
CSC_51051_EP: Natural deduction

Samuel Mimram

2024

École polytechnique

Part I

Introduction

1

Propositional logic

In propositional logic, we consider formulas which are built from

• variables: X , Y , . . .

• connectives: ∧, ∨, ⇒, ¬, . . .

For instance,
(X ⇒ Y) ⇒ (¬X ∨ Y)

2

The boolean interpretation

Usually,

• we interpret variables as booleans (valuations),
• we have a standard interpretation for connectives

A ∧ B 0 1
0 0 0
1 0 1

A ∨ B 0 1
0 0 1
1 1 1

A ⇒ B 0 1
0 1 1
1 0 1

¬A
0 1
1 0

A formula is valid when its interpretation is true for every value given to the variables.

(X ⇒ Y) ⇒ (¬X ∨ Y)

with X = 1 and Y = 0.

3

The boolean interpretation

Usually,

• we interpret variables as booleans (valuations),
• we have a standard interpretation for connectives

A ∧ B 0 1
0 0 0
1 0 1

A ∨ B 0 1
0 0 1
1 1 1

A ⇒ B 0 1
0 1 1
1 0 1

¬A
0 1
1 0

A formula is valid when its interpretation is true for every value given to the variables.

(X ⇒ Y) ⇒ (¬X ∨ Y)

with X = 1 and Y = 0. 3

The boolean interpretation

Usually,

• we interpret variables as booleans (valuations),
• we have a standard interpretation for connectives

A ∧ B 0 1
0 0 0
1 0 1

A ∨ B 0 1
0 0 1
1 1 1

A ⇒ B 0 1
0 1 1
1 0 1

¬A
0 1
1 0

A formula is valid when its interpretation is true for every value given to the variables.

(X︸︷︷︸
1

⇒ Y︸︷︷︸
0

) ⇒ (¬ X︸︷︷︸
1

∨ Y︸︷︷︸
0

)

with X = 1 and Y = 0. 3

The boolean interpretation

Usually,

• we interpret variables as booleans (valuations),
• we have a standard interpretation for connectives

A ∧ B 0 1
0 0 0
1 0 1

A ∨ B 0 1
0 0 1
1 1 1

A ⇒ B 0 1
0 1 1
1 0 1

¬A
0 1
1 0

A formula is valid when its interpretation is true for every value given to the variables.

(X ⇒ Y︸ ︷︷ ︸
0

) ⇒ (¬ X︸︷︷︸
1

∨ Y︸︷︷︸
0

)

with X = 1 and Y = 0. 3

The boolean interpretation

Usually,

• we interpret variables as booleans (valuations),
• we have a standard interpretation for connectives

A ∧ B 0 1
0 0 0
1 0 1

A ∨ B 0 1
0 0 1
1 1 1

A ⇒ B 0 1
0 1 1
1 0 1

¬A
0 1
1 0

A formula is valid when its interpretation is true for every value given to the variables.

(X ⇒ Y︸ ︷︷ ︸
0

) ⇒ (¬X︸︷︷︸
0

∨ Y︸︷︷︸
0

)

with X = 1 and Y = 0. 3

The boolean interpretation

Usually,

• we interpret variables as booleans (valuations),
• we have a standard interpretation for connectives

A ∧ B 0 1
0 0 0
1 0 1

A ∨ B 0 1
0 0 1
1 1 1

A ⇒ B 0 1
0 1 1
1 0 1

¬A
0 1
1 0

A formula is valid when its interpretation is true for every value given to the variables.

(X ⇒ Y︸ ︷︷ ︸
0

) ⇒ (¬X ∨ Y︸ ︷︷ ︸
0

)

with X = 1 and Y = 0. 3

The boolean interpretation

Usually,

• we interpret variables as booleans (valuations),
• we have a standard interpretation for connectives

A ∧ B 0 1
0 0 0
1 0 1

A ∨ B 0 1
0 0 1
1 1 1

A ⇒ B 0 1
0 1 1
1 0 1

¬A
0 1
1 0

A formula is valid when its interpretation is true for every value given to the variables.

(X ⇒ Y) ⇒ (¬X ∨ Y)︸ ︷︷ ︸
1

with X = 1 and Y = 0. 3

The set-theoretic interpretation

With this idea that propositions should correspond to types and consider

N ⇒ N

We should therefore interpret

• a type A as a set,
• A ⇒ B as

the set of functions from A to B ,

• A ∧ B as

the product A× B ,

• A ∨ B as

the disjoint union A ⊔ B .

We recover the previous interpretation by considering whether a set is empty or not:

A ∧ B ∅ 1
∅ ∅ ∅
1 ∅ 1

A ∨ B ∅ 1
∅ ∅ 1
1 1 1

A ⇒ B ∅ 1
∅ 1 1
1 ∅ 1

¬A
∅ 1
1 ∅

4

The set-theoretic interpretation

With this idea that propositions should correspond to types and consider

N ⇒ N

We should therefore interpret

• a type A as a set,
• A ⇒ B as the set of functions from A to B ,
• A ∧ B as

the product A× B ,

• A ∨ B as

the disjoint union A ⊔ B .

We recover the previous interpretation by considering whether a set is empty or not:

A ∧ B ∅ 1
∅ ∅ ∅
1 ∅ 1

A ∨ B ∅ 1
∅ ∅ 1
1 1 1

A ⇒ B ∅ 1
∅ 1 1
1 ∅ 1

¬A
∅ 1
1 ∅

4

The set-theoretic interpretation

With this idea that propositions should correspond to types and consider

N ⇒ N

We should therefore interpret

• a type A as a set,
• A ⇒ B as the set of functions from A to B ,
• A ∧ B as the product A× B ,
• A ∨ B as

the disjoint union A ⊔ B .

We recover the previous interpretation by considering whether a set is empty or not:

A ∧ B ∅ 1
∅ ∅ ∅
1 ∅ 1

A ∨ B ∅ 1
∅ ∅ 1
1 1 1

A ⇒ B ∅ 1
∅ 1 1
1 ∅ 1

¬A
∅ 1
1 ∅

4

The set-theoretic interpretation

With this idea that propositions should correspond to types and consider

N ⇒ N

We should therefore interpret

• a type A as a set,
• A ⇒ B as the set of functions from A to B ,
• A ∧ B as the product A× B ,
• A ∨ B as the disjoint union A ⊔ B .

We recover the previous interpretation by considering whether a set is empty or not:

A ∧ B ∅ 1
∅ ∅ ∅
1 ∅ 1

A ∨ B ∅ 1
∅ ∅ 1
1 1 1

A ⇒ B ∅ 1
∅ 1 1
1 ∅ 1

¬A
∅ 1
1 ∅

4

The set-theoretic interpretation

With this idea that propositions should correspond to types and consider

N ⇒ N

We should therefore interpret

• a type A as a set,
• A ⇒ B as the set of functions from A to B ,
• A ∧ B as the product A× B ,
• A ∨ B as the disjoint union A ⊔ B .

We recover the previous interpretation by considering whether a set is empty or not:

A ∧ B ∅ 1
∅ ∅ ∅
1 ∅ 1

A ∨ B ∅ 1
∅ ∅ 1
1 1 1

A ⇒ B ∅ 1
∅ 1 1
1 ∅ 1

¬A
∅ 1
1 ∅

4

The proof-theoretic interpretation

This is not entirely satisfactory since the way a function is implemented matters.

For instance,
N ⇒ N
n 7→ 0

can be implemented as

• let f n = 0

• let f n = n - n

• let rec f n = if n = 0 then n else f (n - 1)

Note that the complexities are respectively O(1), O(log2(n)) and O(n).

5

The proof-theoretic interpretation

This is not entirely satisfactory since the way a function is implemented matters.

For instance,
N ⇒ N
n 7→ 0

can be implemented as

• let f n = 0

• let f n = n - n

• let rec f n = if n = 0 then n else f (n - 1)

Note that the complexities are respectively O(1), O(log2(n)) and O(n).

5

The proof-theoretic interpretation

This is not entirely satisfactory since the way a function is implemented matters.

For instance,
N ⇒ N
n 7→ 0

can be implemented as

• let f n = 0

• let f n = n - n

• let rec f n = if n = 0 then n else f (n - 1)

Note that the complexities are respectively O(1), O(log2(n)) and O(n).

5

The proof-theoretic interpretation

This is not entirely satisfactory since the way a function is implemented matters.

For instance,
N ⇒ N
n 7→ 0

can be implemented as

• let f n = 0

• let f n = n - n

• let rec f n = if n = 0 then n else f (n - 1)

Note that the complexities are respectively O(1), O(log2(n)) and O(n).

5

The three levels of interpretation

Girard advocates that there are three levels for interpreting proofs:

0. the boolean level: propositions are interpreted as booleans and we are interested in
whether a proposition is provable or not,

1. the extensional level: propositions are interpreted as sets and we are interested in
which functions can be implemented,

2. the intentional level: we are interested in the proofs (= programs) themselves, and
how they evolve during reduction,

...

∞. the homotopical level: we take equality seriously in account.

6

The three levels of interpretation

Girard advocates that there are three levels for interpreting proofs:

0. the boolean level: propositions are interpreted as booleans and we are interested in
whether a proposition is provable or not,

1. the extensional level: propositions are interpreted as sets and we are interested in
which functions can be implemented,

2. the intentional level: we are interested in the proofs (= programs) themselves, and
how they evolve during reduction,
...

∞. the homotopical level: we take equality seriously in account.

6

Intuitionism

Shifting from provability to proofs was initiated by Brouwer’s intuitionism
(around 1900):

• mathematics is not about a preexisting reality,
it is a subjective mental construction,

• this construction has an existence of its own.

In this point of view, we switch from provability to proofs:

• A ∧ B means that I have both a proof of A and a proof B
(it is a product rather than an intersection)

• A ⇒ B is a way of producing a proof of B from a proof of A.

This has some important consequences that we will see.
7

Constructivism

8

Formalizing the notion proof

We want to give a precise definition of the notion of proof.

This means give a list of all the allowed (low-level!) steps in a proof.

For instance, we want to show that x 7→ 2 × x is continuous in 0:
we have to prove the formula

∀ε.(ε > 0 ⇒ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε))

9

Formalizing the notion proof

We want to give a precise definition of the notion of proof.

This means give a list of all the allowed (low-level!) steps in a proof.

For instance, we want to show that x 7→ 2 × x is continuous in 0:

we have to prove the formula

∀ε.(ε > 0 ⇒ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε))

9

Formalizing the notion proof

We want to give a precise definition of the notion of proof.

This means give a list of all the allowed (low-level!) steps in a proof.

For instance, we want to show that x 7→ 2 × x is continuous in 0:
we have to prove the formula

∀ε.(ε > 0 ⇒ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε))

9

Formalizing the notion proof

Goal:

∀ε.(ε > 0 ⇒ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε))

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goal:

ε > 0 ⇒ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε)

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goal:

∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε)

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goal:

ε/2 > 0 ∧ ∀x .|x | < ε/2 ⇒ |2x | < ε

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goals:

ε/2 > 0 and ∀x .|x | < ε/2 ⇒ |2x | < ε

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goals:

2 × (ε/2) > 2 × 0 and ∀x .|x | < ε/2 ⇒ |2x | < ε

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goals:

ε > 0 and ∀x .|x | < ε/2 ⇒ |2x | < ε

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goal:

∀x .|x | < ε/2 ⇒ |2x | < ε

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goal:

|x | < ε/2 ⇒ |2x | < ε

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goal:

|2x | < ε

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Goal:

|x | < ε/2

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion proof

Done!

• Suppose given ε.

• Suppose ε > 0.

• Take η = ε/2.

•

• Since 2 > 0.

• By usual identities.

• By hypothesis.

•

• Suppose given x .

• Suppose |x | < ε/2.

• By usual identities.

• By hypothesis

10

Formalizing the notion of proof

ε > 0 ⊢ ε > 0

ε > 0 ⊢ (ε/2)× 2 > 0 × 2

ε > 0 ⊢ ε/2 > 0

ε > 0, |x | < ε/2 ⊢ |x | < ε/2

ε > 0, |x | < ε/2 ⊢ |2x |/2 < ε/2

ε > 0, |x | < ε/2 ⊢ |2x | < ε

ε > 0 ⊢ |x | < ε/2 ⇒ |2x | < ε

ε > 0 ⊢ ∀x .|x | < ε/2 ⇒ |2x | < ε

ε > 0 ⊢ ε/2 > 0 ∧ ∀x .|x | < ε/2 ⇒ |2x | < ε

ε > 0 ⊢ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε)

⊢ ε > 0 ⇒ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε)

⊢ ∀ε.(ε > 0 ⇒ ∃η.(η > 0 ∧ ∀x .|x | < η ⇒ |2x | < ε))

11

Formalizing the notion of proof

This has several interesting consequences.

