
Training period

June–August 2004

Magistère d’Informatique

et de Modélisation

2nd year

Decidability of Equality in
Categories with Families

Samuel Mimram

17th September 2004

Directed by Thierry Coquand

Datavetenskap

Chalmers tekniska högskola

Göteborg, Sverige

http://www.cs.chalmers.se/



1 Introduction to categories and categorical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Definition of some related (or not) theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Generalized algebraic theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Categories, cartesian closed categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Categories with families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Logical frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Decidability of equality in Cwf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Decidability of the equality in LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Definition of LF as a pseudo-gat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Equivalence between LF and CwfLF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Interpretation of LF into CwfLF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Interpretation of CwfLF into LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Possible formalization of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A From Gat to Cwf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.1 Contextual categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 Categories with attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.3 Pullback in Cwf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B Proof of the decidability of equality in LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.1 Soundness of LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.2 Decidability of equality in LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C Proof of the equivalence between CwfLF and LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
C.1 Interpretation of LF into CwfLF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
C.2 Interpretation of CwfLF into LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Abstract Categories with families (cwfs) is a theory which was introduced to be a categorical
model of dependently-typed λ-calculus (LF). We first define both theories and discuss about
possible variations of the syntax and their consequences; we also see some related theories
and see why categories with families is a rather natural one in the sense that it captures
the essential constructions of λ-calculus. Then we show that it is decidable to know whether
two dependently-typed λ-terms are equal or not by giving an algorithm and the proof of its
termination. Finally we show that the theories of cwfs and LF are equivalent (i.e. the same
theorems hold in both theories, modulo interpretation) by giving two syntactic interpretations,
of one theory into the other one, which are proven to have some good soundness properties.
This proves that the equality is also decidable for cwfs.

1 Introduction to categories and categorical models

Formal systems are a convenient theoretical model to study programming languages and the notion
of calculus in general. The relations between a syntactic theory, its semantics and an appropriate
logic enable mathematical methods to be used for reasoning about those theories and understanding
how relevant and natural their constructions are.

The theory of categories (def. 2) provides an abstract framework to define a collection of math-
ematical objects along with structured relations between them. It is abstract in the sense that only
the essential properties of the concerned objects are taken in account and hardly no reference to the
object themselves is ever made. Moreover this theory has been shown to be suitable as a foundation
of mathematics (e.g. instead of set-theory). It is therefore important to give categorical models to
theories to try to understand the respective merits and defaults of fundamental theories of math-
ematics. The relation of category theory to logic was first established by Lawvere (around 1970).
The link between a type theory and an appropriate category is given by a categorical semantics,
i.e. an interpretation of the type theory in a category. As an example, this analogy establishes the
following correspondence between simply-typed λ-calculus, cartesian-closed categories (cccs) and
propositional logic (see [LS86]):

Typed λ-calculus Cartesian Closed Categories Propositional Logic
Product types Products Conjunction
Function spaces Exponentiation Implication

Actually cartesian-closed categories have been proven (e.g. in [LS86], [Cur86] or [San87]) to be
equivalent to simply-typed λ-calculus. This means that a judgment is valid in one theory iff its
interpretation (which basically makes a correspondence between product types and products, func-
tion space and exponentiation, etc.) is also valid: both theories are essentially the same in the sense
that, modulo interpretation, the same judgments are valid in both theories. Therefore anyone of the
two presentation can be chosen when dealing with λ-calculus, it does not matter. And categorical
models have some very interesting properties.

When using λ-calculus or proving theorems about it, the use of variables seem rather unnatural.
Usually we only want to talk about λ-calculus modulo α-conversion1 and often many lemmata have
to be proven only to handle problems related to this. De Bruijn indexes2 partly solve this issue
but are not completely satisfactory (the β-reduction is a rather difficult to express for example).
Another point is the fact that the substitution is a meta-operation in λ-calculus (it is not part of
the calculus). λ-calculi with explicit substitutions were introduced for the substitution to be part of
the theory but some the rules involved in the definition of such calculi seem to be too complicated

1 α-conversion means renaming of bound variables. For example, the λ-term λxy.xt is α-convertible to
λyz.yt but not to λxy.xu.

