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Introduction



Propositional logic

In propositional logic, we consider formulas which are built from

e variables: X, Y, ...

e® connectives: A, V, =, —, ...

For instance,
(X=Y)=(=XVY)



The boolean interpretation

Usually,

e we interpret variables as booleans (valuations),
e we have a standard interpretation for connectives

A/\B‘Ol A\/B‘Ol A:»B\Ol -A
0 (00 0 |o 1 0 0
1 |0 1 1 |11 1 0 1 10

A formula is valid when its interpretation is true for every value given to the variables.
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The boolean interpretation

Usually,

e we interpret variables as booleans (valuations),
e we have a standard interpretation for connectives

A/\B‘Ol A\/B‘Ol A:»B\Ol -A
0 (00 0 |o 1 0 0
1 |0 1 1 |11 1 0 1 10

A formula is valid when its interpretation is true for every value given to the variables.

(X=Y)=(=XVY)
1
with X =1 and Y = 0. 3




The set-theoretic interpretation

With this idea that propositions should correspond to types and consider
N=N
We should therefore interpret

e a type A as a set,
e A= B as
e ANB as
e AV B as
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The set-theoretic interpretation

With this idea that propositions should correspond to types and consider
N=N
We should therefore interpret

e a type A as a set,

e A = B as the set of functions from A to B,
e A A B as the product A x B,

e AV B as the disjoint union ALl B.

We recover the previous interpretation by considering whether a set is empty or not:

AAB|O 1 AVB|0 1 A=B|0 1
o |10 0 0 |0 1 0 1 1
1 |01 1 |11 1 |0 1




The proof-theoretic interpretation

This is not entirely satisfactory since the way a function is implemented matters.

For instance,
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The proof-theoretic interpretation

This is not entirely satisfactory since the way a function is implemented matters.

For instance,
N =N

n—20

can be implemented as

e let f n 0

e let f n

Il
(=]
|

n

@ let rec fn=31if n = 0 then n else f (n - 1)

Note that the complexities are respectively O(1), O(log,(n)) and O(n).



The three levels of interpretation

Girard advocates that there are three levels for interpreting proofs:

.

0. the boolean level: propositions are interpreted as booleans and we are interested in

whether a proposition is provable or not,

1. the extensional level: propositions are interpreted as sets and we are interested in
which functions can be implemented,

2. the intentional level. we are interested in the proofs (= programs) themselves, and
how they evolve during reduction,



The three levels of interpretation

0.

Girard advocates that there are three levels for interpreting proofs:

the boolean level: propositions are interpreted as booleans and we are interested in
whether a proposition is provable or not,

. the extensional level: propositions are interpreted as sets and we are interested in

which functions can be implemented,

. the intentional level: we are interested in the proofs (= programs) themselves, and

how they evolve during reduction,

. the homotopical level: we take equality seriously in account.



Shifting from provability to proofs was initiated by Brouwer's intuitionism
(around 1900):

e mathematics is not about a preexisting reality,
it is a subjective mental construction,
e this construction has an existence of its own.

In this point of view, we switch from provability to proofs:

e A A B means that | have both a proof of A and a proof B
(it is a product rather than an intersection)
e A= B is a way of producing a proof of B from a proof of A.

This has some important consequences that we will see.



Constructivism




Formalizing the notion proof

We want to give a precise definition of the notion of proof.

This means give a list of all the allowed (low-level!) steps in a proof.
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Formalizing the notion proof

We want to give a precise definition of the notion of proof.
This means give a list of all the allowed (low-level!) steps in a proof.

For instance, we want to show that x — 2 x x is continuous in 0:
we have to prove the formula

Ve.(e > 0= 3In.(n > 0AVx.|x| <n=]2x| <¢))
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Formalizing the notion proof

Goal:
x| <e/2
e Suppose given &. e Since 2 > 0. e Suppose given x.
e Suppose ¢ > 0. e By usual identities. e Suppose |x| < /2.
o Take n=¢/2. e By hypothesis. e By usual identities.
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Formalizing the notion proof

Donel

e Suppose given &. e Since 2 > 0. e Suppose given x.

e Suppose ¢ > 0. e By usual identities. e Suppose |x| < /2.