• We can show properties of the system: consistency, decidability, etc.

• We can reason on proofs.

• We can transform proofs.

12

Part II

Intuitionistic natural deduction

13

Formulas

We consider formulas generated by the grammar

A,B ::= X | A ⇒ B | A ∧ B | ⊤ | A ∨ B | ⊥ | ¬A

where X is a variable.

By convention:

• the binding priority is ¬, ∧, ∨, ⇒:

¬A ∨ B ∧ C ⇒ D is ((¬A) ∨ (B ∧ C)) ⇒ D

• the operations are bracketed on the right:

A1 ∧ A2 ∧ A3 ⇒ B ⇒ C is (A1 ∧ (A2 ∧ A3)) ⇒ (B ⇒ C)

14

Formulas

We consider formulas generated by the grammar

A,B ::= X | A ⇒ B | A ∧ B | ⊤ | A ∨ B | ⊥ | ¬A

where X is a variable.

By convention:

• the binding priority is ¬, ∧, ∨, ⇒:

¬A ∨ B ∧ C ⇒ D is ((¬A) ∨ (B ∧ C)) ⇒ D

• the operations are bracketed on the right:

A1 ∧ A2 ∧ A3 ⇒ B ⇒ C is (A1 ∧ (A2 ∧ A3)) ⇒ (B ⇒ C)

14

Formulas

We consider formulas generated by the grammar

A,B ::= X | A ⇒ B | A ∧ B | ⊤ | A ∨ B | ⊥ | ¬A

where X is a variable.

By convention:

• the binding priority is ¬, ∧, ∨, ⇒:

¬A ∨ B ∧ C ⇒ D is ((¬A) ∨ (B ∧ C)) ⇒ D

• the operations are bracketed on the right:

A1 ∧ A2 ∧ A3 ⇒ B ⇒ C is (A1 ∧ (A2 ∧ A3)) ⇒ (B ⇒ C)

14

Sequents

A context Γ is a list of formulas
A1, . . . ,An

A sequent
Γ ⊢ A

consists of a context Γ together with a formula A.

An inference rule
Γ1 ⊢ A1 . . . Γn ⊢ An

Γ ⊢ A

specifies when we can deduce a sequent from others.

15

Sequents

A context Γ is a list of formulas
A1, . . . ,An

A sequent
Γ ⊢ A

consists of a context Γ together with a formula A.

An inference rule
Γ1 ⊢ A1 . . . Γn ⊢ An

Γ ⊢ A

specifies when we can deduce a sequent from others.

15

Sequents

A context Γ is a list of formulas
A1, . . . ,An

A sequent
Γ ⊢ A

consists of a context Γ together with a formula A.

An inference rule
Γ1 ⊢ A1 . . . Γn ⊢ An

Γ ⊢ A

specifies when we can deduce a sequent from others.

15

Intuitionistic natural deduction (NJ)

Γ,A, Γ′ ⊢ A
(ax)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B
(⇒E)

Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒I)

Γ ⊢ A ∧ B

Γ ⊢ A
(∧l

E)
Γ ⊢ A ∧ B

Γ ⊢ B
(∧r

E)
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
(∨E)

Γ ⊢ A

Γ ⊢ A ∨ B
(∨l

I)
Γ ⊢ B

Γ ⊢ A ∨ B
(∨r

I)

Γ ⊢ ⊥

Γ ⊢ A
(⊥E)

Γ ⊢ ⊤
(⊤I)

Γ ⊢ ¬A Γ ⊢ A

Γ ⊢ ⊥
(¬E)

Γ,A ⊢ ⊥

Γ ⊢ ¬A
(¬I)

16

Rules: remarks

Apart from the axiom, rules are either

• elimination rules: use a connective,
• introduction rules: show a connective.

The leaves are axiom (or ⊤ introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of ⊤.

The principal premise is the leftmost premise of an elimination rule.

Some rules have latin names:

• (⇒E): modus ponens
• (⊥E): ex falso quot libet or explosion principle

17

Rules: remarks

Apart from the axiom, rules are either

• elimination rules: use a connective,
• introduction rules: show a connective.

The leaves are axiom (or ⊤ introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of ⊤.

The principal premise is the leftmost premise of an elimination rule.

Some rules have latin names:

• (⇒E): modus ponens
• (⊥E): ex falso quot libet or explosion principle

17

Rules: remarks

Apart from the axiom, rules are either

• elimination rules: use a connective,
• introduction rules: show a connective.

The leaves are axiom (or ⊤ introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of ⊤.

The principal premise is the leftmost premise of an elimination rule.

Some rules have latin names:

• (⇒E): modus ponens
• (⊥E): ex falso quot libet or explosion principle

17

Rules: remarks

Apart from the axiom, rules are either

• elimination rules: use a connective,
• introduction rules: show a connective.

The leaves are axiom (or ⊤ introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of ⊤.

The principal premise is the leftmost premise of an elimination rule.

Some rules have latin names:

• (⇒E): modus ponens
• (⊥E): ex falso quot libet or explosion principle

17

Rules: remarks

Apart from the axiom, rules are either

• elimination rules: use a connective,
• introduction rules: show a connective.

The leaves are axiom (or ⊤ introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of ⊤.

The principal premise is the leftmost premise of an elimination rule.

Some rules have latin names:

• (⇒E): modus ponens
• (⊥E): ex falso quot libet or explosion principle

17

Rules: remarks

Apart from the axiom, rules are either

• elimination rules: use a connective,
• introduction rules: show a connective.

The leaves are axiom (or ⊤ introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of ⊤.

The principal premise is the leftmost premise of an elimination rule.

Some rules have latin names:

• (⇒E): modus ponens
• (⊥E): ex falso quot libet or explosion principle 17

Proofs

A proof is a tree formed with the derivation rules of NJ.

A sequent Γ ⊢ A is provable when it is the conclusion of some proof.

A formula A is provable when the sequent ⊢ A is.

18

Proofs

A proof is a tree formed with the derivation rules of NJ.

A sequent Γ ⊢ A is provable when it is the conclusion of some proof.

A formula A is provable when the sequent ⊢ A is.

18

Proofs

A proof is a tree formed with the derivation rules of NJ.

A sequent Γ ⊢ A is provable when it is the conclusion of some proof.

A formula A is provable when the sequent ⊢ A is.

18

A proof of A ⇒ A

⊢ A ⇒ A
(⇒I)

19

A proof of A ⇒ A

A ⊢ A
(ax)

⊢ A ⇒ A
(⇒I)

19

A proof of A ⇒ A

A ⊢ A
(ax)

⊢ A ⇒ A
(⇒I)

19

A proof of A ∧ B ⇒ A ∨ B

⊢ A ∧ B ⇒ A ∨ B
(⇒I)

20

A proof of A ∧ B ⇒ A ∨ B

A ∧ B ⊢ A ∨ B
(∨l

I)

⊢ A ∧ B ⇒ A ∨ B
(⇒I)

20

A proof of A ∧ B ⇒ A ∨ B

A ∧ B ⊢ A
(∧l

E)

A ∧ B ⊢ A ∨ B
(∨l

I)

⊢ A ∧ B ⇒ A ∨ B
(⇒I)

20

A proof of A ∧ B ⇒ A ∨ B

A ∧ B ⊢ A ∧ B
(ax)

A ∧ B ⊢ A
(∧l

E)

A ∧ B ⊢ A ∨ B
(∨l

I)

⊢ A ∧ B ⇒ A ∨ B
(⇒I)

20

A proof of A ∧ B ⇒ A ∨ B

A ∧ B ⊢ A ∧ B
(ax)

A ∧ B ⊢ A
(∧l

E)

A ∧ B ⊢ A ∨ B
(∨l

I)

⊢ A ∧ B ⇒ A ∨ B
(⇒I)

20

A proof of (A ∨ B) ⇒ (B ∨ A)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ∨ B) ⇒ (B ∨ A)

A ∨ B ⊢ B ∨ A
(∨E)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ∨ B) ⇒ (B ∨ A)

A ∨ B ⊢ A ∨ B
(ax)

A ∨ B,A ⊢ B ∨ A
(∨r

I)
A ∨ B,B ⊢ B ∨ A

(∨l
I)

A ∨ B ⊢ B ∨ A
(∨E)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ∨ B) ⇒ (B ∨ A)

A ∨ B ⊢ A ∨ B
(ax)

A ∨ B,A ⊢ B ∨ A
(∨r

I)
A ∨ B,B ⊢ B ∨ A

(∨l
I)

A ∨ B ⊢ B ∨ A
(∨E)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ∨ B) ⇒ (B ∨ A)

A ∨ B ⊢ A ∨ B
(ax)

A ∨ B,A ⊢ A
(ax)

A ∨ B,A ⊢ B ∨ A
(∨r

I)
A ∨ B,B ⊢ B ∨ A

(∨l
I)

A ∨ B ⊢ B ∨ A
(∨E)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ∨ B) ⇒ (B ∨ A)

A ∨ B ⊢ A ∨ B
(ax)

A ∨ B,A ⊢ A
(ax)

A ∨ B,A ⊢ B ∨ A
(∨r

I)
A ∨ B,B ⊢ B ∨ A

(∨l
I)

A ∨ B ⊢ B ∨ A
(∨E)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ∨ B) ⇒ (B ∨ A)

A ∨ B ⊢ A ∨ B
(ax)

A ∨ B,A ⊢ A
(ax)

A ∨ B,A ⊢ B ∨ A
(∨r

I)
A ∨ B,B ⊢ B

(ax)

A ∨ B,B ⊢ B ∨ A
(∨l

I)

A ∨ B ⊢ B ∨ A
(∨E)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ∨ B) ⇒ (B ∨ A)

A ∨ B ⊢ A ∨ B
(ax)

A ∨ B,A ⊢ A
(ax)

A ∨ B,A ⊢ B ∨ A
(∨r

I)
A ∨ B,B ⊢ B

(ax)

A ∨ B,B ⊢ B ∨ A
(∨l

I)

A ∨ B ⊢ B ∨ A
(∨E)

⊢ A ∨ B ⇒ B ∨ A
(⇒I)

21

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B,¬B ⊢ ¬A
(¬I)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B,¬B,A ⊢ ⊥
(¬E)

A ⇒ B,¬B ⊢ ¬A
(¬I)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B,¬B,A ⊢ ¬B
(ax)

A ⇒ B,¬B,A ⊢ B
(⇒E)

A ⇒ B,¬B,A ⊢ ⊥
(¬E)

A ⇒ B,¬B ⊢ ¬A
(¬I)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B,¬B,A ⊢ ¬B
(ax)

A ⇒ B,¬B,A ⊢ B
(⇒E)

A ⇒ B,¬B,A ⊢ ⊥
(¬E)

A ⇒ B,¬B ⊢ ¬A
(¬I)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B,¬B,A ⊢ ¬B
(ax)

A ⇒ B,¬B,A ⊢ A ⇒ B
(ax)

A ⇒ B,¬B,A ⊢ A
(ax)

A ⇒ B,¬B,A ⊢ B
(⇒E)

A ⇒ B,¬B,A ⊢ ⊥
(¬E)

A ⇒ B,¬B ⊢ ¬A
(¬I)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B,¬B,A ⊢ ¬B
(ax)

A ⇒ B,¬B,A ⊢ A ⇒ B
(ax)

A ⇒ B,¬B,A ⊢ A
(ax)

A ⇒ B,¬B,A ⊢ B
(⇒E)

A ⇒ B,¬B,A ⊢ ⊥
(¬E)

A ⇒ B,¬B ⊢ ¬A
(¬I)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

A proof of (A ⇒ B) ⇒ (¬B ⇒ ¬A)

A ⇒ B,¬B,A ⊢ ¬B
(ax)

A ⇒ B,¬B,A ⊢ A ⇒ B
(ax)

A ⇒ B,¬B,A ⊢ A
(ax)

A ⇒ B,¬B,A ⊢ B
(⇒E)

A ⇒ B,¬B,A ⊢ ⊥
(¬E)

A ⇒ B,¬B ⊢ ¬A
(¬I)

A ⇒ B ⊢ ¬B ⇒ ¬A
(⇒I)

⊢ (A ⇒ B) ⇒ ¬B ⇒ ¬A
(⇒I)

22

Definable connectives

We could have added some other connectives such as ⇔, which can be implemented:

A ⇔ B =

(A ⇒ B) ∧ (B ⇒ A)

Even some present connectives can be implemented from others:

¬A = A ⇒ ⊥

Proof.
Can be deduced (not trivial) from the fact that ¬A ⇔ (A ⇒ ⊥) is provable.