2 The idea of De Bruijn is to use natural numbers instead of variables. An index n is bound to the n-th
λ-abstraction encountered when going up in the syntactic tree of the term. For example λx.x would be
written λ.0, λxy.x would be written λ.λ.1, etc. Two λ-terms are α-convertible iff they have the same De
Bruijn representation.



and improvable. Categorical models address those problems thanks to the use of combinators. In
those models, in cccs for examples, bindings are expressed without the need of variables nor De
Bruijn indexes which is very pleasant since variables do not seem to be part of the core λ-calculus;
substitution is also expressed without being a higher order operation.

Categories with families were introduced by P. Dybjer in [Dyb96], with the aim of being a cat-
egorical model of dependently-typed λ-calculus (which is an extension of simply-typed λ-calculus).
In this paper, after having defined rigorously both theories, we are going to prove that they are
actually equivalent. We will also show that the equality in our dependently-typed λ-calculus (LF) is
decidable and an important consequence of the equivalence between both theories is the fact that the
equality is also decidable in categories with families which is an important property for equational
theories because it can be the basis of numerous decidability theorems and even algorithms since
we actually give an algorithm to decide the equality.

The general approach is quite simple and we can see that the definitions of the theories that
are going to be proven to be equivalent look very much like one another. However, the proofs will
turn out to be rather technical and far from trivial when looking at them closely. We will see that
some details are very interesting because they are key points to understand what typed λ-calculus
is essentially.

2 Definition of some related (or not) theories

2.1 Generalized algebraic theories

We must first define formally the theories we are going to use (mainly categories with families
and a logical framework). But we need a framework to define rigorously those theories. Generalized
algebraic theories (that we shall abbreviate in gats and we should write Gat when referring to
the theory) provide such a framework. They were introduced by Cartmell in [Car86]. A detailed
presentation – somehow syntactically easier to read – can be found in [Pit95]. The definition given
here is slightly different on one point: the contexts are not required to be finite in the theory3.

There are two main reasons which motivate the definition and the use of gats. First, it is im-
portant to have a formal definition of what is a definition of an equational theory4. Basically, in an
equational theory we want to have “types” (or sorts) which are constructed using function symbols
(sort constructors) and which can depend on a finite number of terms of a fixed type (the list of
those terms along with their type is the context where those terms are defined); we also want to
have terms which are constructed from term-valued function symbols (term constructors) which can
depend on terms of a given type just like types; the last thing we want to be able to express in our
theory is equations between terms and equations between types (that is why the theories defined in
Gat are said to be equational). The collection of rules to construct types and terms as well as the
equations between types of between terms are called the axioms.

For example, the theory of natural number with addition can be defined using the following
axioms:

– “natural numbers” (Nat) is a sort
¦ ` Nat

(the symbol ¦ stands for the empty context, the sort Nat does not need to depend on any term;
the ` symbol is here to separate the hypothesis and the conclusion)

– zero is a natural number
¦ ` O : Nat

3 The finiteness condition on contexts seemed to us rather unnatural, unnecessary and would complicate
the definition of cwfs to keep the equivalence between Gat and Cwf . However, we did not have time to
check in details that this does not introduce complications or inconsistencies.

4 Even though there are foundational problems which obviously arise: in what formal system shall we define
Gat itself? We will show that cwfs provide a nice answer to this question: we can define the theory Cwf

which equivalent to Gat inside Gat.

2



– if n is a natural number, so is its successor

n : Nat ` S (n) : Nat

– if n and m are natural numbers, so is their sum

n : Nat,m : Nat ` Add (n,m) : Nat

– finally, we want to express the equalities which really define the addition

n : Nat ` Add (O, n) = O

n : Nat,m : Nat ` Add (S (n) ,m) = Add (n,S (m))

The rules for derivating theorems in Gat are show in figure 1. These are here to ensure that gats
behave quite naturally5. In particular, we want our equality to behave like real equality.

– It must be reflexive, symmetric and transitive (which is expressed by the rules (Ty-Eq-Refl),
(Ty-Eq-Sym), (Ty-Eq-Trans) and the corresponding rules for equalities between terms).

