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Dependent types

First order logic is fine, but we would like much more.

• we would like quantifications to be typed (∀x ∈ A. . . . instead of ∀x . . . .),
• we would like to manipulate terms and proofs in the same way:

• we can prove Γ ⊢ t : N or Γ ⊢ t : x = y in the same way,
• we unify the two λ-abstractions for terms and for proofs:

λn.t : ∀x ∈ N.A vs λxA.t : A → B

• this means that proofs can depend on terms and terms can depend on proofs,

• if we have a type Type of all types, propositions become terms of type Type,

• we also would like to generate inductive principles automatically,

• we would like to have a decent handling of equality.
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Dependent types

They were introduced by Martin-Löf 1972.

The arrow type A → B is generalized into

Π(x : A).B

where x can occur in B : the type of the result can depend on the input.

Typical example:
Π(n : N).Vec n

(here Vec n is the type of lists of length n with elements of a fixed type, say N).

And we add a type Type of all types.
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Agda notations

The Agda notation for
Π(x : A).B

is
(x : A) → B

The Agda notation for
Type

is
Set

3



Agda notations

The Agda notation for
Π(x : A).B

is
(x : A) → B

The Agda notation for
Type

is
Set

3



Part I

Dependent type theory
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Terms

There is no more distinction between terms and types: a type is a term of type Type.

An expression is a term of the form

e, e ′ ::= x | e e ′ | λxe .e ′ | Π(x : e).e ′ | TypeIt is either

• x : a variable,
• e e ′: an application,
• λxe .e ′: an abstraction,
• Π(x : e).e ′: a Π-type,
• Type: the type of types.

In the following, we also use A or t to denote expressions,
but there is no syntactic distinction between terms and types!
(we could if we want but things are simpler this way)
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Terms: free variables

We write FV(e) for the free variables of an expression e.

FV(x) = {x}
FV(t u) = FV(t) ∪ FV(u)

FV(λxA.t) = FV(A) ∪ (FV(t) \ {x})
FV(Π(x : A).B) = FV(A) ∪ (FV(B) \ {x})

FV(Type) = ∅

Expressions are considered up to α-equivalence: we can rename bound variables.
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Terms: substitution

We write e[u/x ] for the expression e where x has been replaced by u.

x [u/x ] = u

y [u/x ] = y if x ̸= y

(t t ′)[u/x ] = (t[u/x ]) (t ′[u/x ])

(λyA.t)[u/x ] = λyA[u/x].t[u/x ] with y ̸∈ FV(u) ∪ {x}
(Π(y : A).B)[u/x ] = Π(y : A[u/x ]).B[u/x ] with y ̸∈ FV(u) ∪ {x}

Type [u/x ] = Type
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Contexts

A context Γ is a list
x1 : A1, . . . , xn : An

of variables and expressions.

Its domain is
dom(Γ) = {x1, . . . , xn}

The order really matters here: we can make sense of

n : N, l : Vec n

but not of
l : Vec n, n : N
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Judgments

The judgments are more complicated than before:

• a context is not necessarily well-formed:

• n : N, l : Vec n is well-formed,
• l : Vec n, . . . is not well-formed,
• n : Bool, l : Vec n is not well-formed,

• we need to take reduction in account: we can apply a function f of type

Π(l : Vec 5).A

to an argument of type
Vec (3 + 2)
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Judgments

We have three forms of judgments:

• Γ is a well-formed context:
Γ ⊢

• t has type A under the hypothesis Γ:

Γ ⊢ t : A

• t and u are equal terms of type A under the hypothesis Γ:

Γ ⊢ t = u : A

NB: this is definitional equality.

They mutually need each other!
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Judgments

We also need to express that a type is well-formed:

• in the context n : N, the type Vec n is well-formed,

• in the context n : Bool or the empty context, the type Vec n is not well-formed.

Here, this is represented by judgments of the form

Γ ⊢ A : Type

11



Rules: contexts

The rules for well-formedness of contexts are

∅ ⊢

Γ ⊢ A : Type

Γ, x : A ⊢

For instance,

n : N, l : Vec n ⊢
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∅ ⊢

Γ ⊢ A : Type

Γ, x : A ⊢

For instance,
...

n : N ⊢ Vec : Π(_ : N).Type n : N ⊢ n : N
(ax)

n : N ⊢ Vec n : Type
(ΠE)

n : N, l : Vec n ⊢
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Rules: equality

The rules for equality ensure that we have an equivalence relation

Γ ⊢ t : A

Γ ⊢ t = t : A

Γ ⊢ t = u : A

Γ ⊢ u = t : A

Γ ⊢ t = u : A Γ ⊢ u = v : A

Γ ⊢ t = v : A

and that we can convert terms and types

Γ ⊢ t : A Γ ⊢ A = B : Type

Γ ⊢ t : B

Γ ⊢ t = u : A Γ ⊢ A = B : Type

Γ ⊢ t = u : B

For instance,

f : Π(x : Vec 5).A, l : Vec (3 + 2) ⊢ f l : A
(ΠE)
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Rules: equality

In practice, how do we test equality?

In order to decide whether t and u are equal, we rewrite them as much as we can
according to a good orientation of rules:

t u

t̂ û

∗ ∗

?

(which includes β-reduction).

This means that we must ensure that the corresponding reduction is

• terminating, and
• (locally) confluent.
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Rules: axiom

The axiom rule is

Γ, x : A,∆ ⊢

Γ, x : A,∆ ⊢ x : A
(ax)

whenever x ̸∈ dom(∆) and dom(∆) ∩ FV(A) = ∅.

The side conditions avoid bad jokes such as

n : N, l : Vec n, n : Bool ⊢ l : Vec n
(ax)
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Rules: Π-types

The last thing we need to introduce is rules for Π-types.

