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1 Termination of the simply typed λ-calculus

We recall the rules of the simply-typed λ-calculus:

Γ, x : A,Γ′ ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A⇒ B

Γ ` t : A⇒ B Γ ` u : A

Γ ` tu : B

where, in the first rule, we suppose x 6∈ dom(Γ′). We want to show that every typable term t (in
an arbitrary context) is strongly normalizable, meaning that there is no infinite reduction from t.

1. Can we show the property by induction on the derivation of the typing of t?

In the course of the proof, will need the following well-founded induction principle.

2. Suppose given a set X equipped with a binary relation → which is well-founded : there is no
infinite sequence of reductions. Suppose given a property P on the elements of X such that,
for every t ∈ X, we have

∀t ∈ X. ((∀t′ ∈ X. t→ t′ ⇒ P (t′))⇒ P (t))

Show that ∀t ∈ X. P (t) holds. How can we recover recurrence as a particular case of this?

We define R(A), the reducible terms of type A, by induction by

• R(A), for A atomic, is the set of strongly normalizable terms,

• R(A⇒ B) is the set of terms t such that tu ∈ R(B) for every u ∈ R(A).

A term is neutral when it is not an abstraction. We are going to show that following conditions
hold:

(CR1) if t ∈ R(A) then t is strongly normalizable,

(CR2) if t ∈ R(A) and t→ t′ then t′ ∈ R(A),

(CR3) if t is neutral and for every t′ such that t→ t′ we have t′ ∈ R(A) then t ∈ R(A).

3. Show that these conditions imply that a variable x belongs to R(A) for every type A.

4. Show the conditions (CR1), (CR2) and (CR3) by induction on A.

5. Suppose that t[u/x] ∈ R(B) for every u ∈ R(A). Show that λx.t ∈ R(A⇒ B).

6. Suppose that x1 : A1, . . . , xn : An ` t : A is derivable. Show that for all u1 ∈ R(A1), . . . ,
un ∈ R(An), we have t[u1/x1, . . . , un/xn] ∈ R(A).

7. Show that all typable terms are reducible.

8. Show that all typable terms are strongly normalizable.

9. Use this to show that typable terms are confluent.
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2 Normalization by evaluation

Implementing an evaluator for λ-calculus (or, more generally, for a functional programming lan-
guage) is painful because one has to explicitly handle α-conversion. Techniques such as de Bruijn
indices exist but they are quite error prone. We present here a technique called normalization-by-
evaluation which allows easy implementation of normalization of λ-terms when the host language
is itself functional and test for β-equivalence.

1. A term is normal when it cannot reduce. Give a grammar describing all terms in normal
form.

2. A term is neutral when it is normal, and remains normal when applied to a normal form.
Intuitively, this corresponds to a computation which is either finished or “stuck”. Describe
those by a grammar and use it to simplify the previous characterization of normal forms.

3. Define a function J−Kρ which computes the normal form a term (we suppose that it is
strongly normalizing) in an environment ρ which associates a normal form to free variables.

4. In OCaml define types corresponding to λ-terms, normal terms and neutral terms. If nec-
essary, modify your implementation so that abstractions in neutral terms are implemented
by OCaml abstractions. Finally, define a function eval which associates a normal term to
every λ-term.

5. Suppose given a function fresh which generates fresh variable names. Implement a function
readback which translates a normal form back to a λ-term.

6. Use this to implement a normalization function from λ-terms to λ-terms. Can we use it to
easily test for β-conversion?

7. Transform your implementation in order to canonically generate variable names, so that the
result is deterministic.

8. Extend the preceding constructions to products (and other constructors of your choice).
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