23

Definable connectives

We could have added some other connectives such as ⇔, which can be implemented:

A ⇔ B = (A ⇒ B) ∧ (B ⇒ A)

Even some present connectives can be implemented from others:

¬A = A ⇒ ⊥

Proof.
Can be deduced (not trivial) from the fact that ¬A ⇔ (A ⇒ ⊥) is provable.

23

Definable connectives

We could have added some other connectives such as ⇔, which can be implemented:

A ⇔ B = (A ⇒ B) ∧ (B ⇒ A)

Even some present connectives can be implemented from others:

¬A =

A ⇒ ⊥

Proof.
Can be deduced (not trivial) from the fact that ¬A ⇔ (A ⇒ ⊥) is provable.

23

Definable connectives

We could have added some other connectives such as ⇔, which can be implemented:

A ⇔ B = (A ⇒ B) ∧ (B ⇒ A)

Even some present connectives can be implemented from others:

¬A = A ⇒ ⊥

Proof.
Can be deduced (not trivial) from the fact that ¬A ⇔ (A ⇒ ⊥) is provable.

23

Definable connectives

We could have added some other connectives such as ⇔, which can be implemented:

A ⇔ B = (A ⇒ B) ∧ (B ⇒ A)

Even some present connectives can be implemented from others:

¬A = A ⇒ ⊥

Proof.
Can be deduced (not trivial) from the fact that ¬A ⇔ (A ⇒ ⊥) is provable.

23

Part III

Properties of NJ

24

Induction on proofs

Since proofs have become syntactic objects,
we can reason (= make proofs) on them!

25

Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under
successor.

0 : N

n : N

S(n) : N

The recurrence principle states that, given a predicate P(n) on natural numbers,

26

Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under
successor.

0 : N

n : N

S(n) : N

The recurrence principle states that, given a predicate P(n) on natural numbers,

26

Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under
successor.

0 : N

n : N

S(n) : N

The recurrence principle states that, given a predicate P(n) on natural numbers,

26

Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under
successor.

0 : N

n : N

S(n) : N

The recurrence principle states that, given a predicate P(n) on natural numbers,
if

• P(0) and

• for n ∈ N, P(n) implies P(S(n)),

then P(n) holds for every n ∈ N.

26

Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under
successor.

0 : N

n : N

S(n) : N

The recurrence principle states that, given a predicate P(n) on natural numbers,
if, for every rule,

• if P holds for the premises then P holds for the conclusion

then P(n) holds for every n ∈ N.

26

Induction on proofs

The set of proofs is the smallest set closed under the deduction rules:

Theorem
Suppose given a predicate P(π) on proofs π. Suppose that, for every rule,

π =

π1

Γ1 ⊢ A1
. . .

πn

Γn ⊢ An

Γ ⊢ A

if P(πi) holds for every i then P(π) also holds. Then P(π) holds for every proof π.

27

Admissible rules

A rule
Γ1 ⊢ A1 . . . Γn ⊢ An

Γ ⊢ A

is admissible when, whenever all the premises are provable, the conclusion is also
provable.

This means that, from a proof for each Γi ⊢ Ai , we can construct a proof of Γ ⊢ A

(but not necessarily that we can implement the above deduction with some rules).

28

Weakening

We have this idea that if we can prove something with some hypothesis, then we can
also prove it with more hypothesis.

For instance:

C ,

A ∧ B ⊢ A ∧ B
(ax)

C ,

A ∧ B ⊢ A
(∧l

E)

C ,

A ∧ B ⊢ A ∨ B
(∨l

I)

This can be formalized by showing that the following weakening rule is admissible.

29

Weakening

We have this idea that if we can prove something with some hypothesis, then we can
also prove it with more hypothesis.

For instance:

C ,

A ∧ B ⊢ A ∧ B
(ax)

C ,

A ∧ B ⊢ A
(∧l

E)

C ,

A ∧ B ⊢ A ∨ B
(∨l

I)

This can be formalized by showing that the following weakening rule is admissible.

29

Weakening

We have this idea that if we can prove something with some hypothesis, then we can
also prove it with more hypothesis.

For instance:

C ,A ∧ B ⊢ A ∧ B
(ax)

C ,A ∧ B ⊢ A
(∧l

E)

C ,A ∧ B ⊢ A ∨ B
(∨l

I)

This can be formalized by showing that the following weakening rule is admissible.

29

Weakening

We have this idea that if we can prove something with some hypothesis, then we can
also prove it with more hypothesis.

For instance:

C ,A ∧ B ⊢ A ∧ B
(ax)

C ,A ∧ B ⊢ A
(∧l

E)

C ,A ∧ B ⊢ A ∨ B
(∨l

I)

This can be formalized by showing that the following weakening rule is admissible.

29

Weakening

We can always add more hypothesis in a context:

Proposition

The weakening rule is admissible:
Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk) .

Proof.
By induction on the proof of Γ, Γ′ ⊢ B .

30

Weakening

We can always add more hypothesis in a context:

Proposition

The weakening rule is admissible:
Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk) .

Proof.
By induction on the proof of Γ, Γ′ ⊢ B .

30

Weakening

We can always add more hypothesis in a context:

Proposition

The weakening rule is admissible:
Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk) .

Proof.
By induction on the proof of Γ, Γ′ ⊢ B .

• If the proof is of the form

Γ, Γ′ ⊢ B
(ax)

with B occurring in Γ or Γ′ then we conclude with

Γ,A, Γ′ ⊢ B
(ax)

30

Weakening

We can always add more hypothesis in a context:

Proposition

The weakening rule is admissible:
Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk) .

Proof.
By induction on the proof of Γ, Γ′ ⊢ B .

• If the proof is of the form

π1

Γ, Γ′ ⊢ B ⇒ C

π2

Γ, Γ′ ⊢ B

Γ, Γ′ ⊢ C
(⇒E)

then we conclude with

π′
1

Γ,A, Γ′ ⊢ B ⇒ C

π′
2

Γ,A, Γ′ ⊢ B

Γ,A, Γ′ ⊢ C
(⇒E) .

30

Weakening

We can always add more hypothesis in a context:

Proposition

The weakening rule is admissible:
Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk) .

Proof.
By induction on the proof of Γ, Γ′ ⊢ B .

• If the proof is of the form π

Γ, Γ′,B ⊢ C

Γ, Γ′ ⊢ B ⇒ C
(⇒I)

then we conclude with π′

Γ,A, Γ′,B ⊢ C

Γ,A, Γ′ ⊢ B ⇒ C
(⇒I) 30

Weakening

We can always add more hypothesis in a context:

Proposition

The weakening rule is admissible:
Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk) .

Proof.
By induction on the proof of Γ, Γ′ ⊢ B .

• Other cases are similar.

30

Weakening

Note that the axiom rule

Γ,A, Γ′ ⊢ A
(ax)

is the only one really using the context, the other rules do not change the context, e.g.

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

excepting
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒I)

which only adds one formula to the context.

This explains why most inductive cases go through without any difficulty,
axiom being the only “subtle” one.

31

Contraction

In a context, the multiplicity of a formula does not really matter:

Proposition
The contraction rule is admissible:

Γ,A,A, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(contr)

Proof.
By induction on the proof of Γ,A,A, Γ′ ⊢ C :

Γ,A,A, Γ′ ⊢ B
(ax) becomes

Γ,A, Γ′ ⊢ B
(ax)

(including when B = A), other cases are simple, e.g.
...

Γ,A, Γ′ ⊢ B

...

Γ,A, Γ′ ⊢ C

Γ,A, Γ′ ⊢ B ∧ C
(∧I) becomes

...

Γ,A,A, Γ′ ⊢ B

...

Γ,A,A, Γ′ ⊢ C

Γ,A,A, Γ′ ⊢ B ∧ C
(∧I)

32

Contraction

In a context, the multiplicity of a formula does not really matter:

Proposition
The contraction rule is admissible:

Γ,A,A, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(contr)

Proof.
By induction on the proof of Γ,A,A, Γ′ ⊢ C :

Γ,A,A, Γ′ ⊢ B
(ax) becomes

Γ,A, Γ′ ⊢ B
(ax)

(including when B = A), other cases are simple, e.g.
...

Γ,A, Γ′ ⊢ B

...

Γ,A, Γ′ ⊢ C

Γ,A, Γ′ ⊢ B ∧ C
(∧I) becomes

...

Γ,A,A, Γ′ ⊢ B

...

Γ,A,A, Γ′ ⊢ C

Γ,A,A, Γ′ ⊢ B ∧ C
(∧I)

32

Contraction

In a context, the multiplicity of a formula does not really matter:

Proposition
The contraction rule is admissible:

Γ,A,A, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(contr)

Proof.
By induction on the proof of Γ,A,A, Γ′ ⊢ C :

Γ,A,A, Γ′ ⊢ B
(ax) becomes

Γ,A, Γ′ ⊢ B
(ax)

(including when B = A),

other cases are simple, e.g.
...

Γ,A, Γ′ ⊢ B

...

Γ,A, Γ′ ⊢ C

Γ,A, Γ′ ⊢ B ∧ C
(∧I) becomes

...

Γ,A,A, Γ′ ⊢ B

...

Γ,A,A, Γ′ ⊢ C

Γ,A,A, Γ′ ⊢ B ∧ C
(∧I)

32

Contraction

In a context, the multiplicity of a formula does not really matter:

Proposition
The contraction rule is admissible:

Γ,A,A, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(contr)

Proof.
By induction on the proof of Γ,A,A, Γ′ ⊢ C :

Γ,A,A, Γ′ ⊢ B
(ax) becomes

Γ,A, Γ′ ⊢ B
(ax)

(including when B = A), other cases are simple, e.g.
...

Γ,A, Γ′ ⊢ B

...

Γ,A, Γ′ ⊢ C

Γ,A, Γ′ ⊢ B ∧ C
(∧I) becomes

...

Γ,A,A, Γ′ ⊢ B

...

Γ,A,A, Γ′ ⊢ C

Γ,A,A, Γ′ ⊢ B ∧ C
(∧I)32

Exchange

In a context, the order of formulas does not really matter:

Proposition
The exchange rule

Γ,A,B, Γ′ ⊢ C

Γ,B,A, Γ′ ⊢ C
(xch)

is admissible.

Proof.
By induction on the proof of Γ,A,B, Γ′ ⊢ C .

Γ,A,B, Γ′ ⊢ C
(ax)

becomes

Γ,B,A, Γ′ ⊢ C
(ax)

other cases are immediate by induction.

33

Exchange

In a context, the order of formulas does not really matter:

Proposition
The exchange rule

Γ,A,B, Γ′ ⊢ C

Γ,B,A, Γ′ ⊢ C
(xch)

is admissible.

Proof.
By induction on the proof of Γ,A,B, Γ′ ⊢ C .

Γ,A,B, Γ′ ⊢ C
(ax)

becomes Γ,B,A, Γ′ ⊢ C
(ax)

other cases are immediate by induction.

33

Exchange

In a context, the order of formulas does not really matter:

Proposition
The exchange rule

Γ,A,B, Γ′ ⊢ C

Γ,B,A, Γ′ ⊢ C
(xch)

is admissible.

Proof.
By induction on the proof of Γ,A,B, Γ′ ⊢ C .

Γ,A,B, Γ′ ⊢ C
(ax)

becomes Γ,B,A, Γ′ ⊢ C
(ax)

other cases are immediate by induction.
33

Truth strengthening

In a context, the formula ⊤ does not bring any information:

Proposition
The truth strengthening rule

Γ,⊤, Γ′ ⊢ A

Γ, Γ′ ⊢ A

is admissible.

Proof.
By induction on the proof of Γ,⊤, Γ′ ⊢ A:

Γ,⊤, Γ′ ⊢ ⊤
(ax) becomes

Γ, Γ ⊢ ⊤
(⊤I)

other cases are immediate by induction.

34

Truth strengthening

In a context, the formula ⊤ does not bring any information:

Proposition
The truth strengthening rule

Γ,⊤, Γ′ ⊢ A

Γ, Γ′ ⊢ A

is admissible.

Proof.
By induction on the proof of Γ,⊤, Γ′ ⊢ A:

Γ,⊤, Γ′ ⊢ ⊤
(ax) becomes

Γ, Γ ⊢ ⊤
(⊤I)

other cases are immediate by induction.

34

Truth strengthening

In a context, the formula ⊤ does not bring any information:

Proposition
The truth strengthening rule

Γ,⊤, Γ′ ⊢ A

Γ, Γ′ ⊢ A

is admissible.

Proof.
By induction on the proof of Γ,⊤, Γ′ ⊢ A:

Γ,⊤, Γ′ ⊢ ⊤
(ax) becomes

Γ, Γ ⊢ ⊤
(⊤I)

other cases are immediate by induction.
34

Contexts as sets

The structural rules

Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk)

Γ,A,A, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(contr)

Γ,A,B, Γ′ ⊢ C

Γ,B,A, Γ′ ⊢ C
(xch)

Γ,⊤, Γ′ ⊢ A

Γ, Γ′ ⊢ A

say that that contexts are commutative and idempotent.

