3} and a be primitive element of Fgn. We can
construct a perfect base of cardinality m + n — 1for any code C < IFgm equivalent
to Gi(1, o, ..., aM).
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DELSARTE- GABIDULIN CODES

2= | Proposition (Byrne, C. - 2021)

—0—
letg > m+n—2,n € {2,3} and a be primitive element of Fyn. We can
construct a perfect base of cardinality m + n — 1 for any code C < IFZm equivalent
to Gi(1, o, ..., aM).

2= | Proposition (Byrne, C. - 2021)

—0—

Let g > m and a be primitive element of Fgn. For any code C < Fgm equivalent
to Gi(1,a, ..., a")* we have

trk(C) =mn —m +1

and, in particular, C is MTR. Moreover, we can construct a perfect base of cardi-
nality mn — m + 1for C.
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AN EXAMPLE

Let a be a primitive element of Fss and let C := Gi(1,a, a?) = ((1, @, a?)) . One can
check that I (C*) < 3% is the code of dimension 6 generated by

00 010 0 0 1 000 000 000
o o|,lo oo|,[looo],[1 00,01 0],[00 1].
1 4 2 00 320 140 0 0 4 2 00

Moreover, we have that trk (C) = 7 and a 7-base for C is given by the following rank-1

matrices
0O 0O
2 1 1.
3 4 4

» O =

o
o R NN
oA -

(@]

In particular, the span over Fs of these rank-1 contains C1 as subspace.

0O 0 1 0O 0O 0O 0 O 4 2 1 0O 0O 1
0O 00,3 0O0),10 O , 12 1 3,14 4 2,14
0O 0O0 0O 0 O0 2 3 0 0O 2 2 1 0
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INVARIANTS FOR MATRIX CODES




PRELIMINARIES AND NOTATION

Definition
The row-support and the column-support of a code C < ]ng’" are
rowsupp(C) = Z rowsp(c) and colsupp(C) = Z colsp(c),
ceC ceC

where, for any ¢ € C, rowsp(c) and colsp(c) denotes the row-space and the
column-space of c respectively.

Definition
Let V < Fy', U < Fg and C < Fg*™ be a code. We define

C[V] :=={c € C : rowsp(c) < V} and C(U) :={c € C : colsp(c) < U}.
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DELSARTE-TYPE ANTICODES

Definition (Ravagnani - 2016)
Let C < Fg*™ be a code. We say that C is a Delsarte-type anticode if

dimp,(C) = m - maxrk(C).

=% | Theorem (Meshulam - 1985)

Let C < Fg*™ be a code. We have that C is a Delsarte-type anticode if and only if
one of the following condition holds.

» n < mand there exists U < IFj such that C = Fg*™(U).

» n = mand there exists U < IFj such that C = Fg*™(U) or C = Fp*™[U].

Giuseppe Cotardo GRACE Young Seminar October, 2021



TENSOR REPRESENTATION OF MATRICES

Consider the following map.

Y Fg@F;” — IFZX’”
uvy vy - UiV
R R UV UgVa -+ UgVim
E AU @V — E A
i=1 i=1
UnVi UpVa -+ UnVm

~
rank-1 matrix

Q Remark

One can easily check that the map ¢ is an isomorphism. Therefore, we can identify
the spaces Fy @ Fg' and Fg=™.
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DELSARTE-TYPE ANTICODES

Observe that for any U < IE‘Z we have
Fm(V) = {ZAm@v, u1,...,uReUandv1,...,vReIE‘5"}:U®IE‘;”.

Analogously, for V € F7' we have Fg*™[V] = Fg @ V.
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DELSARTE-TYPE ANTICODES

Observe that for any U < IFZ we have
Fm(V) = {ZAm@v, u1,...,uReUandv1,...,vReIE‘g”}:U®IE‘Z“.

Analogously, for V € F7' we have Fg*™[V] = Fg @ V.

2 | Theorem (Meshulam - 1985)

LetC < IFZX"’ be a code. We have that C is a Delsarte-type anticode if and only if
one of the following condition holds.

» n < mand there exists U < IFg such that C = Fg*™(U).

» n = mand there exists U < [Fg such that C = Fg*™(U) or C = Fg*™[U].
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DELSARTE-TYPE ANTICODES

Observe that for any U < IFZ we have
Fm(V) = {ZAm@v, u1,...,uReUandv1,...,vReIE‘5”}:U®IE‘Z“.

