
Travaux Dirigés
Pullbacks, monos, epis and subobjects

λ-calculs et catégories (10 octobre 2016)

1 Pullbacks
In this exercise, we study the notion of pullback (called “produit fibré” in French), an
important variation of the notion of “cartesian product” studied during the lectures
and a previous TD. A commutative diagram in a category C

P Y

X Z

p1

p2

(∗) g

f

f ◦ p1 = g ◦ p2

is called a pullback diagram when the following property holds: for every commuta-
tive diagram

Q

Y

X Z

q2

q1 g

f

f ◦ q1 = g ◦ q2

there exists a unique morphism h : Q→ P making the diagram below commute:

Q

P Y

X Z

q2

q1

h

p1

p2

g

f

f ◦ p1 = g ◦ p2
f ◦ q1 = g ◦ q2

q1 = p1 ◦ h
q2 = p2 ◦ h

§1. Given two functions f : X → Z and g : Y → Z, describe explicitly a set P and a
pair of functions p1 : P → X and p2 : P → Y defining a pullback diagram of the form
(∗) in the category Sets of sets and functions. Hint: the terminology “produit fibré”
comes from this construction.
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§2. Given two pullback diagrams

Y ′′ Y ′

X ′′ X ′

g′′

p′

(a) g′

f ′

Y ′ Y

X ′ X

g′

p

(b) g

f

in a category C , show that the commutative diagram

Y ′′ Y ′ Y

X ′′ X ′ X

g′′

p′

(c)

p

g

f ′ f

obtained by “glueing” the two diagrams (a) and (b) defines a pullback diagram in the
category C .

§3. Suppose given three commutative diagrams (a)(b)(c) in a category C . We have
seen in the previous question that when (b) is a pullback diagram,

(a) is a pullback diagram ⇒ (c) is a pullback diagram

Establish the converse property that

(c) is a pullback diagram ⇒ (a) is a pullback diagram

when (b) is a pullback diagram.

§4. Exhibit an example of three commutative diagrams (a)(b)(c) such that

(a) and (c) are pullback diagrams... but (b) is not a pullback diagram!

Hint: one can take X, X ′′ singleton sets and X ′ = {x1, x2} a two-element set in the
category C = Sets.

2 Monomorphisms and epimorphisms
§1. An arrow m : A→ B of a category C is called a monomorphism (mono for short)
when m is left-simplifiable in the sense that

m ◦ f = m ◦ g ⇒ f = g

for every pair of arrows f, g : X → A. Show that a function m : A → B is a mono in
the category Sets precisely when it is an injective function.

§2. An arrow e : A → B of a category C is called an epimorphism (epi for short)
when e is right-simplifiable in the sense that

f ◦ e = g ◦ e ⇒ f = g

for every pair of arrows f, g : B → Y . Show that a function e : A→ B is an epi in the
category Sets precisely when it is a surjective function.
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§3. Show that in a category C , the composite n ◦m : A→ C of two monos m : A→ B
and n : B → C is a mono, and that the composite of two epis is an epi.

§4. Show that an arrow m : A → B is a mono precisely when the commutative
diagram

A A

A B

id

id

m

m

is a pullback diagram in the category C . Explain what the property means in the
specific case of a function m : A→ B in the category Sets.

§5. Show that every pullback diagram

V U

B A

m′

p

(~) m

f

in a category C satisfies the following property:

m : U → A is a mono ⇒ m′ : V → B is a mono.

Show that the converse property does not hold by constructing a counter-example in
the category Sets.

3 Comma categories and subobject categories
§1. Every object A in a category C induces a category C /A called the comma category
on the object A, and defined in the following way. The objects of C /A are the pairs
(X, f) consisting of an object X ∈ C and of an arrow

f : X → A

with target A. The arrows of the category C /A

h : (X, f) (Y, g)

are the morphisms
h : X Y

of the underlying category C , making the diagram below commute:

X Y

A

h

f g

Establish our claim above that C /A defines a category.
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§2. Show that a commutative diagram

P Y

X Z

p1

p2

(∗) g

f

in the category C is the same thing as a diagram

(P, u)

(X, f) (Y, g)

p1 p2

(∗∗)

in the category C /Z. Show moreover that the commutative diagram (∗) is a pullback
in the category C precisely when the span diagram (∗∗) defines a cartesian product
of (X, f) and (Y, g) in the comma category C /Z. Deduce from this that the pullback
diagram (∗) associated to a pair of morphisms f : X → Z and g : Y → Z is unique
up to isomorphism.

§3. Every object A in a category C induces a category Sub(A) called the category
of subobjects of A, and defined in the following way. Its objects (U, m) are the pairs
consisting of an object U ∈ C and of a mono m : U → A with target A. Its morphisms
h : (U, m) → (V, n) are the morphisms h : U → V of the underlying category C
making the diagram

U V

A

h

m n

commute in the category C . The category Sub(A) is thus the full subcategory of
monos in the comma category C /A. Show that the category Sub(A) is a preorder
category, in the sense there exists at most one arrow h : (U, m)→ (V, n) between two
objects (U, m) and (V, n).
§4. Show that in the case C = Sets, one recovers the powerset (P(A),⊆) with
subsets U, V ⊆ A ordered by inclusion U ⊆ V , as the ordered set of equivalence
classes associated to the preorder Sub(A). A useful convention in category theory
is to identify the preorder category Sub(A) with the ordered set (P(A),⊆) in that
case.

§5. A category C has pullbacks when there exists a pullback diagram (∗) for every
pair of arrows f : X → Z and g : Y → Z. Show that in a category C with pullbacks,
every arrow f : B → A induces a monotone function

f∗ : Sub(A) −→ Sub(B)

defined by transporting every mono m : U → A to the mono m′ : V → B using the
pullback diagram (~) in Exercise 2.5. Give an explicit description of the resulting
monotone function

f∗ : P(A) −→ P(B)
in the case when C = Sets and when f : A → B is a function between two sets A
and B.
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