Can we implement them as sets?

35

Contexts as sets

The structural rules

Γ, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(wk)

Γ,A,A, Γ′ ⊢ B

Γ,A, Γ′ ⊢ B
(contr)

Γ,A,B, Γ′ ⊢ C

Γ,B,A, Γ′ ⊢ C
(xch)

Γ,⊤, Γ′ ⊢ A

Γ, Γ′ ⊢ A

say that that contexts are commutative and idempotent.

Can we implement them as sets?

35

Contexts as sets

Quizz: how many “pure” OCaml programs of type

’a -> ’a -> ’a

can you come up with?

Essentially two:

let f x y = x
let f x y = y

I say “essentially” because there are many other which are “equivalent”:

let f' x y = (fun z -> z) x
let f'' x y = (fun (z,t) -> z) (x, 5)
...

36

Contexts as sets

Quizz: how many “pure” OCaml programs of type

’a -> ’a -> ’a

can you come up with?

Essentially two:

let f x y = x
let f x y = y

I say “essentially” because there are many other which are “equivalent”:

let f' x y = (fun z -> z) x
let f'' x y = (fun (z,t) -> z) (x, 5)
...

36

Contexts as sets

Quizz: how many “pure” OCaml programs of type

’a -> ’a -> ’a

can you come up with?

Essentially two:

let f x y = x
let f x y = y

I say “essentially” because there are many other which are “equivalent”:

let f' x y = (fun z -> z) x
let f'' x y = (fun (z,t) -> z) (x, 5)
...

36

Contexts as sets

Having contexts as sets is not a good idea: the two proofs

A,A ⊢ A
(ax)

A ⊢ A ⇒ A
(⇒I)

⊢ A ⇒ A ⇒ A
(⇒I)

A,A ⊢ A
(ax)

A,A ⊢ A
(xch)

A ⊢ A ⇒ A
(⇒I)

⊢ A ⇒ A ⇒ A
(⇒I)

get identified into

A ⊢ A
(ax)

A ⊢ A ⇒ A
(⇒I)

⊢ A ⇒ A ⇒ A
(⇒I)

whereas we expect to have two projections!

37

Substitution

A substitution σ is a function which assigns a formula to every variable.

We write A[σ] for the formula A with variables replaced according to σ.

Proposition
For every substitution σ, if the sequent

A1, . . . ,An ⊢ A

is provable, then the sequent

A1[σ], . . . ,An[σ] ⊢ A[σ]

is also provable.

Proof.
By induction on the proof of A1, . . . ,An ⊢ A.

For instance:
...

⊢ X ⇒ X
⇝

...

⊢ (⊥ ⇒ A ∧ B) ⇒ (⊥ ⇒ A ∧ B)

38

Substitution

A substitution σ is a function which assigns a formula to every variable.

We write A[σ] for the formula A with variables replaced according to σ.

Proposition
For every substitution σ, if the sequent

A1, . . . ,An ⊢ A

is provable, then the sequent

A1[σ], . . . ,An[σ] ⊢ A[σ]

is also provable.

Proof.
By induction on the proof of A1, . . . ,An ⊢ A.

For instance:
...

⊢ X ⇒ X
⇝

...

⊢ (⊥ ⇒ A ∧ B) ⇒ (⊥ ⇒ A ∧ B)

38

Substitution

Proposition
For every substitution σ, if the sequent

A1, . . . ,An ⊢ A

is provable, then the sequent

A1[σ], . . . ,An[σ] ⊢ A[σ]

is also provable.

For instance:
...

⊢ X ⇒ X
⇝

...

⊢ (⊥ ⇒ A ∧ B) ⇒ (⊥ ⇒ A ∧ B) 38

Proof substitution

Another more subtle operation is proof substitution:

Proposition
Given provable sequents

π

Γ,A, Γ′ ⊢ B
and

π′

Γ, Γ′ ⊢ A

we can construct a proof
π[π′/A]

Γ, Γ′ ⊢ B

39

Proof substitution

For instance, given the proofs

π =

Γ,A,B ⊢ A
(ax)

Γ,A,B ⊢ A
(ax)

Γ,A,B ⊢ A ∧ A
(∧I)

Γ,A ⊢ B ⇒ A ∧ A
(⇒I) and π′ =

...

Γ ⊢ A

we can construct the following proof π[π′/A]:

π′

Γ ⊢ A

Γ,B ⊢ A
(wk)

π′

Γ ⊢ A

Γ,B ⊢ A
(wk)

Γ,B ⊢ A ∧ A
(∧I)

Γ ⊢ B ⇒ A ∧ A
(⇒I)

40

Proof substitution

For instance, given the proofs

π =

Γ,A,B ⊢ A
(ax)

Γ,A,B ⊢ A
(ax)

Γ,A,B ⊢ A ∧ A
(∧I)

Γ,A ⊢ B ⇒ A ∧ A
(⇒I) and π′ =

...

Γ ⊢ A

we can construct the following proof π[π′/A]:

π′

Γ ⊢ A

Γ,B ⊢ A
(wk)

π′

Γ ⊢ A

Γ,B ⊢ A
(wk)

Γ,B ⊢ A ∧ A
(∧I)

Γ ⊢ B ⇒ A ∧ A
(⇒I)

40

Proof substitution

Proposition

Given provable sequents
π

Γ,A, Γ′ ⊢ B
and

π′

Γ, Γ′ ⊢ A
,

we can construct a proof
π[π′/A]

Γ, Γ′ ⊢ B
.

Proof.
By induction on π:

• we replace axioms
Γ,A, Γ′, Γ′′ ⊢ A

(ax) by
w(π′)

Γ, Γ′, Γ′′ ⊢ A
,

•

π1

Γ,A, Γ′ ⊢ B

π2

Γ,A, Γ′ ⊢ C

Γ,A, Γ′ ⊢ B ∧ C
becomes

π1[π
′/A]

Γ, Γ′ ⊢ B

π2[π
′/A]

Γ, Γ′ ⊢ C

Γ, Γ′ ⊢ B ∧ C
, etc.

41

Proof substitution

Proposition

Given provable sequents
π

Γ,A, Γ′ ⊢ B
and

π′

Γ, Γ′ ⊢ A
,

we can construct a proof
π[π′/A]

Γ, Γ′ ⊢ B
.

Proof.
By induction on π:

• we replace axioms
Γ,A, Γ′, Γ′′ ⊢ A

(ax) by
w(π′)

Γ, Γ′, Γ′′ ⊢ A
,

•

π1

Γ,A, Γ′ ⊢ B

π2

Γ,A, Γ′ ⊢ C

Γ,A, Γ′ ⊢ B ∧ C
becomes

π1[π
′/A]

Γ, Γ′ ⊢ B

π2[π
′/A]

Γ, Γ′ ⊢ C

Γ, Γ′ ⊢ B ∧ C
, etc.

41

Part IV

Cut elimination

42

Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
∃x .x + x = 4.

The proof of the lemma must certainly contain a way to compute the value for x .

This process of extraction is called cut elimination.

43

Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
∃x .x + x = 4.

Proof.
• Lemma: every even number y admits a half:

∀y . even(y) ⇒ ∃x .x + x = y

• 4 is even.

The proof of the lemma must certainly contain a way to compute the value for x .

This process of extraction is called cut elimination.

43

Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
∃x .x + x = 4.

Proof.
Take x = 2.

The proof of the lemma must certainly contain a way to compute the value for x .

This process of extraction is called cut elimination.

43

Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
∃x .x + x = 4.

Proof.
• Lemma: every even number y admits a half:

∀y . even(y) ⇒ ∃x .x + x = y

• 4 is even.

The proof of the lemma must certainly contain a way to compute the value for x .

This process of extraction is called cut elimination.
43

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can then show that every even number y admits a half x by recurrence.

• If y = 0 then we take x = 0 since 0 + 0 = 0.

• Otherwise y = y ′ + 2 for some even number y ′.
By recurrence, y ′ admits a half x ′ and we take x = x ′ + 1.
Namely,

x + x = (x ′ + 1) + (x ′ + 1) = (x ′ + x ′) + 2 = y ′ + 2 = y

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can then show that every even number y admits a half x by recurrence.

• If y = 0 then we take x = 0 since 0 + 0 = 0.

• Otherwise y = y ′ + 2 for some even number y ′.
By recurrence, y ′ admits a half x ′ and we take x = x ′ + 1.
Namely,

x + x = (x ′ + 1) + (x ′ + 1) = (x ′ + x ′) + 2 = y ′ + 2 = y

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can then show that every even number y admits a half x by recurrence.

• If y = 0 then we take x = 0 since 0 + 0 = 0.

• Otherwise y = y ′ + 2 for some even number y ′.
By recurrence, y ′ admits a half x ′ and we take x = x ′ + 1.
Namely,

x + x = (x ′ + 1) + (x ′ + 1) = (x ′ + x ′) + 2 = y ′ + 2 = y
44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can also show that 4 is even:

• 0 is even,

• thus 2 is even,

• thus 4 is even.

And therefore 4 admits a half.

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can also show that 4 is even:

• 0 is even,

• thus 2 is even,

• thus 4 is even.

And therefore 4 admits a half.

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can also show that 4 is even:

• 0 is even,

• thus 2 is even,

• thus 4 is even.

And therefore 4 admits a half.

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can also show that 4 is even:

• 0 is even,

• thus 2 is even,

• thus 4 is even.

And therefore 4 admits a half.

44

Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even ⊆ N such that

• 0 ∈ Even,
• if n ∈ Even then n + 2 ∈ Even.

We can also show that 4 is even:

• 0 is even,

• thus 2 is even,

• thus 4 is even.

And therefore 4 admits a half.

44

Cut elimination

From our proof, we can compute the half of 4:

• 4 is even, because 2 is even, because 0 is even,

• half(4) = half(2) + 1 = (half(0) + 1) + 1 = 0 + 1 + 1 = 2

Cut elimination “reverse engineers” the proof in order to extract this witness.

45

Cuts

A cut is an elimination rule whose principal premise is proved by an introduction rule.

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E)

π

Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒I)

π′

Γ ⊢ A

Γ ⊢ B
(⇒E)

A cut-free proof is a proof without cuts.

46

Cuts

An example of a proof with a cut is

A ⊢ A
(∨E)

We can remove the cut and reduce it to

A ⊢ A
(ax)

47

Cuts

An example of a proof with a cut is

A ⊢ A ∨ A
(∨l

I)
A,A ⊢ A

(ax)
A,A ⊢ A

(ax)

A ⊢ A
(∨E)

We can remove the cut and reduce it to

A ⊢ A
(ax)

47

Cuts

An example of a proof with a cut is

A ⊢ A
(ax)

A ⊢ A ∨ A
(∨l

I)
A,A ⊢ A

(ax)
A,A ⊢ A

(ax)

A ⊢ A
(∨E)

We can remove the cut and reduce it to

A ⊢ A
(ax)

47

Cuts

An example of a proof with a cut is

A ⊢ A
(ax)

A ⊢ A ∨ A
(∨l

I)
A,A ⊢ A

(ax)
A,A ⊢ A

(ax)

A ⊢ A
(∨E)

We can remove the cut and reduce it to

A ⊢ A
(ax)

47

Cuts

An example of a proof with a cut is

A ⊢ A
(ax)

A ⊢ A ∨ A
(∨l

I)
A,A ⊢ A

(ax)
A,A ⊢ A

(ax)

A ⊢ A
(∨E)

We can remove the cut and reduce it to

A ⊢ A
(ax)

47

Cuts

An example of a proof with a cut is

A ⊢ A
(ax)

A ⊢ A ∨ A
(∨l

I)
A,A ⊢ A

(ax)
A,A ⊢ A

(ax)

A ⊢ A
(∨E)

We can remove the cut and reduce it to

A ⊢ A
(ax)

47

Cuts

An example of a proof with a cut is

A ⊢ A
(ax)

A ⊢ A ∨ A
(∨l

I)
A,A ⊢ A

(ax)
A,A ⊢ A

(ax)

A ⊢ A
(∨E)

We can remove the cut and reduce it to

A ⊢ A
(ax)

47

Cut elimination

Theorem
If a sequent is provable then it has a cut-free proof.

Proof.
The idea is to iteratively transform the proof of the original sequent in order to remove
all cuts.

