
Computing in the λ-calculus

Samuel Mimram
samuel.mimram@lix.polytechnique.fr

http://lambdacat.mimram.fr

November 16, 2020

We recall that λ-terms t are of the form x (a variable) or λx.t (an abstraction) or tu (an
application). The β-reduction is the closure under context of the relation (λx.t)u → t[u/x],
i.e. the relation generated by

(λx.t)u→ t[u/x]

t→ t′

λx.t→ λx.t′
t→ t′

tu→ t′u

u→ u′

tu→ tu′

We write
∗→ (resp.

∗↔) for the reflexive and transitive (resp. and symmetric) closure of →.

1 Reduction graphs

The reduction graph of a λ-term t is the graph, whose vertices are λ-terms, defined as the smallest
graph such that t is a vertex and there is an arrow between two vertices t and t′ whenever t→ t′.

1. Write the respective reduction graphs of (λx.xx)(λy.y)z and (λxy.x)((λx.xx)(λxy.xy)).

2. Can a reduction graph have loops? be infinite? be infinitely branching?

2 Computing in pure λ-calculus

We encode the booleans true and false as the λ-terms

> = λx.λy.x ⊥ = λx.λy.y

1. Define a λ-term if encoding conditional branching: we should have

if > t u
∗→ t if ⊥ t u

∗→ u

2. Define λ-terms encoding conjunction, disjunction and negation of booleans.

3. Define an encoding of pairs of terms in λ-calculus, as well as projections.

The Church encoding of a natural number n in λ-calculus is

λfx. f(f . . . (f︸ ︷︷ ︸
n times

x))

4. Define the interpretation of the successor, addition, multiplication and exponential functions.

5. Define a function which tests whether its argument, a natural number, is 0 or not.

6. Assuming given the predecessor function, define the subtraction function. Can you see how
to define the predecessor?

A fixpoint combinator is a term Y such that

Y t
∗↔ t (Y t)

7. Recall Russell’s paradox in naive set theory.

8. Encoding a set t as a predicate which indicates whether an element belongs to it, we can
write t u instead of u ∈ t, and λx.t instead of {x | t}. Assuming given a term ¬ for negation,
translate Russell’s paradox in λ-calculus, and generalize it in order to obtain a fixpoint
combinator Y.

1

http://lambdacat.mimram.fr/


9. Given a term t, show that the β-equivalence class of Y t is always infinite.

10. Program the factorial function in OCaml. Modify your implementation in order not to use
the rec keyword, but you can use the function fix defined by

let rec fix f = f (fix f)

In practice, what happens when you evaluate this definition? Fix fix.

11. Assuming given predecessor, define the factorial function in λ-calculus.

12. The Fibonacci sequence (φn)n∈N is defined by φ0 = 0, φ1 = 1 and φn = φn−1 + φn+2. Give
a naive OCaml implementation of this function. What is (roughly) its complexity? Provide
a saner implementation.

13. Implement the predecessor function in OCaml and in λ-calculus.

14. Show that Θ = (λxf.f(xxf))(λxf.f(xxf)) is also a fixpoint combinator (due to Turing).
What is the advantage over Y?

2


	Reduction graphs
	Computing in pure -calculus