o Take n=¢/2. e By hypothesis. e By usual identities.
e By hypothesis

10



Formalizing the notion of proof

e>0,|x| <e/2F |x| <e/2
e>0,|x| <e/2F|2x]|/2 < g/2

e>0Fe>0 e>0,|x| <e/2F|2x| <e
e>0F(g/2) x2>0x2 e>0F|x|<e/2=|2x| <€
e>0Fe/2>0 e>0FVx|x| <e/2=|2x| <e

e>0Fe/2>0AWxIx|<e/2=]2x|<¢

e>0F3n.(n>0AVx|x| <n=1]2x| < ¢)

Fe>0= 3n.(n>0AVx.|x| <n=|2x] <e¢)

FVe.le >0= 3In.(n>0AV¥x|x| <n=[2x| <¢))
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Formalizing the notion of proof

This has several interesting consequences.

e We can show properties of the system: consistency, decidability, etc.

e We can reason on proofs.

e We can transform proofs.

12
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Intuitionistic natural deduction
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Formulas

We consider formulas generated by the grammar
AB:=X|A=B|AAB|T|AVB|L]|-A

where X is a variable.
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Formulas

We consider formulas generated by the grammar
AB:=X|A=B|AAB|T|AVB|L]|-A

where X is a variable.

By convention:
e the binding priority is —, A, V, =
-AVBANC=D is (FA)V(BAC))=D

e the operations are bracketed on the right:

AINA2NA3 = B=C is (A1 A (A2 A A3)) = (B= C)

14



A context [ is a list of formulas
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A context [ is a list of formulas

A sequent
Mr=A

consists of a context [ together with a formula A.
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A context [ is a list of formulas

A sequent
Mr=A

consists of a context [ together with a formula A.

An inference rule
M+ A . M, EA,

MrM=A

specifies when we can deduce a sequent from others.

15



Intuitionistic natural deduction (NJ)

MAT EA
-A=B TFA
(=€)
B
TFANB . THANS
——(A — (A}
r-A % reB F
r-AvB T,AFC T,BFC
(Ve)
M- c
eL
- E
r-A
r-—-A THA
(=)
M1

(ax)

r'-AveB

AFB
— (=
WA= B

[FA =B
(M)
r'FAAB

M=A =B

| r
(Vi) L AvEB A\/B(vl)

ﬁ(TI)

MAF L

-

— —\"1
M--A 16



Rules: remarks

Apart from the axiom, rules are either

e elimination rules: use a connective,
e introduction rules: show a connective.
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Rules: remarks

Apart from the axiom, rules are either

e elimination rules: use a connective,
e introduction rules: show a connective.

The leaves are axiom (or T introduction) rules: all the other rules have premises.
The axiom is the only way to “use” a formula in the context.

There is no introduction of | and elimination of T.

The principal premise is the leftmost premise of an elimination rule.

Some rules have latin names:
e (=): modus ponens
e (Lg): ex falso quot libet or explosion principle 17



A proof is a tree formed with the derivation rules of NJ.

18



A proof is a tree formed with the derivation rules of NJ.

A sequent [ = A is provable when it is the conclusion of some proof.

18



A proof is a tree formed with the derivation rules of NJ.
A sequent [ = A is provable when it is the conclusion of some proof.

A formula A is provable when the sequent - A is.

18
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FAANB=AVEB
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ANBFAVE
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(Vi)

(=1)
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ANBFAAB
NE
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(V1)
ANBFAVE
$|)
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(ax)

M)

(Vi)

é|)

ANBFAAB
ANBEA
ANBFAVE
FAANB=AVB
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(Ve)
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(ax)

AVBAFA
——— (ax) (Vi)
AVBEAVB AVB.AF BV A AV&BFBVA( |
V
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(=1)
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(ax)

AVB.AL- A AVB,BFB
——— (ax) (Vi) (V1)
AVBEAVB AVB.AF BV A AV&BFBVA( |
V
AVBEBVA g
(=1)

FAVB=BVA
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— (ax) — (ax)
AVB AFA AV B,B+-B |
——— (ax) (Vi) (Vi)
AVBFAVB AVB,A-BVA AVB,BFBVA (Ve)
VE
AVBFBVA
(=1)