48

Cut elimination: conjunctions

We can eliminate cuts on ∧:

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E) ⇝

π

Γ ⊢ A

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ B
(∧r

E) ⇝

π′

Γ ⊢ B

49

Cut elimination: conjunctions

We can eliminate cuts on ∧:

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E) ⇝
π

Γ ⊢ A

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ B
(∧r

E) ⇝
π′

Γ ⊢ B

49

Cut elimination: implications

We can eliminate cuts on ⇒:

π

Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒I)

π′

Γ ⊢ A

Γ ⊢ B
(⇒E) ⇝

π[π′/A]

Γ ⊢ B

where π[π′/A] is π where we have replaced all axioms on A

Γ,A, Γ′ ⊢ A
(ax)

by

w(π′)

Γ,A, Γ′ ⊢ A

where w(π′) is an appropriate weakening of π.

50

Cut elimination: implications

We can eliminate cuts on ⇒:

π

Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒I)

π′

Γ ⊢ A

Γ ⊢ B
(⇒E) ⇝

π[π′/A]

Γ ⊢ B

where π[π′/A] is π where we have replaced all axioms on A

Γ,A, Γ′ ⊢ A
(ax)

by

w(π′)

Γ,A, Γ′ ⊢ A

where w(π′) is an appropriate weakening of π.

50

Cut elimination: disjunctions

We can eliminate cuts on ∨:

π

Γ ⊢ A

Γ ⊢ A ∨ B
(∨l

I)
π′

Γ,A ⊢ C

π′′

Γ,B ⊢ C

Γ ⊢ C
(∨E) ⇝

π′[π/A]

Γ ⊢ C

π

Γ ⊢ B

Γ ⊢ A ∨ B
(∨r

I)
π′

Γ,A ⊢ C

π′′

Γ,B ⊢ C

Γ ⊢ C
(∨E) ⇝

π′′[π/B]

Γ ⊢ C

51

Cut elimination: disjunctions

We can eliminate cuts on ∨:

π

Γ ⊢ A

Γ ⊢ A ∨ B
(∨l

I)
π′

Γ,A ⊢ C

π′′

Γ,B ⊢ C

Γ ⊢ C
(∨E) ⇝

π′[π/A]

Γ ⊢ C

π

Γ ⊢ B

Γ ⊢ A ∨ B
(∨r

I)
π′

Γ,A ⊢ C

π′′

Γ,B ⊢ C

Γ ⊢ C
(∨E) ⇝

π′′[π/B]

Γ ⊢ C

51

Cut elimination: termination

For instance,

Γ,A ⊢ A
(ax)

Γ,A ⊢ A
(ax)

Γ,A ⊢ A ∧ A
(∧I)

Γ ⊢ A ⇒ A ∧ A
(⇒I)

π

Γ ⊢ A

Γ ⊢ A ∧ A
(⇒E)

is transformed into

π

Γ ⊢ A

π

Γ ⊢ A

Γ ⊢ A ∧ A
(∧I)

Note that if π contained n cuts then we now have 2n cuts...

52

Cut elimination: termination

For instance,

Γ,A ⊢ A
(ax)

Γ,A ⊢ A
(ax)

Γ,A ⊢ A ∧ A
(∧I)

Γ ⊢ A ⇒ A ∧ A
(⇒I)

π

Γ ⊢ A

Γ ⊢ A ∧ A
(⇒E)

is transformed into
π

Γ ⊢ A

π

Γ ⊢ A

Γ ⊢ A ∧ A
(∧I)

Note that if π contained n cuts then we now have 2n cuts...

52

Cut elimination: termination

For instance,

Γ,A ⊢ A
(ax)

Γ,A ⊢ A
(ax)

Γ,A ⊢ A ∧ A
(∧I)

Γ ⊢ A ⇒ A ∧ A
(⇒I)

π

Γ ⊢ A

Γ ⊢ A ∧ A
(⇒E)

is transformed into
π

Γ ⊢ A

π

Γ ⊢ A

Γ ⊢ A ∧ A
(∧I)

Note that if π contained n cuts then we now have 2n cuts...
52

Cut elimination: termination

It is true that every order we chose to remove the cuts, we will end up on a cut-free
proof after a finite number of steps, but it is quite difficult to show.

However, here, we only need to show that a particular way of eliminating cuts will
terminates and this is not too hard (more on this if we have time).

53

Cut elimination: termination

It is true that every order we chose to remove the cuts, we will end up on a cut-free
proof after a finite number of steps, but it is quite difficult to show.

However, here, we only need to show that a particular way of eliminating cuts will
terminates and this is not too hard (more on this if we have time).

53

Cut elimination

This cut elimination procedure is due to Gentzen (1930s).

We will see that it corresponds to “executing” a proof.

Or, as Girard put it:

A logic without cut elimination is like a car without an engine.

Note that

• the cut-free proof is “simpler”,
• but it can be much bigger.

Think of a program computing the factorial of 1000.

54

Cut elimination

This cut elimination procedure is due to Gentzen (1930s).

We will see that it corresponds to “executing” a proof.

Or, as Girard put it:

A logic without cut elimination is like a car without an engine.

Note that

• the cut-free proof is “simpler”,
• but it can be much bigger.

Think of a program computing the factorial of 1000.

54

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

Proof.
We reason by induction on the proof. Consider the last rule of the proof of ⊢ A:

• it cannot be an axiom because the context is empty,

• if the last rule was an elimination rule, then by induction hypothesis the proof of
the principal premise should end on an introduction rule and we would have a cut,
e.g.

⊢ B ⇒ A
(⇒I)

⊢ B

⊢ A
(⇒E)

contradiction,

• therefore the last rule is an introduction rule.

55

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

Proof.
We reason by induction on the proof. Consider the last rule of the proof of ⊢ A:

• it cannot be an axiom because the context is empty,

• if the last rule was an elimination rule, then by induction hypothesis the proof of
the principal premise should end on an introduction rule and we would have a cut,
e.g.

⊢ B ⇒ A
(⇒I)

⊢ B

⊢ A
(⇒E)

contradiction,

• therefore the last rule is an introduction rule.

55

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

Proof.
We reason by induction on the proof. Consider the last rule of the proof of ⊢ A:

• it cannot be an axiom because the context is empty,

• if the last rule was an elimination rule, then by induction hypothesis the proof of
the principal premise should end on an introduction rule and we would have a cut,
e.g.

⊢ B ⇒ A
(⇒I)

⊢ B

⊢ A
(⇒E)

contradiction,

• therefore the last rule is an introduction rule.

55

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

Proof.
We reason by induction on the proof. Consider the last rule of the proof of ⊢ A:

• it cannot be an axiom because the context is empty,

• if the last rule was an elimination rule, then by induction hypothesis the proof of
the principal premise should end on an introduction rule and we would have a cut,
e.g. ...

⊢ B ⇒ A
(⇒I)

⊢ B

⊢ A
(⇒E)

contradiction,

• therefore the last rule is an introduction rule.

55

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

Proof.
We reason by induction on the proof. Consider the last rule of the proof of ⊢ A:

• it cannot be an axiom because the context is empty,

• if the last rule was an elimination rule, then by induction hypothesis the proof of
the principal premise should end on an introduction rule and we would have a cut,
e.g. ...

⊢ B ⇒ A
(⇒I)

⊢ B

⊢ A
(⇒E)

contradiction,

• therefore the last rule is an introduction rule. 55

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

By the cut elimination theorem, every provable formula A admits a proof ending by an
introduction rule.

55

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

Note that a cut-free proof of Γ ⊢ A does not necessarily end with an introduction rule
(with Γ non-empty):

what should be the introduction rule for

A ∨ B ⊢ A ∨ B

55

Cut elimination: an important consequence

Proposition
A cut-free proof of ⊢ A necessarily ends with an introduction rule.

Note that a cut-free proof of Γ ⊢ A does not necessarily end with an introduction rule
(with Γ non-empty): what should be the introduction rule for

A ∨ B ⊢ A ∨ B

55

Consistency

An easy way to implement a proof checker:

let is_valid_proof p = true

A logical system with easy proofs:

Γ ⊢ A
(trustme)

A logical system is consistent if there is at least one sequent which is not provable.

56

Consistency

An easy way to implement a proof checker:

let is_valid_proof p = true

A logical system with easy proofs:

Γ ⊢ A
(trustme)

A logical system is consistent if there is at least one sequent which is not provable.

56

Consistency

An easy way to implement a proof checker:

let is_valid_proof p = true

A logical system with easy proofs:

Γ ⊢ A
(trustme)

A logical system is consistent if there is at least one sequent which is not provable.

56

Consistency

A logical system is consistent if there is at least one sequent which is not provable.

Proposition
A logical system is consistent if and only if the formula ⊥ is not provable.

Proof.
If ⊥ is not provable then the system is consistent.

If the system is consistent there is a non-provable sequent Γ ⊢ A. If ⊥ was provable we
could deduce A: ...

⊢ ⊥
Γ ⊢ ⊥

(wk)

Γ ⊢ A
(⊥E)

Contradiction.

57

Consistency

A logical system is consistent if there is at least one sequent which is not provable.

Proposition
A logical system is consistent if and only if the formula ⊥ is not provable.

Proof.
If ⊥ is not provable then the system is consistent.

If the system is consistent there is a non-provable sequent Γ ⊢ A. If ⊥ was provable we
could deduce A: ...

⊢ ⊥
Γ ⊢ ⊥

(wk)

Γ ⊢ A
(⊥E)

Contradiction.

57

Consistency

A logical system is consistent if there is at least one sequent which is not provable.

Proposition
A logical system is consistent if and only if the formula ⊥ is not provable.

Proof.
If ⊥ is not provable then the system is consistent.

If the system is consistent there is a non-provable sequent Γ ⊢ A. If ⊥ was provable we
could deduce A: ...

⊢ ⊥
Γ ⊢ ⊥

(wk)

Γ ⊢ A
(⊥E)

Contradiction. 57

Consistency

Theorem
The logical system NJ is consistent.

Proof.
Suppose that ⊥ is provable.

By the cut elimination theorem, we would have a cut-free proof.
By previous theorem, it would end with an introduction rule.
But there is no introduction rule for ⊥.
Contradiction.

Remark
Another way to formulate consistency:
there is no formula A such that both A and ¬A are provable.

58

Consistency

Theorem
The logical system NJ is consistent.

Proof.
Suppose that ⊥ is provable.
By the cut elimination theorem, we would have a cut-free proof.

By previous theorem, it would end with an introduction rule.
But there is no introduction rule for ⊥.
Contradiction.

Remark
Another way to formulate consistency:
there is no formula A such that both A and ¬A are provable.

58

Consistency

Theorem
The logical system NJ is consistent.

Proof.
Suppose that ⊥ is provable.
By the cut elimination theorem, we would have a cut-free proof.
By previous theorem, it would end with an introduction rule.

But there is no introduction rule for ⊥.
Contradiction.

Remark
Another way to formulate consistency:
there is no formula A such that both A and ¬A are provable.

58

Consistency

Theorem
The logical system NJ is consistent.

Proof.
Suppose that ⊥ is provable.
By the cut elimination theorem, we would have a cut-free proof.
By previous theorem, it would end with an introduction rule.
But there is no introduction rule for ⊥.

Contradiction.

Remark
Another way to formulate consistency:
there is no formula A such that both A and ¬A are provable.

58

Consistency

Theorem
The logical system NJ is consistent.

Proof.
Suppose that ⊥ is provable.
By the cut elimination theorem, we would have a cut-free proof.
By previous theorem, it would end with an introduction rule.
But there is no introduction rule for ⊥.
Contradiction.

Remark
Another way to formulate consistency:
there is no formula A such that both A and ¬A are provable.

58

Consistency

Theorem
The logical system NJ is consistent.

Proof.
Suppose that ⊥ is provable.
By the cut elimination theorem, we would have a cut-free proof.
By previous theorem, it would end with an introduction rule.
But there is no introduction rule for ⊥.
Contradiction.

Remark
Another way to formulate consistency:
there is no formula A such that both A and ¬A are provable.

58

Consistency

At the beginning of the 20th century, Hilbert wanted to construct
a collection of axioms which one could use as foundations of mathematics.

Since we are at day one, there is no semantics yet (= pre-existing mathematical world),
everything is purely syntactic.

Consistency is thus one of the only possible correctness criterion for such an axiomatics.

But we cannot use “meta-mathematics” to prove consistency: we should therefore look
for a system proving its own consistency.

Gödel’s second incompleteness theorem: this is impossible for a non-trivial system.

59

Consistency

At the beginning of the 20th century, Hilbert wanted to construct
a collection of axioms which one could use as foundations of mathematics.

Since we are at day one, there is no semantics yet (= pre-existing mathematical world),
everything is purely syntactic.

Consistency is thus one of the only possible correctness criterion for such an axiomatics.

But we cannot use “meta-mathematics” to prove consistency: we should therefore look
for a system proving its own consistency.

Gödel’s second incompleteness theorem: this is impossible for a non-trivial system.

59

Consistency

At the beginning of the 20th century, Hilbert wanted to construct
a collection of axioms which one could use as foundations of mathematics.

