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1 Algebras for an endofunctor

An algebra for an endofunctor F : C → C is a pair (A, f) where A is an object of C and f : FA → A a
morphism of C. A morphism h : (A, f) → (B, g) between two such algebras consists of a morphism
h : A → B such that
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In the following, we mostly consider algebras in Set.

1. Define inductively the functions

– length : ’a list -> int giving the length of a list,

– map : (’a -> ’b) -> ’a list -> ’b list applying a function to all elements of a
list,

– double : ’a list -> ’a list which duplicates every successive element, for instance
double [1;2;3] = [1;1;2;2;3;3].

2. Suppose given a type ’a ilist of infinite lists with elements of type ’a. Define coinductively

– even : ’a ilist -> ’a ilist keeping elements of a list at even positions,

– merge : ’a ilist -> ’a ilist -> ’a ilist taking alternatively elements from one
of two lists.

3. We write S : N → N for the successor function. Show that [0, S] : 1 + N → N is an initial
algebra for the endofunctor TX = 1 +X of Set.

4. Use this fact to define the function h : N → Q such that h(n) = 2−n.

5. Show that two initial algebras of an endofunctor are isomorphic (via morphisms of algebras).

6. Show that an initial algebra f : FA → A of an endofunctor F is an isomorphism.

7. Solve the equation x = 1 + ax and develop the solution in power series.

8. Show that the set A∗ =
⊎

n∈N An, which can be seen as the set of lists of elements of A, is
an initial algebra for TX = 1 +A×X.

9. Use this fact to define the length function ℓ : A∗ → N and the double function d : A∗ → A∗.
Show that ℓ ◦ d(l) = 2ℓ(l) for every l ∈ A∗.

10. Explain briefly how we could interpret simple inductive types of OCaml by using initial
algebras.

11. What is the initial algebra for TX = 1 +X ×X? For TX = X∗? For TX = A×X?
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2 Coalgebras for an endofunctor

A coalgebra for F : C → C is a pair (A, f) with f : A → FA. Morphisms are defined similarly as
previously.

1. Show that the set AN of streams is a final coalgebra for the endofunctor TX = A×X.

2. Use this to define,

– given a ∈ A, the constant stream equal to a,

– the function N → NN which to n associates the stream (n, n+ 1, n+ 2, . . .),

– the function AN ×AN → AN which merges two streams,

– the function AN → AN keeping even elements.

3. Show that final coalgebras are unique up to isomorphism and are isomorphisms.

4. Show that merge(even(u), odd(u)) = u for every u ∈ AN, where odd(l) = even(tail(l)).

A bisimulation on AN is a relation R ⊆ AN × AN such that R(x :: u, x′ :: u′) implies x = x′ and
R(u, u′). The coinductive proof principle says that if R(u, u′) for some bisimulation R then u = u′.

5. Assuming this principle, show again the result of previous question.

6. Show the coinductive proof principle (hint: show that R has a coalgebra structure).

7. Generalize the coinductive proof principle to an arbitrary endofunctor.

8. What is the final coalgebra of TX = 1 +A×X? of TX = 1 +X?

9. Show that automatas can be seen as coalgebras.
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