FAVB=BVA
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F(A=B)=-B=-A
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(ax)
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A= B,-B,A-A=B A= B,-B,AFA
———— (ax) (=€)
A= B,—B,AF —B A= B,-B,AF B (e)
A= B,—B,AF L (E)
A= B,-BF —-A :
(=1

A= BF-B=-A
F(A=B)=-B=-A
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(ax)

A= B,~B,A-A= B A= B,-B,A A

- (a =

A:»B,ﬁB,AFﬁB(X) A= B,-B,A+ B (( E))
A= B,-B,Al L (E)
A= B,~BF -A h

A= BF-B=-A
F(A=B)=-B=-A
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() ()

A= B,~B,A-A= B A= B, -B,AF A

—————— (ax) (=€)
A= B,~B,AF -B A= B,~B,A- B (~e)
A= B,-B,AF L (E)

A= B,-BF -A h

A= BF-B=-A
F(A=B)=-B=-A
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Definable connectives

We could have added some other connectives such as <, which can be implemented:

A& B

(A= B)AN(B=A)

Even some present connectives can be implemented from others:

—-A = A= L

Proof.
Can be deduced (not trivial) from the fact that =A < (A = L) is provable. O

23
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Properties of NJ

24



Induction on proofs

Since proofs have become syntactic objects,
we can reason (= make proofs) on them!

25



Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under

Successor.
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Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under

Successor.

o
Z
By
3
Z
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Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under

Successor.

0:N S(n): N

The recurrence principle states that, given a predicate P(n) on natural numbers,
if

e P(0) and

e for n € N, P(n) implies P(5(n)),
then P(n) holds for every n € N.
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Induction on natural numbers

The set N of natural numbers is the smallest set containing 0 and closed under

Successor.

0:N S(n): N

The recurrence principle states that, given a predicate P(n) on natural numbers,
if, for every rule,

e if P holds for the premises then P holds for the conclusion

then P(n) holds for every n € N.

26



Induction on proofs

The set of proofs is the smallest set closed under the deduction rules:

Theorem
Suppose given a predicate P(m) on proofs w. Suppose that, for every rule,
US| Tn
MEA T,FA,
Mr=A

if P(7;) holds for every i then P(r) also holds. Then P(7) holds for every proof .

27



Admissible rules

A rule
M+ A M, EA,

M=A

is admissible when, whenever all the premises are provable, the conclusion is also
provable.

This means that, from a proof for each ['; - A;, we can construct a proof of [ - A

(but not necessarily that we can implement the above deduction with some rules).

28



We have this idea that if we can prove something with some hypothesis, then we can
also prove it with more hypothesis.
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We have this idea that if we can prove something with some hypothesis, then we can
also prove it with more hypothesis.

For instance:

(ax)
C,ANBFANB
' (M)
C,AANBF A |
(Vi)

C,ANBFAVB

This can be formalized by showing that the following weakening rule is admissible.
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We can always add more hypothesis in a context:

Proposition
-8B

The weakening rule is admissible: ———— (w
AT FB

) .
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We can always add more hypothesis in a context:

Proposition
-8B

The weakening rule is admissible: ———— (w
AT FB

k) .

Proof.
By induction on the proof of I',[" - B.
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We can always add more hypothesis in a context:

Proposition

. : - rr'esB
The weakening rule is admissible: ——— (wk) .
AT B
Proof.
By induction on the proof of I',[" - B.
e If the proof is of the form
(ax)

r,r'-B
with B occurring in I or " then we conclude with

— (aX
F,A,F/FB( )
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We can always add more hypothesis in a context:

Proposition

. : . r,r'-s
The weakening rule is admissible: ——— (wk) .
AT B
Proof.
By induction on the proof of I',[" - B.
1 2
) rr’=B=~C =B
e If the proof is of the form (=€)
rr'ecC
/ /
1 72
C TATFB=C AT B
then we conclude with (=€) .
FAT-C
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We can always add more hypothesis in a context:

Proposition

. : - r,r'-s
The weakening rule is admissible: ——— (wk) .
AT FB
Proof.
By induction on the proof of I',[" - B.
e If the proof is of the form -
rLrrBrC
————— (=)
M-B=C
then we conclude with -
FAT BEC
(=1) 30

AT FB=C



We can always add more hypothesis in a context:

Proposition

. : - rr'esB
The weakening rule is admissible: ——— (wk) .
AT FB
Proof.
By induction on the proof of I',[" - B.
e Other cases are similar. O]

30



Note that the axiom rule

(ax)

AT EA
is the only one really using the context, the other rules do not change the context, e.g.
MN=A =B
r'-AAB
excepting
NAFB
— (=)
I-A=B

which only adds one formula to the context.