As for all other type constructors, we will need to specify six families of rules:

1. formation: when the type is well-formed,

2. introduction: introduce a term of this type,

3. elimination: use a term of this type,

4. computation: the deconstruction of a constructed term (β-equivalence),

5. uniqueness: reconstructing a deconsctructed term does nothing (η-equivalence),

6. congruence: compatibility with equality.
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Rules: Π-types

Formation:

Γ ⊢ A : Type Γ, x : A ⊢ B : Type
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(ΠF)

Introduction:
Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : Π(x : A).B
(ΠI)

Elimination:
Γ ⊢ t : Π(x : A).B Γ ⊢ u : A

Γ ⊢ t u : B[u/x ]
(ΠE)
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Rules: Π-types

Computation:

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ (λxA.t) u = t[u/x ] : B[u/x ]
(ΠC)

(this is β-equivalence!)

Uniqueness:
Γ ⊢ t : Π(x : A).B

Γ ⊢ t = λxA.t x : Π(x : A).B
(ΠU)

(this is η-equivalence!)
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Rules: Π-types

Congruence:

Γ ⊢ A = A′ : Type Γ, x : A ⊢ B = B ′ : Type

Γ ⊢ Π(x : A).B = Π(x : A′).B ′ : Type

Γ ⊢ A : Type Γ, x : A ⊢ B : Type Γ ⊢ t = t ′ : B

Γ ⊢ λxA.t = λxA.t ′ : Π(x : A).B

In the following, we will usually omit congruence rules.
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Arrow types

If we write
A → B

for
Π(x : A).B

for some variable x ̸∈ FV(B), we have

B[t/x ] = B

and we recover the usual rules.
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Arrow types

For instance, the elimination rule

Γ ⊢ t : Π(x : A).B Γ ⊢ u : A

Γ ⊢ t u : B[u/x ]
(ΠE)

becomes
Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)
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Part II

More types

22



More type constructors

More type constructors can be added by adding constructions to expressions: we need

• a constructor for types (e.g. Π),

• a constructor for terms (e.g. λ),

• an eliminator (e.g. application)

and associated typing rules.

We will see that all the added features can be encoded with inductive types,
but let’s take it slowly.

23



The empty type

Formation:

Γ ⊢
Γ ⊢ ⊥ : Type

(⊥F)

Introduction:

n/a

Elimination:
Γ ⊢ t : ⊥ Γ, x : ⊥ ⊢ A : Type

Γ ⊢ bot(t, x 7→ A) : A[t/x ]
(⊤E)

Computation:

n/a

Uniqueness:

n/a
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The empty type

In Agda, elimination and computation correspond to

⊥-elim : (A : ⊥ → Set) → (x : ⊥) → A x
⊥-elim A ()
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The unit type

Formation:

Γ ⊢
Γ ⊢ ⊤ : Type

(⊤F)

Introduction:
Γ ⊢

Γ ⊢ ⋆ : ⊤
(⊤I)

Elimination:

Γ ⊢ t : ⊤ Γ, x : ⊤ ⊢ A : Type Γ ⊢ u : A[⋆/x ]

Γ ⊢ top(t, x 7→ A, u) : A[t/x ]
(⊤E)

In OCaml

• ⊤ is unit
• ⋆ is ()
• top(t, x 7→ A, u) is match t with () -> u
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The unit type

Computation:

Γ, x : ⊤ ⊢ A : Type Γ ⊢ u : A[⋆/x ]

Γ ⊢ top(⋆, x 7→ A, u) = u : A[⋆/x ]
(⊤C)

Uniqueness:
Γ ⊢ t : ⊤

Γ ⊢ t = ⋆ : ⊤
(⊤U)

In OCaml,

match () with () -> u = u

t = () for t of type unit
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The unit type

In Agda, elimination and computation correspond to

⊤-elim : (A : ⊤ → Set) → A tt → (t : ⊤) → A t
⊤-elim A a tt = a
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Booleans

Formation:

Γ ⊢
Γ ⊢ Bool : Type

(BoolF)

Introduction:
Γ ⊢

Γ ⊢ 1 : Bool
(Bool1I )

Γ ⊢
Γ ⊢ 0 : Bool

(Bool0I )

Elimination:

Γ ⊢ t : Bool Γ, x : Bool ⊢ A : Type Γ ⊢ u : A[1/x ] Γ ⊢ v : A[0/x ]

Γ ⊢ ite(t, x 7→ A, u, v) : A[t/x ]
(BoolE)

In OCaml:

• 1 is true and 0 is false
• ite(t, x 7→ A, u, v) is if t then u else v
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Booleans

Computation:

Γ, x : Bool ⊢ A : Type Γ ⊢ u : A[1/x ] Γ ⊢ v : A[0/x ]

Γ ⊢ ite(1, x 7→ A, u, v) = u : A[1/x ]
(Bool1C)

Γ, x : Bool ⊢ A : Type Γ ⊢ u : A[1/x ] Γ ⊢ v : A[0/x ]

Γ ⊢ ite(0, x 7→ A, u, v) = v : A[0/x ]
(Bool0C)

Uniqueness:
Γ ⊢ t : Bool

Γ ⊢ ite(t, x 7→ Bool, 1, 0) = t : Bool
(BoolU)

In OCaml,

if true then u else v = u

if t then true else false = t

if false then u else v = v
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Booleans

Computation:

Γ, x : Bool ⊢ A : Type Γ ⊢ u : A[1/x ] Γ ⊢ v : A[0/x ]

Γ ⊢ ite(1, x 7→ A, u, v) = u : A[1/x ]
(Bool1C)

Γ, x : Bool ⊢ A : Type Γ ⊢ u : A[1/x ] Γ ⊢ v : A[0/x ]

Γ ⊢ ite(0, x 7→ A, u, v) = v : A[0/x ]
(Bool0C)

Uniqueness:
Γ ⊢ t : Bool

Γ ⊢ ite(t, x 7→ Bool, 1, 0) = t : Bool
(BoolU)

In OCaml,

if true then u else v = u

if t then true else false = t
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Computation:
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Booleans

In Agda, elimination and computation correspond to

Bool-elim : (A : Bool → Set) → A true → A false → (b : Bool) → A b
Bool-elim A t f true = t
Bool-elim A t f false = f
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Natural numbers

Formation:

Γ ⊢
Γ ⊢ Nat : Type

(NatF)

Introduction:
Γ ⊢

Γ ⊢ Z : Nat
(NatZI )