– Type and term constructors, as well as equalities must be compatible with substitution. This is
expressed by rules related to substitution. For example, we want to be able to derive ¦ ` S (O) :
Nat (1 is a natural number) which can be done by substituting O to n in our second axiom, or
we want to be able to be able to derive ¦ ` Add (O,O) = O which can be done by substituting
O to n in the first equality axiom.

– If two terms (or types) are contstructed by the same function symbols with equal arguments,
we want the two terms (or types) to be equal. This is expressed by the rules for axioms.

Context morphisms have been introduced to be able to express substitution (in fact a morphism
corresponds to a finite number of successive substitutions) in a type-safe manner.

Definition 1 (Generalized algebraic theory (gat)). A context is a list of (variable, type)-pairs
defined inductively by:

– the empty context, written ¦, is a context;
– if Γ is a context, A is a type such that FV (A) ⊆ DV (Γ ) and x is a variable which is not in

DV (Γ ), then Γ, x : A is a context.

In the previous definition FV (A) represents the set of variables free in A and DV (Γ ) represents
the set of variables free in Γ . Those are defined as usual (e.g. see def. 10).

A generalized algebraic theory (gat) is collection of meta-constants (the type- and term-constructors):

– the n-ary type-valued function symbols: Termn → Sort;
– the n-ary term-valued function symbols: Termn → Term;

for each natural number n, with

– for each function symbol S a judgment

ΓS ` S(−→x )

called the introductory axiom of s (−→x is of course supposed to have the same arity as s);
– for each term-valued function symbol F a judgment

ΓF ` F (−→x ) : AF

called the introductory axiom of F (−→x is supposed to have the same arity as F );
– a collection of judgments of the form Γ ` A = A′ called the type-equality axioms;
– a collection of judgments of the form Γ ` M = M ′ : A called the term-equality axioms.

3



Contexts

¦ `
(C-Emp)

Γ ` A x 6∈ DV (Γ )

Γ, x : A `
(C-Ext)

¦ = ¦
(C-Emp-Eq)

Γ = Γ ′ Γ ` A = A′
ˆ−→x /−→x ′

˜

Γ, x : A = Γ ′, x′ : A′
(C-Conv)

Types

Γ ` A

Γ ` A = A
(Ty-Eq-Refl)

Γ ` A = B

Γ ` B = A
(Ty-Eq-Sym)

Γ ` A = B Γ ` B = C

Γ ` A = C
(Ty-Eq-Trans)

γ : ∆ → Γ Γ ` A

∆ ` A [γ/−→x ]
(Ty-S)

γ = γ′ : ∆ → Γ Γ ` A = B

∆ ` A [γ/−→x ] = A′
ˆ

γ′/−→x
˜ (Ty-S-Conv)

Terms

Γ, x : A, ∆ `

Γ, x : A, ∆ ` x : A
(Var)

Γ ` M : A

Γ ` M = M : A
(Tm-Eq-Refl)

Γ ` M = N : A

Γ ` N = M : A
(Tm-Eq-Sym)

Γ ` M = N : A Γ ` N = P : A

Γ ` M = P : A
(Tm-Eq-Trans)

Γ ` M : A Γ ` A = B

Γ ` M : B
(Tm-Conv)

Γ ` M = N : A Γ ` A = B

Γ ` M = N : B
(Tm-Eq-Conv)

γ : ∆ → Γ Γ ` M : A

∆ ` M [γ/−→x ] : A [γ/−→x ]
(Tm-S)

γ = δ : ∆ → Γ Γ ` M = N : A

∆ ` M [γ/−→x ] = N [δ/−→x ] : A [γ/−→x ]
(Tm-S-Conv)

Context morphisms

Γ `

〈〉 : Γ → ¦
(M-Emp)

γ : ∆ → Γ Γ ` A ∆ ` M : A [γ/−→x ]

〈γ, M〉 : ∆ → Γ, x : A
(M-Ext)

Γ `

〈〉 = 〈〉 : Γ → ¦
(M-Emp-Refl)

