Normalizing in the A-calculus

Samuel Mimram
samuel .mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

November 23, 2020

1 Termination of the simply typed A-calculus
We recall the rules of the simply-typed A-calculus:

I'z:A+t: B 'tt: A= B 'Fu:A
Dz:AT'Fz: A 'FXxt: A= B I'Ftu:B

where, in the first rule, we suppose z & dom(I"). We want to show that every typable term ¢ (in
an arbitrary context) is strongly normalizable, meaning that there is no infinite reduction from t¢.

1. Can we show the property by induction on the derivation of the typing of ¢?
In the course of the proof, will need the following well-founded induction principle.

2. Suppose given a set X equipped with a binary relation — which is well-founded: there is no
infinite sequence of reductions. Suppose given a property P on the elements of X such that,
for every t € X, we have

Vte X. (V' e X.t —t' = P(t')) = P(t))
Show that Vt € X. P(t) holds. How can we recover recurrence as a particular case of this?
We define R(A), the reducible terms of type A, by induction by
e R(A), for A atomic, is the set of strongly normalizable terms,
e R(A = B) is the set of terms ¢ such that tu € R(B) for every u € R(A).

A term is neutral when it is not an abstraction. We are going to show that following conditions
hold:

(CR1) if t € R(A) then t is strongly normalizable,

(CR2) if t € R(A) and ¢t — t' then t' € R(A),

(CR3) if ¢ is neutral and for every ¢’ such that ¢ — ¢’ we have t' € R(A) then t € R(A).
3. Show that these conditions imply that a variable 2 belongs to R(A) for every type A.
4. Show the conditions (CR1), (CR2) and (CR3) by induction on A.

5. Suppose that tfu/z] € R(B) for every u € R(A). Show that Az.t € R(A = B).

6. Suppose that x1 : Ay,...,2, : A, F t: A is derivable. Show that for all u; € R(44), ...,
un € R(Ap), we have t{uy/z1,...,u/z,] € R(A).

7. Show that all typable terms are reducible.
8. Show that all typable terms are strongly normalizable.

9. Use this to show that typable terms are confluent.


http://lambdacat.mimram.fr/

2 Normalization by evaluation

Implementing an evaluator for A-calculus (or, more generally, for a functional programming lan-
guage) is painful because one has to explicitly handle a-conversion. Techniques such as de Bruijn
indices exist but they are quite error prone. We present here a technique called normalization-by-
evaluation which allows easy implementation of normalization of A-terms when the host language
is itself functional and test for S-equivalence.

1. A term is normal when it cannot reduce. Give a grammar describing all terms in normal
form.

2. A term is neutral when it is normal, and remains normal when applied to a normal form.
Intuitively, this corresponds to a computation which is either finished or “stuck”. Describe
those by a grammar and use it to simplify the previous characterization of normal forms.

3. Define a function [—], which computes the normal form a term (we suppose that it is
strongly normalizing) in an environment p which associates a normal form to free variables.

4. In OCaml define types corresponding to A-terms, normal terms and neutral terms. If nec-
essary, modify your implementation so that abstractions in neutral terms are implemented
by OCaml abstractions. Finally, define a function eval which associates a normal term to
every A-term.

5. Suppose given a function fresh which generates fresh variable names. Implement a function
readback which translates a normal form back to a A-term.

6. Use this to implement a normalization function from A-terms to A-terms. Can we use it to
easily test for S-conversion?

7. Transform your implementation in order to canonically generate variable names, so that the
result is deterministic.

8. Extend the preceding constructions to products (and other constructors of your choice).

References

[1] Olivier Danvy. Type-directed partial evaluation. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 242-257, 1996.

[2] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types, volume 7. Cambridge
university press Cambridge, 1989.



	Termination of the simply typed -calculus
	Normalization by evaluation