This explains why most inductive cases go through without any difficulty,

axiom being the only “subtle” one. -



In a context, the multiplicity of a formula does not really matter:

Proposition
The contraction rule is admissible:

rAAT B

; (contr)
MnAT =B
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In a context, the multiplicity of a formula does not really matter:

Proposition
The contraction rule is admissible:

MAAT B
———— (contr)
AT B
Proof.
By induction on the proof of ', A, A, " - C:
(ax) becomes

rAAT B
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LAAT B AT B
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In a context, the multiplicity of a formula does not really matter:

Proposition
The contraction rule is admissible:

rAAT B
———— (contr)
AT B
Proof.
By induction on the proof of ', A, A, " - C:
—— (ax) becomes — (ax)
LAAT B AT B

(including when B = A), other cases are simple, e.g.

AT B AT C LAAT B LAAT - C
(A1) becomes (Ao
AT FBAC MAAT FBAC




In a context, the order of formulas does not really matter:

Proposition
The exchange rule

A BT'+-C
————— (xch)
rB,AT'-C

is admissible.

Proof.
By induction on the proof of I, A, B, "+ C.

(ax)

A B,T'+C becomes
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In a context, the order of formulas does not really matter:

Proposition
The exchange rule

A BT'+-C
————— (xch)
rB,AT'-C

is admissible.

Proof.
By induction on the proof of I, A, B, "+ C.

(ax) — (ax)

A BT C becomes ILB,AT C

other cases are immediate by induction. O
33



Truth strengthening

In a context, the formula T does not bring any information:

Proposition
The truth strengthening rule

LT,.IM-A
Fr'-A
is admissible.

Proof.
By induction on the proof of I, T, - A:

W (ax) becomes
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Truth strengthening

In a context, the formula T does not bring any information:

Proposition
The truth strengthening rule

LT,.IM-A
Fr'-A
is admissible.

Proof.
By induction on the proof of I, T, - A:

——— (ax) becomes — (T)
LT, ET rr-T
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Truth strengthening

In a context, the formula T does not bring any information:

Proposition
The truth strengthening rule

LT.IA
Lr'EA
is admissible.
Proof.
By induction on the proof of I, T, - A:

——— (ax) becomes — (T)
LT, ET rr-T

other cases are immediate by induction. O
34



Contexts as sets

The structural rules

rr-aB rAAT B
—— (wk) —— (contr)
AT +B AT B
A BT C rLT,IM"-A
——— (xch) _
rB,ATI-C rr-A
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Contexts as sets

The structural rules

rr-aB rAAT B
—— (wk) —— (contr)
AT +B AT B
A BT C rLT,IM"-A
——— (xch) _
rB,ATI-C rr-A

say that that contexts are commutative and idempotent.

Can we implement them as sets?
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Contexts as sets

Quizz: how many “pure” OCaml programs of type
)a -> )a -> )a

can you come up with?
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can you come up with?
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let £ xy =x
let fxy=y
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Contexts as sets

Quizz: how many “pure” OCaml programs of type
)a -> )a -> )a

can you come up with?

Essentially two:

let £ xy =x
let fxy=y

| say “essentially” because there are many other which are “equivalent’

let f' xy = (fun z -> 2z) x
let £'' x y = (fun (z,t) -> z) (x, 5)

36



Contexts as sets

Having contexts as sets is not a good idea: the two proofs

— (ax)
AAEA
— (ax) ——— (xch)
AAEA AAEA
— (=) — (=)
AFA= A AFA= A
— (=) — (=)
FA=A=A FA=A=A
get identified into
(ax)
AFA
— (=1)
AFA=A
- il)
FA= A= A

whereas we expect to have two projections!
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Substitution

A substitution o is a function which assigns a formula to every variable.