Since we are at day one, there is no semantics yet (= pre-existing mathematical world),
everything is purely syntactic.

Consistency is thus one of the only possible correctness criterion for such an axiomatics.

But we cannot use “meta-mathematics” to prove consistency: we should therefore look
for a system proving its own consistency.

Gödel’s second incompleteness theorem: this is impossible for a non-trivial system.

59

Commutative cuts

Cut elimination does not simplify all the proofs: we would like

⊥ ⊢ A
(∨E)

to simplify into

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A
(⊥E)

60

Commutative cuts

Cut elimination does not simplify all the proofs: we would like

⊥ ⊢ A ∨ A
(⊥E)

⊥,A ⊢ A
(ax)

⊥,A ⊢ A
(ax)

⊥ ⊢ A
(∨E)

to simplify into

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A
(⊥E)

60

Commutative cuts

Cut elimination does not simplify all the proofs: we would like

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A ∨ A
(⊥E)

⊥,A ⊢ A
(ax)

⊥,A ⊢ A
(ax)

⊥ ⊢ A
(∨E)

to simplify into

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A
(⊥E)

60

Commutative cuts

Cut elimination does not simplify all the proofs: we would like

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A ∨ A
(⊥E)

⊥,A ⊢ A
(ax)

⊥,A ⊢ A
(ax)

⊥ ⊢ A
(∨E)

to simplify into

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A
(⊥E)

60

Commutative cuts

Cut elimination does not simplify all the proofs: we would like

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A ∨ A
(⊥E)

⊥,A ⊢ A
(ax)

⊥,A ⊢ A
(ax)

⊥ ⊢ A
(∨E)

to simplify into

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A
(⊥E)

60

Commutative cuts

Cut elimination does not simplify all the proofs: we would like

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A ∨ A
(⊥E)

⊥,A ⊢ A
(ax)

⊥,A ⊢ A
(ax)

⊥ ⊢ A
(∨E)

to simplify into

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A
(⊥E)

60

Commutative cuts

Cut elimination does not simplify all the proofs: we would like

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A ∨ A
(⊥E)

⊥,A ⊢ A
(ax)

⊥,A ⊢ A
(ax)

⊥ ⊢ A
(∨E)

to simplify into

⊥ ⊢ ⊥
(ax)

⊥ ⊢ A
(⊥E)

60

Commutative cuts

A typical cut is

A ⊢ A
(ax)

A ⊢ A
(ax)

A ⊢ A ∧ A
(∧I)

A ⊢ A
(∧l

E)

Some “cuts” are “too far apart” to be eliminated:

... ⊢ B ∨ C
(ax)

... ⊢ A
(ax)

... ⊢ A
(ax)

A,B ∨ C ,B ⊢ A ∧ A
(∧I)

... ⊢ A
(ax)

... ⊢ A
(ax)

A,B ∨ C ,C ⊢ A ∧ A
(∧I)

A,B ∨ C ⊢ A ∧ A
(∨E)

A,B ∨ C ⊢ A
(∧l

E)

This is due to the form of the rule

Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
(∨E)

where the C comes out of nowhere.

61

Commutative cuts

A typical cut is

A ⊢ A
(ax)

A ⊢ A
(ax)

A ⊢ A ∧ A
(∧I)

A ⊢ A
(∧l

E)

Some “cuts” are “too far apart” to be eliminated:

... ⊢ B ∨ C
(ax)

... ⊢ A
(ax)

... ⊢ A
(ax)

A,B ∨ C ,B ⊢ A ∧ A
(∧I)

... ⊢ A
(ax)

... ⊢ A
(ax)

A,B ∨ C ,C ⊢ A ∧ A
(∧I)

A,B ∨ C ⊢ A ∧ A
(∨E)

A,B ∨ C ⊢ A
(∧l

E)

This is due to the form of the rule

Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
(∨E)

where the C comes out of nowhere.

61

Commutative cuts

A typical cut is

A ⊢ A
(ax)

A ⊢ A
(ax)

A ⊢ A ∧ A
(∧I)

A ⊢ A
(∧l

E)

Some “cuts” are “too far apart” to be eliminated:

... ⊢ B ∨ C
(ax)

... ⊢ A
(ax)

... ⊢ A
(ax)

A,B ∨ C ,B ⊢ A ∧ A
(∧I)

... ⊢ A
(ax)

... ⊢ A
(ax)

A,B ∨ C ,C ⊢ A ∧ A
(∧I)

A,B ∨ C ⊢ A ∧ A
(∨E)

A,B ∨ C ⊢ A
(∧l

E)

This is due to the form of the rule

Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
(∨E)

where the C comes out of nowhere.
61

Commutative cuts

Those can be handled by adding the following elimination rules for commutative cuts:

π

Γ ⊢ A ∨ B

π′

Γ,A ⊢ C

π′′

Γ,B ⊢ C

Γ ⊢ C
(∨E) . . .

Γ ⊢ D
(?E)

⇝

π

Γ ⊢ A ∨ B

π′

Γ,A ⊢ C
. . .

Γ,A ⊢ D
(?E)

π′′

Γ,B ⊢ C
. . .

Γ,B ⊢ D
(?E)

Γ ⊢ D
(∨E)

62

Commutative cuts

Those can be handled by adding the following elimination rules for commutative cuts:

Γ ⊢ ⊥
Γ ⊢ A

(⊥E) . . .

Γ ⊢ B
(?E) ⇝

Γ ⊢ ⊥
Γ ⊢ B

(⊥E)

62

Part V

Intuitionism

63

Proving disjunctions

The following is in accordance to the intuitionistic point of view:

Proposition
If A ∨ B is provable then either A or B is provable.

Proof.
There is a cut-free proof, which begins by an introduction rule:

π

⊢ A

⊢ A ∨ B
(∨l

I) or

π

⊢ B

⊢ A ∨ B
(∨r

I)

and therefore we have a proof of A or a proof of B .

64

Proving disjunctions

The following is in accordance to the intuitionistic point of view:

Proposition
If A ∨ B is provable then either A or B is provable.

Proof.
There is a cut-free proof, which begins by an introduction rule:

π

⊢ A

⊢ A ∨ B
(∨l

I) or

π

⊢ B

⊢ A ∨ B
(∨r

I)

and therefore we have a proof of A or a proof of B .

64

Excluded middle

An interesting consequence is that

Proposition
The law of excluded middle X ∨ ¬X is not provable.

Proof.
If it was the case we would have either

• A proof of X , but there is no introduction rule

. . .

⊢ X
(?I)

65

Excluded middle

An interesting consequence is that

Proposition
The law of excluded middle X ∨ ¬X is not provable.

Proof.
If it was the case we would have either

• A proof of ¬X , which should begin with the introduction rule

π

X ⊢ ⊥
⊢ ¬X

(¬I)

By substitution, π should induce a proof

...

⊤ ⊢ ⊥

By ⊤-strengthening, we thus have a proof

...

⊢ ⊥
But there is no introduction rule for ⊥, contradiction.

65

Excluded middle

An interesting consequence is that

Proposition
The law of excluded middle X ∨ ¬X is not provable.

Proof.
If it was the case we would have either

• A proof of ¬X , which should begin with the introduction rule

π

X ⊢ ⊥
⊢ ¬X

(¬I)

By substitution, π should induce a proof

...

⊤ ⊢ ⊥

By ⊤-strengthening, we thus have a proof

...

⊢ ⊥
But there is no introduction rule for ⊥, contradiction.

65

Excluded middle

An interesting consequence is that

Proposition
The law of excluded middle X ∨ ¬X is not provable.

Proof.
If it was the case we would have either

• A proof of ¬X , which should begin with the introduction rule

π

X ⊢ ⊥
⊢ ¬X

(¬I)

By substitution, π should induce a proof

...

⊤ ⊢ ⊥

By ⊤-strengthening, we thus have a proof

...

⊢ ⊥

But there is no introduction rule for ⊥, contradiction.

65

Excluded middle

An interesting consequence is that

Proposition
The law of excluded middle X ∨ ¬X is not provable.

Proof.
If it was the case we would have either

• A proof of ¬X , which should begin with the introduction rule

π

X ⊢ ⊥
⊢ ¬X

(¬I)

By substitution, π should induce a proof

...

⊤ ⊢ ⊥

By ⊤-strengthening, we thus have a proof

...

⊢ ⊥
But there is no introduction rule for ⊥, contradiction.

65

Excluded middle

Proposition
The law of excluded middle X ∨ ¬X is not provable.

Of course this does not say that, for a given value of X , we cannot decide:

• for X = ⊤, X is provable,

• for X = ⊥, ¬X is provable,

• for X = Y ⇒ Y , X provable,

• etc.

but we cannot do it in a generic way.

66

Excluded middle

Since X ∨ ¬X is not provable, maybe is it false?

No.

Proposition
The formula ¬(X ∨ ¬X) cannot be proved.

Proof.
We can prove ¬¬(X ∨ ¬X), see next slide.
If ¬(X ∨ ¬X) was also provable, we would have

...

⊢ ¬¬(X ∨ ¬X)

...

⊢ ¬(X ∨ ¬X)

⊢ ⊥
(¬E)

which is excluded since our logic is consistent.

67

Excluded middle

Since X ∨ ¬X is not provable, maybe is it false? No.

Proposition
The formula ¬(X ∨ ¬X) cannot be proved.

Proof.
We can prove ¬¬(X ∨ ¬X), see next slide.

If ¬(X ∨ ¬X) was also provable, we would have

...

⊢ ¬¬(X ∨ ¬X)

...

⊢ ¬(X ∨ ¬X)

⊢ ⊥
(¬E)

which is excluded since our logic is consistent.

67

Excluded middle

Since X ∨ ¬X is not provable, maybe is it false? No.

Proposition
The formula ¬(X ∨ ¬X) cannot be proved.

Proof.
We can prove ¬¬(X ∨ ¬X), see next slide.
If ¬(X ∨ ¬X) was also provable, we would have

...

⊢ ¬¬(X ∨ ¬X)

...

⊢ ¬(X ∨ ¬X)

⊢ ⊥
(¬E)

which is excluded since our logic is consistent.

67

Excluded middle

¬(¬X ∨ X) ⊢ ¬(¬X ∨ X)
(ax)

¬(¬X ∨ X),X ⊢ ¬(¬X ∨ X)
(ax)

¬(¬X ∨ X),X ⊢ X
(ax)

¬(¬X ∨ X),X ⊢ ¬X ∨ X
(∨r

I)

¬(¬X ∨ X),X ⊢ ⊥
(¬E)

¬(¬X ∨ X) ⊢ ¬X
(¬I)

¬(¬X ∨ X) ⊢ ¬X ∨ X
(∨l

I)

¬(¬X ∨ X) ⊢ ⊥
(¬E)

⊢ ¬¬(¬X ∨ X)
(¬I)

68

Intuitionistic vs classical logic

We have two logics:

• intuitionistic logic: formulas provable in NJ,

• classical logic: formulas valid in boolean models.

Proposition
A formula which is intuitionistically provable is classically valid.

But the converse is not true: X ∨ ¬X is classically valid but not provable.

69

Intuitionistic vs classical logic

We have two logics:

• intuitionistic logic: formulas provable in NJ,

• classical logic: formulas valid in boolean models.

Proposition
A formula which is intuitionistically provable is classically valid.

But the converse is not true: X ∨ ¬X is classically valid but not provable.

69

Classical logic: NK

We call NK the system obtained from NJ by adding the axiom

Γ ⊢ A ∨ ¬A
(lem)

Theorem
A formula is valid in boolean models if and only if it can be proved in NK.

Another possible axiom is

Γ ⊢ ¬¬A ⇒ A

Exercise
Show this.

70

Classical logic: NK

We call NK the system obtained from NJ by adding the axiom

Γ ⊢ A ∨ ¬A
(lem)

Theorem
A formula is valid in boolean models if and only if it can be proved in NK.

Another possible axiom is

Γ ⊢ ¬¬A ⇒ A

Exercise
Show this.

70

Classical logic

A typical classical reasoning:

Proposition
There exist two irrational numbers a and b such that ab is rational.

Proof.

We know that
√

2 is irrational (if
√

2 = p/q then p2 = 2q2, prime factors).

The number
√

2
√

2
is either rational or irrational.

• If it is rational, we are done.

• Otherwise, take a =
√

2
√

2
and b =

√
2, we have ab = 2.

Classical logic is not constructive: we don’t know which one.

71

Classical logic

A typical classical reasoning:

Proposition
There exist two irrational numbers a and b such that ab is rational.

Proof.

We know that
√

2 is irrational (if
√

2 = p/q then p2 = 2q2, prime factors).

The number
√

2
√

2
is either rational or irrational.