Γ ⊢ t : Nat

Γ ⊢ S(t) : Nat
(NatSI )

In OCaml, Z is 0 and S(n) is n+1.
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Natural numbers

Elimination:

Γ ⊢ t : Nat

Γ, x : Nat ⊢ A : Type Γ ⊢ u : A[Z /x ] Γ, x : Nat, y : A ⊢ v : A[S(x)/x ]

Γ ⊢ rec(t, x 7→ A, u, xy 7→ v) : A[t/x ]
(NatE)

In OCaml, rec(t, x 7→ A, u, xy 7→ v) is

let rec natrec t u v =
if t = 0 then u

else v (t-1) (natrec (t-1) u v)
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Elimination:
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Natural numbers

For instance, the factorial function can be implemented with

let fact n =
natrec n 1 (fun n r -> (n+1) * r)
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Natural numbers

Computation:

Γ, x : Nat ⊢ A : Type Γ ⊢ u : A[Z /x ] Γ, x : Nat, y : A ⊢ v : A[S(x)/x ]

Γ ⊢ rec(Z, x 7→ A, u, xy 7→ v) = u : A[Z /x ]
(NatZC)

Γ ⊢ t : Nat

Γ, x : Nat ⊢ A : Type Γ ⊢ u : A[Z /x ] Γ, x : Nat, y : A ⊢ v : A[S(x)/x ]

Γ ⊢ rec(S(t), x 7→ A, u, xy 7→ v) = v [t/x , rec(t, x 7→ A, u, xy 7→ v)/y ] : A[S(t)/x ]
(NatSC)

In OCaml,

natrec 0 u v = u

natrec (n+1) u v = v n (natrec n u v)
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Computation:

Γ, x : Nat ⊢ A : Type Γ ⊢ u : A[Z /x ] Γ, x : Nat, y : A ⊢ v : A[S(x)/x ]

Γ ⊢ rec(Z, x 7→ A, u, xy 7→ v) = u : A[Z /x ]
(NatZC)

Γ ⊢ t : Nat

Γ, x : Nat ⊢ A : Type Γ ⊢ u : A[Z /x ] Γ, x : Nat, y : A ⊢ v : A[S(x)/x ]

Γ ⊢ rec(S(t), x 7→ A, u, xy 7→ v) = v [t/x , rec(t, x 7→ A, u, xy 7→ v)/y ] : A[S(t)/x ]
(NatSC)

In OCaml,

natrec 0 u v = u

natrec (n+1) u v = v n (natrec n u v)

35



Natural numbers

Computation:

Γ, x : Nat ⊢ A : Type Γ ⊢ u : A[Z /x ] Γ, x : Nat, y : A ⊢ v : A[S(x)/x ]

Γ ⊢ rec(Z, x 7→ A, u, xy 7→ v) = u : A[Z /x ]
(NatZC)

Γ ⊢ t : Nat

Γ, x : Nat ⊢ A : Type Γ ⊢ u : A[Z /x ] Γ, x : Nat, y : A ⊢ v : A[S(x)/x ]

Γ ⊢ rec(S(t), x 7→ A, u, xy 7→ v) = v [t/x , rec(t, x 7→ A, u, xy 7→ v)/y ] : A[S(t)/x ]
(NatSC)

In OCaml,

natrec 0 u v = u
natrec (n+1) u v = v n (natrec n u v)

35



Natural numbers

In Agda,

N-elim : (A : N → Set) →
A zero → ((n : N) → A n → A (suc n)) → (n : N) → A n

N-elim A z s zero = z
N-elim A z s (suc n) = s n (N-elim A z s n)

The generation of a vector of length n :
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N-elim A z s zero = z
N-elim A z s (suc n) = s n (N-elim A z s n)

The generation of a vector of length n :

fill : {A : Set} (a : A) (n : N) → Vec A n
fill a zero = []
fill a (suc n) = a :: fill a n
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Natural numbers

In Agda,

N-elim : (A : N → Set) →
A zero → ((n : N) → A n → A (suc n)) → (n : N) → A n

N-elim A z s zero = z
N-elim A z s (suc n) = s n (N-elim A z s n)

The generation of a vector of length n :

fill : {A : Set} (a : A) (n : N) → Vec A n
fill {A} a n = N-elim (λ n → Vec A n) [] (λ n l → a :: l) n
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Natural numbers

Uniqueness:

Γ ⊢ t : Nat

Γ ⊢ rec(t, x 7→ Nat,Z, xy 7→ S(y)) = t : Nat
(NatU)

In OCaml,

natrec n 0 (fun x y -> y + 1) = n

i.e. we can program the identity on natural numbers as

let rec id n =
if n = 0 then 0
else (id (n-1)) + 1
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Products

Formation:

Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ A× B : Type
(×F)

Introduction:
Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ ⟨t, u⟩ : A× B
(×I)

Elimination:

Γ ⊢ t : A× B Γ, z : A× B ⊢ C : Type Γ, x : A, y : B ⊢ u : C [⟨x , y⟩/z ]
Γ ⊢ unpair(t, z 7→ C , ⟨x , y⟩ 7→ u) : C [t/z ]

(×E)

In OCaml,

unpair(t, z 7→ C , ⟨x , y⟩ 7→ u) = match t with (x, y) -> u
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Products

Computation:

Γ ⊢ t : A

Γ ⊢ u : B Γ, z : A× B ⊢ C : Type Γ, x : A, y : B ⊢ v : C [⟨x , y⟩/z ]
Γ ⊢ unpair(⟨t, u⟩, z 7→ C , ⟨x , y⟩ 7→ v) = v [t/x , u/y ] : C [⟨t, u⟩/z ]

(×C)

Uniqueness:

Γ ⊢ t : A× B

Γ ⊢ unpair(t, z 7→ A× B, ⟨x , y⟩ 7→ ⟨x , y⟩) = t : A× B
(×U)

In OCaml,

match (t,u) with (x,y) -> v x y = v t u

match t with (x,y) -> (x,y) = t
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Dependent sums

In a similar way, we can consider dependent sums types

Σ(x : A).B

whose terms are pairs ⟨t, u⟩ with

t : A and u : B[t/x ]

From a logical point of view, this can be read as

∃x ∈ A.B

For instance, the type VA of all vectors of type A can be defined as

VA = Σ(n : Nat).VecAn

40
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Dependent sums

A product is a particular case of sum of a constant finite sequence:

m × n =
∑

1⩽i⩽m

n

where we can more generally consider ∑
1⩽i⩽m

ni

for a finite sequence (ni )1⩽i⩽m.