We write A[o] for the formula A with variables replaced according to o.

38



Substitution

A substitution o is a function which assigns a formula to every variable.

We write A[o] for the formula A with variables replaced according to o.

Proposition
For every substitution o, if the sequent

is provable, then the sequent

is also provable.

Proof.
By induction on the proof of A;,... A, F A. O 38



Substitution

Proposition
For every substitution o, if the sequent

is provable, then the sequent

is also provable.

For instance:

X=X F(L=AAB)= (L= AAB) s



Proof substitution

Another more subtle operation is proof substitution:

Proposition
Given provable sequents

s T
_— and R ——
AT +-B rr'eA
we can construct a proof
[’ /A]
rr'es

39



Proof substitution

For instance, given the proofs

() ()
MLABEA MLABEA o
A\
LABEFAAA ' :
™= (=) and I —
LAFB=AAA M- A
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Proof substitution

For instance, given the proofs

() ()
MABFA MABFA o
N
LABEAAA ' :
™= (=) and I —
LAFB=AMNA M- A

we can construct the following proof 7|7/ Al:

/ /

v T
M= A M= A
— (wk) — (wk)
BrA L BrA
(™)
LBFAAA
(=1)
IEFB=AANA

40



Proof substitution

Proposition
/

T T
Given provable sequents ———— and - ,
rATEFB A
|7’ /Al
we can construct a proof ——— .
rr-B
Proof.
By induction on 7:
. w(r')
e we replace axioms ————— (ax) by —————— |
AT T"FA ML r"EA

41



Proof substitution

Proposition
/

7T 7—
Given provable sequents ———— and - ,
AT +-B rr-A
|7’ /Al
we can construct a proof ——— .
rr-B
Proof.
By induction on 7:
. w(r')
e we replace axioms ————— (ax) by —————— |
AT T"EA rLrr-A
T 2 m[r'/A] mo[n' /A
rATFB rATEC rr'-B rLrecC
° becomes , etc. O
NLAT'FBAC rLr'=BAC

41



Part 1V

Cut elimination

42



Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
dx.x +x =4.

43



Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
dx.x +x =4.

Proof.
e Lemma: every even number y admits a half:

Vy.even(y) = Ixx+x=y

® 4 is even. L]
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Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
dx.x +x =4.

Proof.
Take x = 2. O

43



Cut elimination

In mathematics, one often uses lemmas to show results.

Theorem
dx.x +x =4.

Proof.
e Lemma: every even number y admits a half:

Vy.even(y) = Ixx+x=y
e 4 is even. U

The proof of the lemma must certainly contain a way to compute the value for x.

This process of extraction is called cut elimination.
43



Cut elimination

Of course, this largely depends on the way we formalized things.
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Cut elimination
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We define even natural numbers as the smallest set Even C N such that

e 0 € Even,
e if n € Even then n+ 2 € Even.
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Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even C N such that

e 0 € Even,
e if n € Even then n+ 2 € Even.

We can then show that every even number y admits a half x by recurrence.

e If y =0 then we take x = 0 since 0 + 0 = 0.
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Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even C N such that

e 0 € Even,
e if n € Even then n+ 2 € Even.

We can then show that every even number y admits a half x by recurrence.
e If y =0 then we take x = 0 since 0 + 0 = 0.
e Otherwise y = y’ + 2 for some even number y'.
By recurrence, y’ admits a half x’ and we take x = x" + 1.
Namely,

x+x=XX+D)+K+)=KK+x)+2=y+2=y »



Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even C N such that

e 0 € Even,
e if n € Even then n+ 2 € Even.

We can also show that 4 is even:
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Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even C N such that

e 0 € Even,
e if n € Even then n+ 2 € Even.

We can also show that 4 is even:

e 0O is even,
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Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even C N such that
e 0 € Even,

e if n € Even then n+ 2 € Even.

We can also show that 4 is even:
e 0O is even,

e thus 2 is even,
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Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even C N such that

e 0 € Even,
e if n € Even then n+ 2 € Even.

We can also show that 4 is even:
e 0O is even,
e thus 2 is even,

e thus 4 is even.
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Cut elimination

Of course, this largely depends on the way we formalized things.