• If it is rational, we are done.

• Otherwise, take a =
√

2
√

2
and b =

√
2, we have ab = 2.

Classical logic is not constructive: we don’t know which one.

71

Classical logic

Another typical reasoning:

Proposition
For every program p, either it stops after a finite number of steps or it does not.

However, no program can solve the halting problem.

As a variant, do we really want to accept the following?

∀x ∈ R.x = 0 ∨ x ̸= 0

72

Classical logic

Another typical reasoning:

Proposition
For every program p, either it stops after a finite number of steps or it does not.

However, no program can solve the halting problem.

As a variant, do we really want to accept the following?

∀x ∈ R.x = 0 ∨ x ̸= 0

72

Classical logic

Intuitionism does not validate either

¬¬X ⇒ X

I don’t have lost my key. Where is it?

73

Classical logic

Intuitionism does not validate either

¬¬X ⇒ X

I don’t have lost my key. Where is it?

73

Classical logic

Proposition
Either (π + e) or (π − e) is irrational.

Proof.
Suppose that both (π + e) and (π − e) are irrational. Therefore

2π = (π + e) + (π − e)

is irrational. Contradiction (we know that π is irrational).

Whether (π + e) is irrational is currently open, and similarly for (π − e).

Logically, we have shown ¬A ⇒ ⊥ and deduced A, i.e. used ¬¬A ⇒ A.

74

Classical logic

Proposition
Either (π + e) or (π − e) is irrational.

Proof.
Suppose that both (π + e) and (π − e) are irrational. Therefore

2π = (π + e) + (π − e)

is irrational. Contradiction (we know that π is irrational).

Whether (π + e) is irrational is currently open, and similarly for (π − e).

Logically, we have shown ¬A ⇒ ⊥ and deduced A, i.e. used ¬¬A ⇒ A.

74

Classical logic

Proposition
Either (π + e) or (π − e) is irrational.

Proof.
Suppose that both (π + e) and (π − e) are irrational. Therefore

2π = (π + e) + (π − e)

is irrational. Contradiction (we know that π is irrational).

Whether (π + e) is irrational is currently open, and similarly for (π − e).

Logically, we have shown ¬A ⇒ ⊥ and deduced A, i.e. used ¬¬A ⇒ A.

74

Classical logic: semantical intuition

As before, we interpret formulas:

• JAK is a set (of “proofs” of A)
• JA ⇒ BK = JAK → JBK is the set of functions
• J⊥K = ∅

In particular, J¬AK = JA ⇒ ⊥K = JAK → ∅. Thus,

• if JAK ̸= ∅ then J¬AK = ∅,
• if JAK = ∅ then J¬AK = ∅ → ∅ = {one element}.

Thus,

• if JAK = ∅ then J¬¬AK = ∅,
• if JAK ̸= ∅ then J¬¬AK = {one element}.

75

Classical logic: semantical intuition

As before, we interpret formulas:

• JAK is a set (of “proofs” of A)
• JA ⇒ BK = JAK → JBK is the set of functions
• J⊥K = ∅

In particular, J¬AK = JA ⇒ ⊥K = JAK → ∅. Thus,

• if JAK ̸= ∅ then J¬AK = ∅,
• if JAK = ∅ then J¬AK = ∅ → ∅ = {one element}.

Thus,

• if JAK = ∅ then J¬¬AK = ∅,
• if JAK ̸= ∅ then J¬¬AK = {one element}.

75

Classical logic: semantical intuition

As before, we interpret formulas:

• JAK is a set (of “proofs” of A)
• JA ⇒ BK = JAK → JBK is the set of functions
• J⊥K = ∅

In particular, J¬AK = JA ⇒ ⊥K = JAK → ∅. Thus,

• if JAK ̸= ∅ then J¬AK = ∅,
• if JAK = ∅ then J¬AK = ∅ → ∅ = {one element}.

Thus,

• if JAK = ∅ then J¬¬AK = ∅,
• if JAK ̸= ∅ then J¬¬AK = {one element}.

75

Classical logic: double negation translation

Can we really prove more in classical logic?

Theorem (Glivenko 1929)
A sequent Γ ⊢ A is classically provable if and only if ¬¬Γ ⊢ ¬¬A is intuitionistically
provable.

where ¬¬Γ means double negating every formula in Γ.

76

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.

77

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.
If classical logic is inconsistent, we have a classical proof of ⊥ and thus an intu-
itionistic proof of ¬¬⊥. However, the implication ¬¬⊥ ⇒ ⊥ holds intuitionistically:

⊢ ¬¬⊥ ⇒ ⊥
(⇒I)

77

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.
If classical logic is inconsistent, we have a classical proof of ⊥ and thus an intu-
itionistic proof of ¬¬⊥. However, the implication ¬¬⊥ ⇒ ⊥ holds intuitionistically:

¬¬⊥ ⊢ ⊥
(¬E)

⊢ ¬¬⊥ ⇒ ⊥
(⇒I)

77

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.
If classical logic is inconsistent, we have a classical proof of ⊥ and thus an intu-
itionistic proof of ¬¬⊥. However, the implication ¬¬⊥ ⇒ ⊥ holds intuitionistically:

¬¬⊥ ⊢ ¬¬⊥
(ax)

¬¬⊥ ⊢ ¬⊥
(¬I)

¬¬⊥ ⊢ ⊥
(¬E)

⊢ ¬¬⊥ ⇒ ⊥
(⇒I)

77

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.
If classical logic is inconsistent, we have a classical proof of ⊥ and thus an intu-
itionistic proof of ¬¬⊥. However, the implication ¬¬⊥ ⇒ ⊥ holds intuitionistically:

¬¬⊥ ⊢ ¬¬⊥
(ax)

¬¬⊥ ⊢ ¬⊥
(¬I)

¬¬⊥ ⊢ ⊥
(¬E)

⊢ ¬¬⊥ ⇒ ⊥
(⇒I)

77

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.
If classical logic is inconsistent, we have a classical proof of ⊥ and thus an intu-
itionistic proof of ¬¬⊥. However, the implication ¬¬⊥ ⇒ ⊥ holds intuitionistically:

¬¬⊥ ⊢ ¬¬⊥
(ax)

¬¬⊥,⊥ ⊢ ⊥
(ax)

¬¬⊥ ⊢ ¬⊥
(¬I)

¬¬⊥ ⊢ ⊥
(¬E)

⊢ ¬¬⊥ ⇒ ⊥
(⇒I)

77

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.
If classical logic is inconsistent, we have a classical proof of ⊥ and thus an intu-
itionistic proof of ¬¬⊥. However, the implication ¬¬⊥ ⇒ ⊥ holds intuitionistically:

¬¬⊥ ⊢ ¬¬⊥
(ax)

¬¬⊥,⊥ ⊢ ⊥
(ax)

¬¬⊥ ⊢ ¬⊥
(¬I)

¬¬⊥ ⊢ ⊥
(¬E)

⊢ ¬¬⊥ ⇒ ⊥
(⇒I)

77

Classical logic: double negation translation

Theorem
Intuitionistic logic is consistent iff classical logic is consistent.

Proof.
If classical logic is inconsistent, we have a classical proof of ⊥ and thus an intu-
itionistic proof of ¬¬⊥. However, the implication ¬¬⊥ ⇒ ⊥ holds intuitionistically.
We thus have an intuitionistic proof of ⊥:

...

⊢ ¬¬⊥ ⇒ ⊥
π

⊢ ¬¬⊥
⊢ ⊥

(⇒E)

77

Classical logic: double negation translation

What about adding even more negations?

Lemma
For n > 0, we have ¬n+2A ⇔ ¬nA.

Proof.
The implications A ⇒ ¬¬A and ¬¬¬A ⇒ A are intuitionistically provable.

78

Classical logic: operational intuition

Classical logic allows to “go back in time” and change our decisions based on current
knowledge.

Use this to show A ∨ (A ⇒ ⊥).

79

Classical logic: operational intuition

Classical logic allows to “go back in time” and change our decisions based on current
knowledge.

Use this to show A ∨ (A ⇒ ⊥). 79

Classical logic: formal operational intuition

Let us formalize this intuition by showing that the rule

Γ ⊢ ¬¬A
Γ ⊢ A

(¬¬E)

allows us to derive
¬A ∨ A

80

Excluded middle from double negation elimination

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A) ⊢ ¬A
(¬I)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ ⊥
(¬E)

¬(¬A ∨ A) ⊢ ¬A
(¬I)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ ¬A ∨ A
(∨r

I)

¬(¬A ∨ A),A ⊢ ⊥
(¬E)

¬(¬A ∨ A) ⊢ ¬A
(¬I)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ ¬A ∨ A
(∨r

I)

¬(¬A ∨ A),A ⊢ ⊥
(¬E)

¬(¬A ∨ A) ⊢ ¬A
(¬I)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ A
(ax)

¬(¬A ∨ A),A ⊢ ¬A ∨ A
(∨r

I)

¬(¬A ∨ A),A ⊢ ⊥
(¬E)

¬(¬A ∨ A) ⊢ ¬A
(¬I)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Excluded middle from double negation elimination

¬(¬A ∨ A) ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ ¬(¬A ∨ A)
(ax)

¬(¬A ∨ A),A ⊢ A
(ax)

¬(¬A ∨ A),A ⊢ ¬A ∨ A
(∨r

I)

¬(¬A ∨ A),A ⊢ ⊥
(¬E)

¬(¬A ∨ A) ⊢ ¬A
(¬I)

¬(¬A ∨ A) ⊢ ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ⊢ ⊥
(¬E)

⊢ ¬¬(¬A ∨ A)
(¬I)

⊢ ¬A ∨ A
(¬¬E)

81

Classical logic

More generally, we have proofs of the form

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ ⊢ ¬¬A
(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

...

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

Γ,¬A,∆ ⊢ B
(⊥E)

...

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

Γ,¬A,∆ ⊢ ⊥
(¬E)

Γ,¬A,∆ ⊢ B
(⊥E)

...

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

Γ,¬A,∆ ⊢ ¬A
(ax)

Γ,¬A,∆ ⊢ A

Γ,¬A,∆ ⊢ ⊥
(¬E)

Γ,¬A,∆ ⊢ B
(⊥E)

...

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

Γ,¬A,∆ ⊢ ¬A
(ax)

Γ,¬A,∆ ⊢ A

Γ,¬A,∆ ⊢ ⊥
(¬E)

Γ,¬A,∆ ⊢ B
(⊥E)

...

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Classical logic

More generally, we have proofs of the form

Γ,¬A ⊢ ¬A
(ax)

Γ,¬A,∆ ⊢ ¬A
(ax)

...

Γ,¬A,∆ ⊢ A

Γ,¬A,∆ ⊢ ⊥
(¬E)

Γ,¬A,∆ ⊢ B
(⊥E)

...

Γ,¬A ⊢ A

Γ,¬A ⊢ ⊥
Γ ⊢ ¬¬A

(¬I)

Γ ⊢ A
(¬¬E)

82

Intermediate logics

Are there intermediate principles between intuitionistic and classical?

Yes: for instance,
¬¬A ∨ ¬A

or
(A ⇒ B) ∨ (B ⇒ A)

83

Intermediate logics

Are there intermediate principles between intuitionistic and classical?

Yes: for instance,
¬¬A ∨ ¬A

or
(A ⇒ B) ∨ (B ⇒ A)

83

Part VI

Termination of cut elimination

84

Termination of cut elimination

Remember that cut elimination was obtained by performing some transformations on
proofs:

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E) ⇝
π

Γ ⊢ A

What we still have to show is that this process terminates at some point.

Intuitively, this can be achieved by associating a size (e.g. in N) to each proof so that
each reduction step is strictly decreasing:

π0 ⇝ π1 ⇝ π2 ⇝ . . .

n0 > n1 > n2 > . . .

85

Termination of cut elimination

Remember that cut elimination was obtained by performing some transformations on
proofs:

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E) ⇝
π

Γ ⊢ A

What we still have to show is that this process terminates at some point.

Intuitively, this can be achieved by associating a size (e.g. in N) to each proof so that
each reduction step is strictly decreasing:

π0 ⇝ π1 ⇝ π2 ⇝ . . .

n0 > n1 > n2 > . . . 85

First try

Based on the previous rule, we could say that the size of a proof is the number of rules
we use:

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E) ⇝
π

Γ ⊢ A

nπ + nπ′ + 2 > nπ

We have more cuts, but they are smaller!

86

First try

Based on the previous rule, we could say that the size of a proof is the number of rules
we use:

Γ,A ⊢ A
(ax)

Γ,A ⊢ A
(ax)

Γ,A ⊢ A ∧ A
(∧I)

Γ ⊢ A ⇒ A ∧ A
(⇒I)

π

Γ ⊢ A

Γ ⊢ A ∧ A
(⇒E) ⇝

π

Γ ⊢ A

π

Γ ⊢ A

Γ ⊢ A ∧ A
(∧I)

nπ + 5 > 2nπ + 1

This does not work (and neither does the number of cuts).