Similarly, in type theory, we have

A× B = Σ(x : A).B

when x ̸∈ FV(B).
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Dependent sums

Formation:

Γ ⊢ A : Type Γ, x : A ⊢ B : Type

Γ ⊢ Σ(x : A).B : Type
(ΣF)

Introduction:

Γ, x : A ⊢ B : Type Γ ⊢ t : A Γ ⊢ u : B[t/x ]

Γ ⊢ ⟨t, u⟩ : Σ(x : A).B
(ΣI)

Elimination:

Γ ⊢ t : Σ(x : A).B

Γ, z : Σ(x : A).B ⊢ C : Type Γ, x : A, y : B ⊢ u : C [⟨x , y⟩/z ]
Γ ⊢ unpair(t, z 7→ C , ⟨x , y⟩ 7→ u) : C [t/z ]

(ΠE)
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Dependent sums

Computation:

Γ ⊢ t : A Γ ⊢ u : B[t/x ]

Γ, z : Σ(x : A).B ⊢ C : Type Γ, x : A, y : B ⊢ v : C [⟨x , y⟩/z ]
Γ ⊢ unpair(⟨t, u⟩, z 7→ C , ⟨x , y⟩ 7→ v) = v [t/x , u/y ] : C [⟨t, u⟩/z ]

(ΠC)

Uniqueness:

Γ ⊢ t : Σ(x : A).B

Γ ⊢ unpair(t, z 7→ Σ(x : A).B, ⟨x , y⟩ 7→ ⟨x , y⟩) = t : Σ(x : A).B
(ΠU)
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(ΠU)
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Inductive types

One can also add inductive types to the theory (as in Agda).

In this case, the above constructions become definable (as in Agda).

We shall see this later on.
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Basic properties

Lemma
If Γ ⊢ t : A is derivable then both Γ ⊢ and Γ ⊢ A : Type are derivable.

Proof.
By induction on the proof.

NB: this actually almost true, see next slides.
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Part III

Typing Type
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A slight problem

Previous theorem is not exactly true, we can derive

Γ ⊢ Nat : Type

but not

Γ ⊢ Type : Type
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Type constructors

We want to manipulate terms of type Type.

Type constructors typically have type

Type → Type → . . . → Type

For instance,
¬ : Type → Type

In Agda,

¬ : (A : Set) → Set
¬ A = A → ⊥
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Type constructors

We want to manipulate terms of type Type.

A polymorphic identity function has type

id : Π(A : Type).A → A

In Agda:

id : (A : Set) → A → A
id A a = a
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Typing polymorphic identity

⊢ λAType .λxA.x : Π(A : Type).A → A
(ΠI)
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Typing polymorphic identity

???
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The obvious guess

The obvious guess consists in adding the rule
Γ ⊢

Γ ⊢ Type : Type

and this was present in Martin-Löf’s original type system (1971).

However, Girard showed that this was inconsistent, by analogy with the fact that a
theory of sets with a set of all sets is inconsistent.

Technically, his paradox was based on the one of Burali-Forti (there is no set of all
ordinals), we will see a simpler variant in the case where we have inductive types.

Let’s see how to encode set theory in type theory!

50



The obvious guess

The obvious guess consists in adding the rule
Γ ⊢

Γ ⊢ Type : Type

and this was present in Martin-Löf’s original type system (1971).

However, Girard showed that this was inconsistent, by analogy with the fact that a
theory of sets with a set of all sets is inconsistent.

Technically, his paradox was based on the one of Burali-Forti (there is no set of all
ordinals), we will see a simpler variant in the case where we have inductive types.

Let’s see how to encode set theory in type theory!

50



The obvious guess

The obvious guess consists in adding the rule
Γ ⊢

Γ ⊢ Type : Type

and this was present in Martin-Löf’s original type system (1971).

However, Girard showed that this was inconsistent, by analogy with the fact that a
theory of sets with a set of all sets is inconsistent.

Technically, his paradox was based on the one of Burali-Forti (there is no set of all
ordinals), we will see a simpler variant in the case where we have inductive types.

Let’s see how to encode set theory in type theory!

50



The obvious guess

The obvious guess consists in adding the rule
Γ ⊢

Γ ⊢ Type : Type

and this was present in Martin-Löf’s original type system (1971).

However, Girard showed that this was inconsistent, by analogy with the fact that a
theory of sets with a set of all sets is inconsistent.

Technically, his paradox was based on the one of Burali-Forti (there is no set of all
ordinals), we will see a simpler variant in the case where we have inductive types.

Let’s see how to encode set theory in type theory!

50



Finite collections in OCaml

We want to implement finite collections of elements of type ’a in OCaml.

We can define:

type 'a fincol = 'a array

Note that
[|1;2;3|] and [|1;3;2;2;1|]

represent the same set!
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Finite collections in OCaml

We want to implement finite collections of elements of type ’a in OCaml.