We define even natural numbers as the smallest set Even C N such that

e 0 € Even,
e if n € Even then n+ 2 € Even.

We can also show that 4 is even:
e 0O is even,
e thus 2 is even,
e thus 4 is even.

And therefore 4 admits a half.

a4



Cut elimination

From our proof, we can compute the half of 4:

e 4 is even, because 2 is even, because 0 is even,

e half(4) = half(2) + 1 = (half(0) + 1) + 1=0+1+1=2

Cut elimination “reverse engineers” the proof in order to extract this witness.
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A cut is an elimination rule whose principal premise is proved by an introduction rule.

/
T 7T

r=A MN-B
rN-AAnB
r-A

A cut-free proof is a proof without cuts.

T
MAFB 7
(=1)
lI'FA= B M= A
(=€)
=B

46



An example of a proof with a cut is

AFA

47



An example of a proof with a cut is

AFAVA AAF A AAF A
AL A
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An example of a proof with a cut is

Al A |

o V)

AEAVA AAEA AAEA
Al-A
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An example of a proof with a cut is
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An example of a proof with a cut is
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An example of a proof with a cut is
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An example of a proof with a cut is

—_— ! —_— X E— X
AFAVA(VI) A,AFA(a) A,AFA(a)
(VE)

AFA

We can remove the cut and reduce it to

AFA (=)

47



Cut elimination

Theorem
If a sequent is provable then it has a cut-free proof.

Proof.
The idea is to iteratively transform the proof of the original sequent in order to remove

all cuts. O
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Cut elimination: conjunctions

We can eliminate cuts on A:

T T
A -8B
(™)
[-AAB "
A ~
M- A )
v 7T/
M- A -8B
(A1)
F-AAB )
Ar ~
B :

49



Cut elimination: conjunctions

We can eliminate cuts on A:

™ T
M=A =B
(A1)
r'-AAB T
()~
M= A M=A
™ 7T/
=A B
(A1) ,
rN-AAB T
(AE)
B B

49



Cut elimination: implications

We can eliminate cuts on =:

T
MAFB !
(=1)
[FA= B M= A
(=€) ~
=B
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Cut elimination: implications

We can eliminate cuts on =:

T
rA-B 7
— (=) ,
r-A— B reA . ' /A]
= ~
reB : reB

where 7[7//A] is m where we have replaced all axioms on A

/
w\ T
() (")
AT FA by TLATEA

where w(7’) is an appropriate weakening of 7.
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Cut elimination: disjunctions

We can eliminate cuts on V:

™
M=A (|) 7’ 7"
V
rFAVB | [AFC BrC
(Ve) ~
M- cC
s
re8 ! o
—— (V)
FFAVB LAFC B C
(Ve) ~
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Cut elimination: disjunctions

We can eliminate cuts on V:

T
M= A ) 7’ "
V
r-AvB A-C T,B-C [/ Al
(Ve) ~
e e
T
=B o) 7’ "
- (Vr
r-AvB A-C  T,B-C 7"[r/B]
(VE) ~
e

r=cC
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Cut elimination: termination

For instance,

ax ax
F,AFA( ) F,AkA( )
(1)
FLAFAAA .
(=1)
FIFA=ANA M= A
(=€)
FTFAAA

is transformed into
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Cut elimination: termination

For instance,

is transformed into

ax ax
I‘,A%A( ) F,AkA( )
(1)
FLAFAAA .
(=1)
FIFA=ANA M= A
(=€)
FTFAAA
v v
M= A M= A
(n1)
FINEAANA
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Cut elimination: termination

For instance,

ax ax
I_,AFA( ) I-,AFA( )
(1)
MNAFAAA T
(=1)
INFA=AAA M= A
(=€)
FTEANA
is transformed into
v v
M= A M= A
(n1)
FINEAANA

Note that if 7 contained n cuts then we now have 2n cuts...
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Cut elimination: termination

It is true that every order we chose to remove the cuts, we will end up on a cut-free
proof after a finite number of steps, but it is quite difficult to show.
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Cut elimination: termination

It is true that every order we chose to remove the cuts, we will end up on a cut-free
proof after a finite number of steps, but it is quite difficult to show.

H