Analogously, for V € F7' we have Fg*™[V] = Fg @ V.

2 | Theorem (Meshulam - 1985)

LetC < IFZX"’ be a code. We have that C is a Delsarte-type anticode if and only if
one of the following condition holds.

» n < m and there exists U < ]Fg suchthatC = U ® Fg”.

» n = mand there exists U < g suchthat C = U ® FaorC =g ® U.

Giuseppe Cotardo GRACE Young Seminar October, 2021



A TENSOR ALGEBRA APPROACH TO ANTICODES

APs AP ={A <Fg*™ : Alis perfect},

o VT USEY ifn < m,
(URF USFRU{Fl®@U:U<F} ifn=m,
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A TENSOR ALGEBRA APPROACH TO ANTICODES

AP

AP

AP

Acl

ad

={A <™ : Ais perfect},

Jtuerr:u<Fy ifn<m,
{UF;: UL u{FgeU:U<TF} ifn=m,

={U®V:U<FjandV < F'},

={UeF+Fa@V:U<FpandV < Fg'}.
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A TENSOR ALGEBRA APPROACH TO ANTICODES

AP

AP

AP

ACl

ad

={A <™ : Ais perfect},

Jtuerr:u<Fy ifn<m,
{UF;: UL u{FgeU:U<TF} ifn=m,

={U®V:U<FlandV < F™},

{ a a); Closure-type
={UF+F,@V:U<FyandV < F]'} anticodes
T qa q . —q —qJ
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A TENSOR ALGEBRA APPROACH TO ANTICODES

AP

Vi

AP -

.ACI

el

={A < F*™ : Ais perfect},

:{{U®F2":U§]Fg}

if n < m,

(URF:U<SFU{Fl®U:U<F} ifn=m,

={U®V:U<FJandV < FI'},

Closure-type
anticodes

=H{URF] +Fa®V:U<Fgand V < 7'}

Ac A% = Al c Ad
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INVARIANTS FOR MATRIX CODES

Definition

Let C < [Fg*™ be a code and A be a set of anticodes. For any j €
{1,...,dimg,(C)}, the j-th generalized tensor weight is

t(C) := min {dimg,(A) : A € A | dimp,(CNA) > j}.
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INVARIANTS FOR MATRIX CODES

Definition
Let C < "™ be a code and A be a set of anticodes. For any j €
{1,...,dimg,(C)}, the j-th generalized tensor weight is

t(C) := min {dimg,(A) : A € A | dimp,(CNA) > j}.

If A = AP then we recover the generalized rank weights. Indeed, we have

t(C) = min {dimg,(A) : A € A° | dimg,(CNA) > j} =m-d;(C)

foranyje {1,...,dimg,(C)}.

Generalized weights: An anticode approach, A. Ravagnani
Journal of Pure and Applied Algebra, Elsevier, 2016.
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INVARIANTS FOR MATRIX CODES

Definition
Let C < "™ be a code and A be a set of anticodes. For any j €
{1,...,dimg,(C)}, the j-th generalized tensor weight is

t(C) := min {dimg,(A) : A € A | dimp,(CNA) > j}.

If A = AP® then we recover the generalized tensor ranks. Indeed, we have
t7*(C) = min {dimg,(A) : A € AP | dimg,(CNA) > j} = d;(C)

foranyje {1,...,dimg,(C)}.

Tensor representation of rank-metric codes, E. Byrne, A. Neri, A. Ravagnani, J. Sheekey
SIAM Journal on Applied Algebra and Geometry, SIAM, 2019.
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INVARIANTS FOR MATRIX CODES

Let C be a [n x m, k, d], code.

-o—
—0
—o—

Proposition (Ravagnani - 2016)

The following hold.
(1) t°(C) = md,

(2) t2(C) < mn,
(3) (C) < 2 (C)forallje {1,....k =1},

(4) tP(C) < tP (C)forallj e {1,....k—m},

(5) t]p(C) <n-— [%J forallje {1,... k}.

October, 2021
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INVARIANTS FOR MATRIX CODES

Let C be a [n x m, k, d], code.

2= | Proposition (Ravagnani - 2016)
—o0—

The following hold.

(1) t°(C) = md,

(2) t2(C) < mn,

(3) (C) < 2 (C)forallje {1,....k =1},

j+1

(4) tP(C) < tP (C)forallj e {1,....k—m},

(5) tP(C) <n-— [%J forallj e {1,... ,k}.