We can define:

type 'a fincol = Fincol of 'a array
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[|1;2;3|] and [|1;3;2;2;1|]

represent the same set!
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Finite collections in OCaml

We can test whether x belong to some set Fincol a with

let mem (x : 'a) (Fincol a : 'a fincol) =
let ans = ref false in
for i = 0 to Array.length a - 1 do

if x = a.(i) then ans := true
done;
!ans

Or even, using the standard library,

let mem (x : 'a) (Fincol a : 'a fincol) =
Array.exists (fun y -> x = y) a
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Finite collections in OCaml

Then, inclusion of sets can be computed with

let included (Fincol a : 'a fincol) (b : 'a fincol) =
Array.for_all (fun x -> mem x b) a

and finally, equality of sets:

let eq (a : 'a fincol) (b : 'a fincol) =
included a b && included b a

NB: this is the reasonable notion of equality, we never want to use =.
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Finite sets in OCaml

In particular, we can implement finite sets as finite collections of finite sets:

OCaml complains:

The type abbreviation finset is cyclic.
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Finite sets in OCaml

In particular, we can implement finite sets as finite collections of finite sets:
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Finite sets in OCaml

In particular, we can implement finite sets as finite collections of finite sets:

type finset = Finset of finset array

OCaml complains:

The type abbreviation finset is cyclic.
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Finite sets in OCaml

We can implement equality as previously:

let mem x (Finset a) =
Array.exists (fun y -> eq x y) a

let included (Finset a) b =
Array.for_all (fun x -> mem x b) a

let eq a b =
included a b && included b a
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Finite sets in OCaml

We can implement equality as previously:

let rec mem x (Finset a) =
Array.exists (fun y -> eq x y) a

and included (Finset a) b =
Array.for_all (fun x -> mem x b) a

and eq a b =
included a b && included b a
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Encoding set theory in type theory

These ideas can be immediately adapted to type theory and we define finite sets as

But now there is no reason to limit ourselves to finite sets!
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Encoding set theory in type theory

Aczel defines the following encoding of set theory into type theory:

Instead of digging into set theory, we can try to encode Russell’s paradox.

It turns out that if we suppose that the rule

Γ ⊢

Γ ⊢ Type : Type

holds, the proof goes through!
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Russell’s paradox in type theory

Let’s suppose Type : Type (i.e. Set of type Set):

{-# OPTIONS --type-in-type #-}

We define “sets” as

data U : Set where
set : {I : Set} → (I → U) → U

We define the membership relation as

_∈_ : (A B : U) → Set
A ∈ set {I} f = Σ I (λ i → f i ≡ A)
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Russell’s paradox in type theory

A set is regular when it does not contains itself:

regular : U → Set
regular A = ¬ (A ∈ A)

Russell’s set R is the set of all regular sets

R : U
R = set {Σ U (λ A → regular A)} proj1
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Russell’s paradox in type theory

R is not regular

R-nonreg : ¬ (regular R)
R-nonreg reg = reg ((R , reg) , refl)

R is regular

R-reg : regular R
R-reg ((.(set proj1) , reg) , refl) = R-nonreg reg

The world falls apart

absurd : ⊥
absurd = R-nonreg R-reg
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Russell’s paradox in type theory

The morale of the story is the same as previously:
the type of all types is “too big” to be a type.

However, we need to give it a type (everything does).

Let’s say that
Type : TYPE

where TYPE is the type of “big types”.

However, the next question is...

what is the type of TYPE?
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Universes

We thus introduce types
Typei

indexed by i ∈ N, and called universes, where

• Type0 = Type is the type of usual/small types,

• Type1 is the type of “big types”,

• Type2 is the type of “very big types”,

and so on.
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Universes

We add the rule, for i ∈ N
Γ ⊢

Γ ⊢ Typei : Typei+1

as well as cumulativity, for i ∈ N,

Γ ⊢ A : Typei

Γ ⊢ A : Typei+1
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Universes

We also adapt all the rules involving Type, e.g. for every i ∈ N,

Γ ⊢ A : Typei Γ, x : A ⊢ B : Typei

Γ ⊢ Π(x : A).B : Typei
(ΠF)

Γ ⊢ A : Typei Γ, x : A ⊢ B : Typei

Γ ⊢ Σ(x : A).B : Typei
(ΣF)

and so on.
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Universes

The rule for Σ-types is

Γ ⊢ A : Typei Γ, x : A ⊢ B : Typei

Γ ⊢ Σ(x : A).B : Typei
(ΣF)

For instance, we can define the type of all vectors of type A by

VEC : (A : Set) → Set
VEC A = Σ N (λ n → Vec A n)

we get the error

Set1 != Set
when checking that the expression Σ Set (λ A → List A) has type Set
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Part IV

Termination
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Termination

All the programs in Agda should be terminating, otherwise it gets inconsistent:

From which we deduce:

absurd : 0 ≡ 1
absurd = anything
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Termination

In this case, we should ask Agda to automatically check that
the programs we write are terminating?

But in 1936, Turing showed that the halting problem is undecidable:

I: a program P ,

O: whether or not the program P will eventually stop.
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Termination

In order to always ensure termination, Agda (and most provers) use a syntactic criterion
to ensure termination.

It only accepts programs which are “obviously” terminating, based on their form.

This means that some programs which are halting (and thus innocuous) are rejected.

But we will see that we can manage to get usual programs accepted.
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Termination

In Agda, the only possible source of non-termination is recursive functions:

anything : {A : Set} → N → A
anything n = anything (suc n)

If we try, we get the error

Termination checking failed for the following functions: anything
Problematic calls: anything (suc n)

It’s something like a nightclub bouncer.
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Syntactic termination

In order to ensure termination, Agda imposes that recursive calls should be performed
on strict subterms of the argument:

id : N → N
id zero = zero
id (suc n) = suc (id n)

is accepted.
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Syntactic termination

In order to ensure termination, Agda imposes that recursive calls should be performed
on strict subterms of the argument:

div2 : N → N
div2 zero = zero
div2 (suc zero) = zero
div2 (suc (suc n)) = suc (div2 n)

is accepted.
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Syntactic termination is over-restrictive

Suppose that we want to write the function bits which computes the number of bits
necessary to write a natural number.

0b =

1b = 1 2b = 10 3b = 11 4b = 100 . . .

bits(0) = 0 bits(1) = 1 bits(2) = 2 bits(3) = 2 bits(4) = 3 . . .

The mathematical definition is

bits(n) = 1 + ⌊log2(n)⌋

In OCaml, we would write

let rec bits n =
if n = 0 then 0 else 1 + bits (n / 2)
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Syntactic termination is over-restrictive

If we translate this into Agda

bits : N → N
bits zero = zero
bits (suc n) = suc (bits (div2 (suc n)))

the definition gets rejected.

Agda is not smart enough to find out that div2 (suc n) will return something which
is syntactically smaller than suc n.