γ = δ : ∆ → Γ Γ ` A ∆ ` M = N : A [γ/−→x ]

〈γ, M〉 = 〈δ, N〉 : ∆ → Γ, x : A
(M-Conv)

Rules for axioms

ΓS `

ΓS ` S (−→x )
(Ax-Ty-I)

ΓF ` AF

ΓF ` F (−→x ) : AF

(Ax-Tm-I)

Γ ` A Γ ` B

Γ ` A = B
(Ax-Ty-Eq)

Γ ` M : A Γ ` N : A

Γ ` M = N : A
(Ax-Tm-Eq)

Figure 1. Definition of gat

4



Given such a theory, the theorems are the judgments which are derivable using the rules shown
in figure 1.

The intended meaning of the judgments is

Judgment Meaning
Γ ` Γ is a well-formed context
Γ ` A A is a well-formed type in the context Γ
Γ ` M : A M is a well-formed term of type A in the context Γ
Γ ` A = A′ In the context Γ , the types A and A′ are equal and well-formed
Γ ` M = M ′ : A In the context Γ , M and M ′ are well-formed terms of type A

It is important to understand that Gat is a meta-theory in the sense that it is a framework for
defining some6 equational theories by giving a finite number of axioms.

In the following, since it is easier to read, we will use the inference bar instead of the symbol
“`” when writing axioms and the empty context will be simply denoted by nothing in hypothesis.
This inference bar must not be confused with the one used to define Gat. For example, for now on,
the axioms of natural numbers should be written

O : Nat

n : Nat

S (n) : Nat

n m : Nat

Add (n,m) : Nat
etc.

To distinguish between the equality in the equational theories and the equality used to define
things, the former will still be written = while the latter will be written ≡ (i.e. a ≡ b iff a and b are
equal by definition).

2.2 Categories, cartesian closed categories

The notion of category is going to be used intensively (and not always explicitly) in the rest of this
paper. Unfortunately, we can only make a very short presentation of the category theory which is a
rather developed and complicated theory. The reader can find good introductions to category theory
in many books, in [Awo03] for example.

A category C is given by the following data:

– a collection of objects |C|;
– for each two objects A and B of C, a collection Hom (A,B) of arrows (or morphisms) between

A and B (if f ∈ Hom (A,B) then A is called the domain of f and B its codomain and f might

be written A
f
−→ B);

– for each morphisms f and g such that A
f
−→ B

g
−→ C, there is a morphism g ◦ f called the

composite of f and g;
– for each object A a morphism idA from A to A called the identity morphism.

These are required to satisfy the following rules:

– associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f ;
– unit: f ◦ idA = f = idB ◦ f for all arrow f ∈ Hom (A,B).

For example, we can define the category Grp of groups where objects are groups and arrows
are morphisms of groups (the composition and the identity are defined as usual and they satisfy the
required properties).

The definition is quite abstract. One of the goals of categories is to be able to talk about “things”
(the objects of the category) which have some structured relations between them (the morphisms)

5 Actually the “natural” behavior is motivated by more than intuitive wishes: it will turn out that Gat is
equivalent to Cwf and thus to dependently-typed λ-calculus.

6 Of course, not every equational theory can be defined as a gat.

5



without having to explicitly refer to objects. This make category theory a very general theory – it
has even been shown to be suitable to be a foundational theory for mathematics. As we will see
later, the framework provided by category theory is much wider than usual morphisms between
structured sets: in particular, we can also define categories where morphisms are proof of a type
(a logic formula) having an other type in hypothesis. It is important to give categorical models to
theories in order to understand what are the essential properties of those theories and to be able to
show properties of those theories which do not depend on a particular definition of the theory, etc.

In the following, we might write x ∈ C to mean that x is an object of C.

Definition 2 (Cartegory). The theory of categories is defined as a gat by the “category axioms”
of figure 2.

Our goal is to show that the categories with families (cwfs) is a notion that subsumes cartesian
closed categories: it is a categorical equivalent of λ-calculus with dependent types (instead of λ-
calculus with simple types). That’s why we first quickly present cartesian closed categories.