We have more cuts, but they are smaller!

86

First try

Based on the previous rule, we could say that the size of a proof is the number of rules
we use:

Γ,A ⊢ A
(ax)

Γ,A ⊢ A
(ax)

Γ,A ⊢ A ∧ A
(∧I)

Γ ⊢ A ⇒ A ∧ A
(⇒I)

π

Γ ⊢ A

Γ ⊢ A ∧ A
(⇒E) ⇝

π

Γ ⊢ A

π

Γ ⊢ A

Γ ⊢ A ∧ A
(∧I)

nπ + 5 > 2nπ + 1

This does not work (and neither does the number of cuts).

We have more cuts, but they are smaller! 86

We have to come up with a much more subtle notion of size.

87

Size of formulas

The size |A| of a formula A is its number of connectives:

|X | = 1

|⊤| = 1

|⊥| = 1

A ⇒ B	= 1 +	A	+	B
A ∧ B	= 1 +	A	+	B
A ∨ B	= 1 +	A	+	B

88

Degree of a cut

The degree of a cut is the size of the cut formula.

For instance, the degree of

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E)

is
|A ∧ B| = 1 + |A|+ |B|

89

Degree of a proof

The degree of a proof is the multiset of the degrees of its cuts.

A multiset M is a like a set but elements are counted with multiplicities:

{a, b, a} = {a, a, b} ≠ {a, b}

90

Degree of a proof

The degree of a proof is the multiset of the degrees of its cuts.

A multiset M is a like a set but elements are counted with multiplicities:

{a, b, a} = {a, a, b} ≠ {a, b}

90

Degree of a proof

The degree of a proof is the multiset of the degrees of its cuts.

A multiset M is a like a set but elements are counted with multiplicities:

{a, b, a} = {a, a, b} ≠ {a, b}

Formally, a multiset M of elements in X is a function

M : X → N

whose domain
dom(M) = {x ∈ X | M(x) ̸= 0}

is finite.

90

Degree of a proof

The degree of a proof is the multiset of the degrees of its cuts.

A multiset M is a like a set but elements are counted with multiplicities:

{a, b, a} = {a, a, b} ≠ {a, b}

We write M ⊔ N for the (disjoint) union of multisets:

{a, b, b} ⊔ {a, c} = {a, a, b, b, c}

i.e.
(M ⊔ N)(x) = M(x) + N(x)

90

Ordering multisets

We order multisets of natural numbers by M > M ′ whenever M ′ can be obtained from
M by iteratively replacing an element by (multiple) strictly smaller elements:

{4, 4, 3} > {4, 3, 3, 3, 1} > {4, 3, 3, 3} > {4, 3, 3, 2, 2} > . . .

Theorem (Dershowitz-Manna)
There is no infinite strictly decreasing sequence of finite multisets.

91

Termination of cut elimination

Cut elimination makes the degree strictly decrease:

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E) ⇝
π

Γ ⊢ A

Mπ ⊔Mπ′ ⊔ {|A ∧ B|} > Mπ

92

Termination of cut elimination

Cut elimination makes the degree strictly decrease:

π

Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒I)

π′

Γ ⊢ A

Γ ⊢ B
(⇒E) ⇝

π[π′/A]

Γ ⊢ B

Mπ ⊔ {|A ⇒ B|} ⊔Mπ′ > Mπ ⊔ {|A|, |A|, . . .} ⊔ (n ×Mπ′)

and we fail!

92

Termination of cut elimination

Cut elimination makes the degree strictly decrease:

π

Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒I)

π′

Γ ⊢ A

Γ ⊢ B
(⇒E) ⇝

π[π′/A]

Γ ⊢ B

Mπ ⊔ {|A ⇒ B|}

⊔Mπ′

> Mπ ⊔ {|A|, |A|, . . .}

⊔ (n ×Mπ′)

If we eliminate π′ of highest depth we can suppose Mπ′ = ∅!

92

Termination of cut elimination

For instance, we replace one cut on A ⇒ A ∧ A by two on A:

Γ,A ⊢ A
(ax)

Γ,A ⊢ A
(ax)

Γ,A ⊢ A ∧ A
(∧I)

Γ ⊢ A ⇒ A ∧ A
(⇒I)

π

Γ ⊢ A

Γ ⊢ A ∧ A
(⇒E) ⇝

π

Γ ⊢ A

π

Γ ⊢ A

Γ ⊢ A ∧ A
(∧I)

Mπ ⊔ {|A ⇒ A ∧ A|} > Mπ ⊔ {|A|, |A|}

93

Part VII

Kripke semantics

94

The completeness theorem

We have recalled the completeness theorem for classical logic:

Theorem
A formula is classically provable if and only if it is valid, i.e. its interpretation is true for
every valuation.

95

Can we have a semantics with the same properties for intuitionistic logic?

96

Kripke structures

A Kripke structure (W ,⩽, ρ) consists of

• a set W of worlds,

• a partial order ⩽,

• a function ρ : W → X → {0, 1}

such that for every w ,w ′ ∈ W

w ⩽ w ′ and ρ(w , x) = 1 implies ρ(w ′, x) = 1

97

Kripke structures

To every world w , the function ρ associates a valuation ρw : X → {0, 1}.

We can think of w ⩽ w ′ as w ′ being a future of w :

w4 w ′
4

w3

w2

w1 w ′
1

w0

and the condition says:

what is true now will always be true in the future. 98

Satisfaction

Given a Kripke structure W , a formula A is satisfied in a world w , written

w ⊨W A

when
w ⊨ X iff ρ(w ,X)

w ⊨ ⊤ holds
w ⊨ ⊥ does not hold
w ⊨ A ∧ B iff w ⊨ A and w ⊨ B

w ⊨ A ∨ B iff w ⊨ A or w ⊨ B

w ⊨ A ⇒ B iff, for every w ′ ⩾ w , w ′ ⊨ A implies w ′ ⊨ B

What is w ⊨ ¬A = A ⇒ ⊥?

w ⊨ ¬A iff, for every w ′ ⩾ w , w ′ ⊨ A does not hold

99

Satisfaction

Given a Kripke structure W , a formula A is satisfied in a world w , written

w ⊨W A

when
w ⊨ X iff ρ(w ,X)

w ⊨ ⊤ holds
w ⊨ ⊥ does not hold
w ⊨ A ∧ B iff w ⊨ A and w ⊨ B

w ⊨ A ∨ B iff w ⊨ A or w ⊨ B

w ⊨ A ⇒ B iff, for every w ′ ⩾ w , w ′ ⊨ A implies w ′ ⊨ B

What is w ⊨ ¬A = A ⇒ ⊥?

w ⊨ ¬A iff, for every w ′ ⩾ w , w ′ ⊨ A does not hold

99

Satisfaction

Given a Kripke structure W , a formula A is satisfied in a world w , written

w ⊨W A

when
w ⊨ X iff ρ(w ,X)

w ⊨ ⊤ holds
w ⊨ ⊥ does not hold
w ⊨ A ∧ B iff w ⊨ A and w ⊨ B

w ⊨ A ∨ B iff w ⊨ A or w ⊨ B

w ⊨ A ⇒ B iff, for every w ′ ⩾ w , w ′ ⊨ A implies w ′ ⊨ B

What is w ⊨ ¬A = A ⇒ ⊥?

w ⊨ ¬A iff, for every w ′ ⩾ w , w ′ ⊨ A does not hold
99

Validity

Given a context Γ = Ai , a formula A and a Kripke structure A, we write

Γ ⊨W A

when for every w ∈ W , if w ⊨W Ai for each i , then w ⊨W A.

We write Γ ⊨ A when Γ ⊨W A for every Kripke structure W and say that A is valid in
the context Γ.

100

Soundness

Theorem
If Γ ⊢ A is derivable intuitionistically then Γ ⊨ A.

Proof.
By induction.

By contraposition:

• if Γ ̸⊨ A

• if, for some structure W , Γ ̸⊨W A

• if, for some structure W and some w , w ⊨ Ai for all i and w ̸⊨W A

then Γ ⊢ A is not derivable.

101

Soundness

Theorem
If Γ ⊢ A is derivable intuitionistically then Γ ⊨ A.

Proof.
By induction.

By contraposition:

• if Γ ̸⊨ A

• if, for some structure W , Γ ̸⊨W A

• if, for some structure W and some w , w ⊨ Ai for all i and w ̸⊨W A

then Γ ⊢ A is not derivable.

101

Soundness

Theorem
If Γ ⊢ A is derivable intuitionistically then Γ ⊨ A.

Proof.
By induction.

By contraposition:

• if Γ ̸⊨ A

• if, for some structure W , Γ ̸⊨W A

• if, for some structure W and some w , w ⊨ Ai for all i and w ̸⊨W A

then Γ ⊢ A is not derivable.

101

Soundness

Theorem
If Γ ⊢ A is derivable intuitionistically then Γ ⊨ A.

Proof.
By induction.

By contraposition:

• if Γ ̸⊨ A

• if, for some structure W , Γ ̸⊨W A

• if, for some structure W and some w , w ⊨ Ai for all i and w ̸⊨W A

then Γ ⊢ A is not derivable.

101

An unprovable formula

Let’s show that ¬X ∨ X is not provable.

Consider
w1

w0

with w0 ̸⊨ X and w1 ⊨ X .

We have w0 ̸⊨ ¬X .

Therefore w0 ̸⊨ ¬X ∨ X .

102

An unprovable formula

Let’s show that ¬X ∨ X is not provable.

Consider
w1

w0

with w0 ̸⊨ X and w1 ⊨ X .

We have w0 ̸⊨ ¬X .

Therefore w0 ̸⊨ ¬X ∨ X .

102

An unprovable formula

Let’s show that ¬X ∨ X is not provable.

Consider
w1

w0

with w0 ̸⊨ X and w1 ⊨ X .

We have w0 ̸⊨ ¬X .

Therefore w0 ̸⊨ ¬X ∨ X .

102

An unprovable formula

Let’s show that ¬¬A ⇒ A is not provable.

Consider
w1

w0

with w0 ̸⊨ X and w1 ⊨ X .

We have w0 ̸⊨ ¬X and w1¬ ⊨ ¬X , thus w0 ⊨ ¬¬X .

But w0 ̸⊨ X , thus w0 ̸⊨ ¬¬X ⇒ X .

103

An unprovable formula

Let’s show that ¬¬A ⇒ A is not provable.

Consider
w1

w0

with w0 ̸⊨ X and w1 ⊨ X .

We have w0 ̸⊨ ¬X and w1¬ ⊨ ¬X , thus w0 ⊨ ¬¬X .

But w0 ̸⊨ X , thus w0 ̸⊨ ¬¬X ⇒ X .

103

An unprovable formula

Let’s show that ¬¬A ⇒ A is not provable.

Consider
w1

w0

with w0 ̸⊨ X and w1 ⊨ X .

We have w0 ̸⊨ ¬X and w1¬ ⊨ ¬X , thus w0 ⊨ ¬¬X .

But w0 ̸⊨ X , thus w0 ̸⊨ ¬¬X ⇒ X .

103

An unprovable formula

Let’s show that ¬¬A ⇒ A is not provable.

Consider
w1

w0

with w0 ̸⊨ X and w1 ⊨ X .

We have w0 ̸⊨ ¬X and w1¬ ⊨ ¬X , thus w0 ⊨ ¬¬X .

But w0 ̸⊨ X , thus w0 ̸⊨ ¬¬X ⇒ X .

103

An unprovable formula

Suppose that X means “I have my key”.

Then ¬X means “I have lost my key”: I will never find it again in the future.

Then ¬¬X ⇒ X does not hold: it is not true that if I have not lost my key, I have my
key (e.g. it could be somewhere in my apartment!).

104

An unprovable formula

Suppose that X means “I have my key”.

Then ¬X means “I have lost my key”: I will never find it again in the future.

Then ¬¬X ⇒ X does not hold: it is not true that if I have not lost my key, I have my
key (e.g. it could be somewhere in my apartment!).

104

An unprovable formula

Suppose that X means “I have my key”.

Then ¬X means “I have lost my key”: I will never find it again in the future.

Then ¬¬X ⇒ X does not hold: it is not true that if I have not lost my key, I have my
key (e.g. it could be somewhere in my apartment!).

104

Completeness

The converse property also holds:

Theorem
Γ ⊢ A is derivable intuitionistically iff Γ ⊨ A.

105

	Introduction
	Intuitionistic natural deduction
	Properties of NJ
	Cut elimination
	Intuitionism
	Termination of cut elimination
	Kripke semantics