Fortunately, there are ways to get over this.
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The fuel technique

The fuel technique consists in adding an extra argument (typically a natural number)
which will be syntactically decreasing.

This is some kind of fuel which gets consumed at each recursive call: the function will
terminate because it will eventually run out of fuel.

Note that in order to make a recursive call, we have to ensure that there is some fuel
left, i.e. there is a strict subterm of the fuel argument. We have to add a second new
argument which maintains an invariant ensuring this.
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The fuel technique

bits : (n : N) → (fuel : N) → N
bits zero f = zero
bits (suc n) zero = ?
bits (suc n) (suc f) = suc (bits (div2 (suc n)) f)

The last goal requires proving, under suc n ⩽ suc f, that div2 (suc n) ⩽ f.

Namely,
(

n + 1

)/2

⩽

(

f + 1

)/2 ⩽ f

This thus follows from two easy lemmas:

• division is increasing: {m n : N} → m ⩽ n → div2 m ⩽ div2 n

• a technical result: (n : N) → div2 (suc n) ⩽ n
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Proof of the technical lemma

We can show (left as exercise):

⩽-div2 : {m n : N} → m ⩽ n → div2 m ⩽ div2 n

and

⩽-suc : {n : N} → n ⩽ suc n

Thus,

lem : (n : N) → div2 (suc n) ⩽ n
lem zero = z⩽n
lem (suc n) = ⩽-trans (⩽-div2 ⩽-suc) (s⩽s (lem n))

In maths, the second case is

(n + 2)/2 ⩽ (n + 3)/2 = (n + 1)/2 + 1 ⩽ n + 1
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Well-founded induction

A more general technique is well-founded induction.

This is an adaptation of a classical mathematical technique.
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Recurrence

Theorem (Recurrence principle)
Given a property P(n), if

• P(0) holds, and

• for every n ∈ N, P(n) implies P(n + 1),

then P(n) holds for every n ∈ N.

Theorem (Strong recurrence principle)
Given a property P(n), if

• for every n ∈ N, if P(m) holds for every m < n, then P(n),

then P(n) holds for every n ∈ N.

Note that we have to show P(0) as a particular case.
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Induction on proofs

Theorem (Induction on proofs)
Suppose given a predicate P(π) on proofs π. Suppose that for every rule

π =

π1

Γ1 ⊢ A1
. . .

πn

Γn ⊢ An

Γ ⊢ A

if P(πi ) holds for every i then P(π) also holds. Then P(π) holds for every proof π.
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Let’s give a general theory of induction.
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Well-founded relations

On a set A, a relation R ⊆ A× A is well-founded if there is no infinite sequence of
elements xi of A such that (xi+1, xi ) ∈ R .

We forbid . . . R x3 R x2 R x1 R x0

The relation < on N is well-founded: there is no infinite sequence

. . . < n3 < n2 < n1 < n0

The relation < on Q is not well-founded:

. . . <
1
4
<

1
3
<

1
2
< 1

The relation S = {(n, n + 1) | n ∈ N} on N is well-founded:

. . . S (n − 3) S (n − 2) S (n − 1) S n

The relation ∈ on sets is well-founded: this is the axiom of foundation.
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Immediately below

Given a relation R on A, and x ∈ A we write

↓x = {y ∈ A | y R x}

for the set of elements immediately below x .

For < on N,
↓n = {m ∈ N | m < n}

For S on N

↓n =

∅ if n = 0

{n − 1} otherwise
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Well-founded relation

Alternatively, some people say that a relation R on A is well-founded when every
non-empty subset X ⊆ A admits a minimal element:

∀X ⊆ A.(X ̸= ∅ ⇒ ∃x ∈ X .↓x ∩ X = ∅)

The two definitions agree if we assume the axiom of (dependent) choice.
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Well-founded induction

Theorem (Well-founded induction)
Suppose given a well-founded relation R on A and a property P(x) on A.
If P satisfies, for every x ∈ A,

if P(y) for every y ∈ ↓x then P(x)

then P(x) holds for every x ∈ A.
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Well-founded induction

Theorem (Well-founded induction)
Suppose given a well-founded relation R on A and a property P(x) on A.
If P satisfies, for every x ∈ A,

if P(y) for every y ∈ ↓x then P(x)

then P(x) holds for every x ∈ A.

Note that

• for S on N, we recover the recurrence principle,

• for < on N, we recover the strong recurrence principle.
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Well-founded induction

Theorem (Well-founded induction)
Suppose given a well-founded relation R on A and a property P(x) on A.
If P satisfies, for every x ∈ A,

if P(y) for every y ∈ ↓x then P(x)

then P(x) holds for every x ∈ A.

Proof.
By contradiction, suppose that P(x0) does not hold for some x0 ∈ A then

• there exists x1 ∈ A with x1 R x0 such that P(x1) does not hold,

• there exists x2 ∈ A with x2 R x1 such that P(x2) does not hold,

• . . .

We have constructed an infinite decreasing sequence, contradiction.
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Well-founded recursion

A variant can also be used to construct functions.

Theorem (Well-founded recursion)
Suppose given sets A and B , a well-founded relation R on A and function r which to
every x ∈ A and function g : ↓x → B associates an element of B . Then there is a
unique function f : A → B such that, for every x ∈ A,

f (x) = r(x , f |↓x)
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Well-founded recursion

For instance, we can define binary trees by

data BTree (A : Set) : Set where
Leaf : BTree A
Node : A → BTree A → BTree A → BTree A

We consider the relation such that, for every tree t = Node(a, t1, t2),
we have t1 < t and t2 < t, which is well-founded (why?).

We can define the height function by well-founded recursion:

height : {A : Set} → BTree A → N
height Leaf = 0
height (Node x t t') = suc (max (height t) (height t'))
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Well-founded recursion

More generally, given a fixed signature, we can define the subterm order by

t < u

when t is a strict subterm of u.

This relation is always well-founded.

Agda ensures that, when defining f (u), the recursive calls are performed on f (t)

with t < u. This enforces that

• all functions are terminating,

• all functions are well-defined (by well-founded recursion).
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Accessibility

Given a set A equipped with a relation R (not necessarily well-founded), the set of
accessible elements Acc(A) is the smallest set on which well-founded induction would
work.

