Travaux Dirigés
Pullbacks, monos, epis and subobjects

A-calculs et catégories (10 octobre 2016)

1 Pullbacks

In this exercise, we study the notion of pullback (called “produit fibré” in French), an
important variation of the notion of “cartesian product” studied during the lectures
and a previous TD. A commutative diagram in a category &

P2,y
pw (%) Lg fopi = gopo
XﬁZ

is called a pullback diagram when the following property holds: for every commuta-

tive diagram
Q x
Y
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there exists a unique morphism 4 : Q — P making the diagram below commute:
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§1. Given two functions f : X — Z and g : Y — Z, describe explicitly a set P and a
pair of functions p; : P — X and p; : P — Y defining a pullback diagram of the form
(*) in the category Sets of sets and functions. Hint: the terminology “produit fibré”
comes from this construction.



§2. Given two pullback diagrams

vy —2 oy Yy —2 sy
9'[ (a) Lg/ 9’[ (b) hg
X" — X' X —— X

in a category ¢, show that the commutative diagram

’

vy’ 2 sy 2 .y

X" X' X

obtained by “glueing” the two diagrams (a) and (b) defines a pullback diagram in the
category %.

§3. Suppose given three commutative diagrams (a)(b)(c) in a category ¥. We have
seen in the previous question that when (b) is a pullback diagram,

(a) is a pullback diagram = (c) is a pullback diagram
Establish the converse property that
(c) is a pullback diagram = (a) is a pullback diagram
when (b) is a pullback diagram.
§4. Exhibit an example of three commutative diagrams (a)(b)(c) such that
(a) and (c) are pullback diagrams... but (b) is not a pullback diagram!

Hint: one can take X, X" singleton sets and X’ = {x1,22} a two-element set in the
category ¥ = Sets.

2 Monomorphisms and epimorphisms

§1. An arrow m : A — B of a category ¢ is called a monomorphism (mono for short)
when m is left-simplifiable in the sense that

mof=mog = f=g

for every pair of arrows f,g : X — A. Show that a function m : A — B is a mono in
the category Sets precisely when it is an injective function.
§2. An arrow ¢ : A — B of a category ¥ is called an epimorphism (epi for short)
when e is right-simplifiable in the sense that

foe=goe = f=g

for every pair of arrows f,g: B — Y. Show that a function ¢ : A — B is an epi in the
category Sets precisely when it is a surjective function.



§3. Show that in a category ¢, the composite nom : A — C of two monos m : A — B
and n : B — C is a mono, and that the composite of two epis is an epi.

§4. Show that an arrow m : A — B is a mono precisely when the commutative
diagram
—d A

A
A—— B

is a pullback diagram in the category ¥. Explain what the property means in the
specific case of a function m : A — B in the category Sets.

§5. Show that every pullback diagram
vV Lt U
m[ (®) m
B —5 A
in a category ¥ satisfies the following property:

m:U— Aisamono = m' :V — Bisamono.
Show that the converse property does not hold by constructing a counter-example in
the category Sets.
3 Comma categories and subobject categories
§1. Every object A in a category % induces a category ¢’/ A called the comma category

on the object A, and defined in the following way. The objects of ¥’/A are the pairs
(X, f) consisting of an object X € ¥ and of an arrow

f:X—A
with target A. The arrows of the category /A

are the morphisms
h : X S Y

of the underlying category ¢, making the diagram below commute:

X —" 4y

NS

Establish our claim above that ¥’/A defines a category.



§2. Show that a commutative diagram

P2y

p1[ (%) [g

XTZ

in the category % is the same thing as a diagram

(P, u)

y (k) XQZ‘

(X, f) (Y. 9)

in the category ¥’/Z. Show moreover that the commutative diagram () is a pullback
in the category ¢ precisely when the span diagram (xx) defines a cartesian product
of (X, f) and (Y, g) in the comma category ¢’ /Z. Deduce from this that the pullback
diagram (x) associated to a pair of morphisms f: X — Zand g : Y — Z is unique
up to isomorphism.

§3. Every object A in a category ¥ induces a category Sub(A) called the category
of subobjects of A, and defined in the following way. Its objects (U, m) are the pairs
consisting of an object U € ¥ and of a mono m : U — A with target A. Its morphisms
h : (Uym) — (V,n) are the morphisms h : U — V of the underlying category ¢

making the diagram
v—"r vy
A

commute in the category ¥. The category Sub(A) is thus the full subcategory of
monos in the comma category ¢’ /A. Show that the category Sub(A) is a preorder
category, in the sense there exists at most one arrow & : (U, m) — (V,n) between two
objects (U, m) and (V,n).

§4. Show that in the case ¥ = Sets, one recovers the powerset (#(A4),C) with
subsets U,V C A ordered by inclusion U C V, as the ordered set of equivalence
classes associated to the preorder Sub(A). A useful convention in category theory
is to identify the preorder category Sub(A) with the ordered set (#(A), C) in that
case.

§5. A category ¢ has pullbacks when there exists a pullback diagram (x) for every
pair of arrows f : X — Z and g : Y — Z. Show that in a category ¥ with pullbacks,
every arrow f : B — A induces a monotone function

f* : Sub(A) — Sub(B)

defined by transporting every mono m : U — A to the mono m’ : V — B using the
pullback diagram (®) in Exercise 2.5. Give an explicit description of the resulting
monotone function

o PA) —  H(B)
in the case when ¥ = Sets and when f : A — B is a function between two sets A
and B.