We say that C is MRD if m | k and C meets bound (5) for j = 1 with equality.

Giuseppe Cotardo GRACE Young Seminar October, 2021



INVARIANTS FOR MATRIX CODES

Let C be a [n x m, k, d], code.

E Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)

The following hold.
(1) t(C) =,

(2) t°(C) = trk(C),
(3) £°(C) < 4(C) forallje {1,... .k —1},

ps o .
(4) £°(C) =d+j—1forallje {1,... k},

(5) £°(C) < trk(C) —k +jforallje {1,... k}.
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INVARIANTS FOR MATRIX CODES

Let C be a [n x m, k, d], code.

2= | Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)

—0—

The following hold.
(1) t*(C) =,

(2) t°(C) = trk(C),
(3) £°(C) < 4(C) forallje {1,... .k —1},

ps o .
(4) £°(C) =d+j—1forallje {1,... k},

(5) t7°(C) < trk(C) —k +jforallje {1,... k}.

Observe that C is MTR if C meets bound (4) for j = k or (5) for j = 1 with equality.
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INVARIANTS FOR MATRIX CODES

Let C be a [n x m, k, d], code.

2= | Proposition (Byrne, C.)

The following hold.
(1) t?'(C) = d?,

(2) td(C) = dimg, (colsupp(C)) dimp, (rowsupp(C)),
(3) tjc'(C) < tjC'H(C) forallje {1,...,k—1},

(4) t(C) < t(C) <tP(C)orallje{1,...,k}.
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over Fj:
Co— 1 0 0O 1 0O 0O 01O 0O 0 0 1
“\\o 0/’\0 0 1 0/7\0O O O 1/’\1 O O 1 3 ’
D 1 O 01O O 0O 0 1
A2 "\2 1 2 2)’\2 2 11 3 ’

- O
o O

o O
- O
- O
N——
-3
N —
o O
N O
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over Fj:
Co— 1 00 0O 1 0O 0O 01O 0O 0 0 1
“\\o 0O 0/’\0 0 1 0/7\0 O O 1/)’\1 O O 1 3 ’
D 1 OO0 0O 10 O 01O O 0O 0 1
A2 1 1)°’\1 2 0 2/)’\2 1 2 2)’\2 2 11 3 ’

One one check the following.
> t°(C) = (D) = 2.

- O

o O
o

D _ D _ . .
» t7(C) =t(D) =8forallj € {1,...,4}. In particular C and D are MRD.
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over Fj:
C o 10 0O 01 00O 0 010 0O 0 0 1
“\\0 1 0 0/’\0 0O 1 0/)’\0O OO0 1/°’\1 0 01 3 ’
Do 1 00 01 00O 0O 01O 0O 0 01
T 2 1 1)J’\1 2 0 2)’\2 1 2 2)’\2 2 11 3 ’
One one check the following.
> t°(C) =t7*(D) = 2.

o O

D _ D _ . .
> t7(C) =t(D) =8forallj € {1,...,4}. In particular C and D are MRD.

> t(C) = 4,t5(C) = 6and t§(C) = t§(C) = 8.

» t(D) = 4, (D) = 4and t§(D) = t(D) = 8.
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over Fj:
C o 10 0O 01 00O 0 010 0O 0 0 1
“\\0 1 0 0/’\0 0O 1 0/)’\0O OO0 1/°’\1 0 01 3 ’
Do 10 0O 01 00O 0O 01O 0O 0 01
T 2 01 1)°’\1 20 2/’\2 1 2 2)’\2 2 11 3 ’
One one check the following.
> t°(C) =t7*(D) = 2.

D _ D _ . .
> t7(C) =t(D) =8forallj € {1,...,4}. In particular C and D are MRD.

> t9(C) = 4,t9(C) = 6and td(C) = t¢(C) = 8.
7(C) 2(C) 5(C) =t3(C) . rw‘

> (D) = 4, t5(D) = 4and §(D) = t(D) = 8. distinguish more! %
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FURTHER QUESTIONS

Find new classes of MTR codes.

Determine the tensor rank of classes of matrix codes.

Study properties of these invariants for tensor codes.
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FURTHER QUESTIONS

Find new classes of MTR codes. “Matrices were
Created by God,
tensors by Devil.”
Determine the tensor rank of classes of matrix codes.
Max Noether
-

Study properties of these invariants for tensor codes.

THANK YOU @j
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