Formally, the set Acc(A) is the smallest subset of A such that

∀x ∈ A.(∀y ∈ A.y R x ⇒ y ∈ Acc(A)) ⇒ x ∈ Acc(A)
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Lemma
The set Acc(A) is well-defined.

Proof.
A subset X of A is closed when ∀x ∈ A.(∀y ∈ A.y R x ⇒ y ∈ X ) ⇒ x ∈ X .
We define

Acc(A) =
⋂

X closed

X
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With R being the relation such that x R (x + 1) for every x ,

Acc(N) = {

0, 1, 2, . . .

}

Acc(Z) = ∅ Acc(R) = ∅ Acc(R\{−1}) = N
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Well-founded relations

In Agda, we can define the type of relations on A by

Rel : Set → Set1

Rel A = A → A → Set

We can then define the predicate of being accessible for an element by

data Acc {A : Set} (_<_ : Rel A) (x : A) : Set where
acc : ((y : A) → y < x → Acc _<_ y) → Acc _<_ x

We define a relation to be well-founded by the predicate

WellFounded : {A : Set} → (_<_ : Rel A) → Set
WellFounded {A} _<_ = (x : A) → Acc _<_ x
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N is well-founded

The usual definition of the order turns out to make inductions difficult (see in TD). The
following definition of the order turns out to be more adapted

data _<_ : N → N → Set where
<-base : {n : N} → n < suc n
<-step : {m n : N} → m < n → m < suc n

We can then show that N is well-founded by

<-wellFounded : WellFounded _<_
<-wellFounded x = acc (aux x)

where
aux : (x y : N) → y < x → Acc _<_ y
aux .(suc y) y <-base = <-wellFounded y
aux (suc x) y (<-step y<x) = aux x y y<x
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Well-founded induction

In order to define a recursive function f n on a well-founded relation (e.g. N),
we can define an auxiliary function g which is f with a new argument:
the proof that n is accessible.

We performing recursive calls, we only have to prove that the arguments are strictly
smaller.

The trick is thus essentially the same as for fuel, excepting that it is closer to the usual
mathematical practice.

We can finally define f n = g n (<-wellFounded n).
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Well-founded bits

Assuming the easy lemma

div2-< : (n : N) → div2 (suc n) < suc n

the function bits can be defined by well-founded induction by

wfbits : (n : N) → Acc _<_ n → N
wfbits zero _ = zero
wfbits (suc n) (acc rs) =

suc (wfbits (div2 (suc n)) (rs (div2 (suc n)) (div2-< n)))

bits : N → N
bits n = wfbits n (<-wellFounded n)
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Recursion

In practice, we don’t want the average user to understand accessibility.

The standard library (Data.Nat.Induction) defines the following equivalent principle:

<-rec : (P : N → Set) →
((n : N) → ((m : N) → m < n → P m) → P n) →
(n : N) → P n

<-rec P r n = lem n (<-wellFounded n)
where
lem : (n : N) → Acc _<_ n → P n
lem n (acc a) = r n (λ m m<n → lem m (a m m<n))
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Recursion

We can implement bits by implementing the auxiliary function

bits-rec : (n : N) → ((m : N) → m < n → N) → N
bits-rec zero r = zero
bits-rec (suc n) r = suc (r (div2 n) (div2-<' n))

and then finally define

bits : N → N
bits = <-rec (λ n → N) bits-rec
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Part V

Inductive types
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W-types

A problem with inductive types (data ...) is that we cannot manipulate them:

• we cannot make a function which takes an inductive type and returns a new
inductive type,

• we cannot reason on all the types defined inductively

• etc.

Or can we?

(at least for a large class of inductive types)
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Finite sets

In Agda, for a fixed n, it is easy to describe a type with exactly n elements.

We have a type with 1 element:

data ⊤ : Set where
tt : ⊤

We can therefore build a type with 4 elements as

Four : Set
Four = ⊤ ⊎ ⊤ ⊎ ⊤ ⊎ ⊤

We could have taken Fin 4 but this requires N and Fin...
whereas this construction is available as soon as we have: ⊤, ⊎ and ⊥.
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Finite sets

An element of

Four : Set
Four = ⊤ ⊎ (⊤ ⊎ (⊤ ⊎ ⊤))

looks like right (right (left tt)), but we will write 0, 1, 2, 3 for its elements.

An important property of this type is that a function from Four to Set amounts to

specifying four types!
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Inductive types

An inductive type consists in

• a finite set of constructors,

• a given number of terms of the type as arguments of each constructor.

For instance,

data Nat : Set where
zero : Nat
suc : Nat → Nat

We could also allow arguments which are not of the type itself,
but we will see that everything generalizes easily.
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Specifying inductive types

We can therefore specify an inductive type by

• a type A with n elements: the constructors,
• for each x ∈ A, a type B(x) with nx elements: the number of arguments of x .

For instance,

data Nat : Set where
zero : Nat
suc : Nat → Nat

is specified by

• A = Two
• B(0) = Zero, B(1) = One
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Specifying inductive types

Note that the types A or B don’t have to be finite.

For instance,

data List (C : Set) : Set where
nil : List C
cons : C → List C → List C

• A = One ⊎ C

• B(0) = Zero, B(c) = One.
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Specifying inductive types

Note that the types A or B don’t have to be finite.

For instance,

data List (C : Set) : Set where
nil : List C
cons-c : List C → List C

with one cons-c for each c : C ,

is specified by

• A = One ⊎ C

• B(0) = Zero, B(c) = One.
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Specifying inductive types

Trees are usually defined as

They can thus be specified with

• A = N

• B(n) = Fin n
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W-types

Given types A : Type and B : Π(x : A).Type, we write

W(x : A).B

for the type whose elements are in the inductive type specified by A and B .

Those can be defined in Agda by

data W (Cons : Set) (Arg : Cons → Set) : Set where
sup : (c : Cons) (a : Arg c → W Cons Arg) → W Cons Arg

e.g.
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Those can be defined in Agda by

data W (Cons : Set) (Arg : Cons → Set) : Set where
sup : (c : Cons) (a : Arg c → W Cons Arg) → W Cons Arg

e.g.

N : Set
N = W Bool (λ { false → ⊥ ; true → ⊤})
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W-types

Given types A : Type and B : Π(x : A).Type, we write

W(x : A).B

for the type whose elements are in the inductive type specified by A and B .

Those can be defined in Agda by

data W (Cons : Set) (Arg : Cons → Set) : Set where
sup : (c : Cons) (a : Arg c → W Cons Arg) → W Cons Arg

e.g.

List : (A : Set) → Set
List A = W (Maybe A) (λ {nothing → ⊥ ; (just x) → ⊤})
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W-types

In fact, we can directly give the rules for W-types.

Formation:
Γ ⊢ A : Type Γ, x : A ⊢ B : Type

Γ ⊢ W(x : A).B : Type
(WF)

Introduction:
Γ ⊢ t : A Γ ⊢ u : B[t/x ] → W(x : A).B

Γ ⊢ sup(t, u) : W(x : A).B
(WI)

Given a constructor t and arguments ui ∈ W(x : A).B ,
we have a new term t(u1, . . . , un).
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W-types

Elimination:

Γ ⊢ t : W(x : A).B Γ, x : W(x : A).B ⊢ C : Type

Γ, x : A, y : B → W(x : A).B, z : Π(w : B).C [(y w)/x ] ⊢ u : C [sup(x , y)/x ]

Γ ⊢ Wrec(t, x 7→ C , xyz 7→ u) : C [t/x ]
(WE)

Computation: Γ ⊢ t : A Γ, x : W(x : A).B ⊢ C : Type Γ ⊢ u : B[t/x ] → W(x : A).B

Γ, x : A, y : B → W(x : A).B, z : Π(w : B).C [(y w)/x ] ⊢ v : C [sup(x , y)/x ]

Γ ⊢ Wrec(sup(t, u), x 7→ C , xyz 7→ v) = v [t/x , u/y , λw .Wrec(u w , x 7→ C , xyz 7→ v)/z ] : C [sup(t, u)/x ]
(WC)

In Agda:

elim : {Cons : Set} {Arg : Cons → Set}
(C : W Cons Arg → Set) →
((c : Cons) → (a : Arg c → W Cons Arg) → C (sup c a)) →
(x : W Cons Arg) → C x

elim C f (sup c a) = f c a
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Some limitations

This is perfectly fine if you want to implement inductive types.

In practice, most provers have a more specific implementation of inductive types
because

• we want to be able to give intuitive names to the constructors,

• we want to implement extensions of these inductive types (mutually recursive
inductive types, inductive-recursive types, inductive-inductive types),

• some other minor details.

We can be tempted to consider more general inductive types,
but this has to be done carefully...
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Limitations for inductive types

Suppose that we want to define λ-terms in Agda, without bothering with α-conversion.
An idea could be to use the fact that Agda already implements this in the meta-theory,
so that a λ-term λx .t could be implemented as a function Term → Term!

Let’s try this:

data Term : Set where
abs : (Term → Term) → Term

It looks fine but we get an error

Term is not strictly positive, because it occurs to the left of an arrow
in the type of the constructor abs in the definition of Term.
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Limitations for inductive types

Another example is the following definition of the predicate even:

data even : (n : N) → Set where
even-zero : even zero
even-suc : {n : N} → ¬ (even n) → even (suc n)

which raises

even is not strictly positive, because it occurs to the left of an arrow
in the type of the constructor even-suc in the definition of even.
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Polarity of types

The polarity (positive / negative) of an implicative type is

• positive for the topmost type,
• stays the same when we go to the right of an arrow,
• changes sign when we go to the left of an arrow.

A type is strictly positive, when it is positive and did not change sign.

A → ((B → C ) → (D → E ))

→

+

A

−

→

+

→

−

→

+

B

+

C

−

D

−

E

+
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Limitations for inductive types

Agda imposes the following restriction on inductive types: all the occurrences of the
recursively defined type must occur strictly positively in all arguments of constructors.

This is why the following gets rejected:

data Term : Set where
abs : (Term → Term) → Term
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Limitations for inductive types

Without this restriction, we could write looping terms:

{-# NO_POSITIVITY_CHECK #-}
data Term : Set where

abs : (Term → Term) → Term

app : Term → Term → Term
app (abs f) t = f t

ω : Term
ω = abs (λ x → app x x)

loop : Term
loop = app ω ω
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Limitations for inductive types

Without this restriction, we could write looping terms:

{-# NO_POSITIVITY_CHECK #-}
data Term : Set where

abs : (Term → ⊥) → Term

app : Term → Term → ⊥
app (abs f) t = f t

ω : Term
ω = abs (λ x → app x x)

loop : ⊥
loop = app ω ω

This explains why we forbid negative types
(the restriction to strictly positive ones in Agda is not clear to me).
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Limitations for inductive types

The proof can even be further simplified:

not-Bad : Bad → ⊥
not-Bad (bad f) = f (bad f)

actually-Bad : Bad
actually-Bad = bad not-Bad

absurd : ⊥
absurd = not-Bad actually-Bad
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Limitations for inductive types

The proof can even be further simplified:

{-# NO_POSITIVITY_CHECK #-}
data Term : Set where

abs : (Term → ⊥) → Term
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Inductive-inductive types

Sometimes, inductive types are too limited.

In inductive-inductive types, one can define at the same time

• a type A : Type

• a predicate P : A → Type

There are some conditions for this to be well-defined that we will not dig into.
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Inductive-inductive types

For instance, we can define sorted lists with

data SortedList : Set
data _⩽*_ : N → SortedList → Set

data SortedList where
nil : SortedList
cons : (x : N) (l : SortedList) (le : x ⩽* l) → SortedList

data _⩽*_ where
⩽*-empty : {x : N} → x ⩽* nil
⩽*-cons : {x y : N} {l : SortedList} →

x ⩽ y → (le : y ⩽* l) → x ⩽* (cons y l le)
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