We won’t explain it in details since most of its constructions can be found in categories with
families (cwfs), in an extended version though, and we will explain those. The only constructions
which are not needed anymore in cwfs are pairing operations (∧, 〈 , 〉, π and π′ which are defined
by “product axioms” rules) and curyfying operations (∗ and ε which are defined in “exponential
axioms” rules). This can be explained by the fact that objects in cwfs are not types but contexts and
thus there is no need to “encode” contexts into types. Details about this are provided in section 3.3.

Definition 3 (Cartesian closed category). A cartesian closed theory is a category with finite
products and exponentials. The formal definition is given in fig. 2.

Remark 1. We have relaxed the notations for the axioms of a gat: the function symbols do not
depend on all the terms they should (the remark 4 tries to discuss this point in details).

Remark 2. The application operator ε could have equivalently been defined as a constant of type
Hom (〈x ⇒ y ∧ x, y〉) instead of a “meta-operator” (a function symbol in Gat).

2.3 Categories with families

Some other theories which are closely related to categories with families (contextual categories and
categories with attributes) are presented in annex A.

Remember that some diagram was required to be a pullback in contextual categories and cwa.
This condition is rather unnatural in the sense that is very hard to express equationally. Categories
with families (Cwf) is a theory which is equivalent to the previously mentioned ones which was
introduced by P. Dybjer in [Dyb96] to deal with this problem. In this presentation, the pullback
diagram is a property which is deduced from the definition (cf. proposition 1) rather than imposed
by the definition and therefore Cwf can be defined in Gat which is very nice.

Definition 4 (Category of families of sets (Fam)). An object of the category Fam is a family
of sets (B(x))x∈A and a morphism with source (B(x))x∈A and target (B′(x))x∈A′ is a pair consisting
of a function f : A → A′ and a family of functions g(x) : B(x) → B′(f(x)) indexed by x ∈ A.

The notion of family fits well to dependent types and terms: intuitively a dependent type can
be modeled as a set which depends on its context; its is the same for the set of terms which depend
on a context. The definition of categories with families formalizes this. Some operators have to be
introduced to be able to access the terms which are in the context (q represents the last element of a
context and p the beginning of the context). Morphisms of contexts are also introduced to represent
substitution in contexts.

Definition 5 (Category with families (cwf)). A category with families consists of:

6



Category axioms

Sort symbols: Ob : Sort
x y : Ob

Hom(x, y) : Sort

Operator symbols:
x y z : Ob f : Hom(y, z) g : Hom(x, y)

f ◦ g : Hom(x, z)
x : Ob

idx : Hom(x, x)

Equations:
x y z t : Ob f : Hom(z, t) g : Hom(y, z) h : Hom(x, y)

(f ◦ g) ◦ h = f ◦ (g ◦ h) : Hom(x, t)
x y : Ob f : Hom(x, y)

idy ◦ f = f : Hom(x, y)
x y : Ob f : Hom(x, y)

f ◦ idx = f : Hom(x, y)

Terminal object axioms

Operator symbols: 1 : Ob
x : Ob

©x : Hom(x, 1)

Equations:
x, y : Ob f : Hom(x, y)

©y ◦ f = ©y : Hom(y, 1)

id1 = ©1 : Hom(1, 1)

Product axioms

Operator symbols:
x y : Ob

x ∧ y : Ob
x y z : Ob f : Hom(x, y) g : Hom(x, z)

〈f, g〉 : Hom(x, y ∧ z)
x y : Ob

πx,y : Hom(x ∧ y, x)
x y : Ob

π′

x,y : Hom(x ∧ y, y)

Equations:
x y z : Ob f : Hom(x, y) g : Hom(x, z)

πy,z ◦ 〈f, g〉 = f : Hom(x, y)
x y z : Ob f : Hom(x, y) g : Hom(x, z)

π′

y,z ◦ 〈f, g〉 = g : Hom(x, z)
x y z t : Ob f : Hom(y, z) g : Hom(y, t) h : Hom(x, y)

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 : Hom(x, z ∧ t)
x y : Ob

idx∧y =
˙

πx,y, π′

x,y

¸

: Hom(x ∧ y, x ∧ y)

Exponentials axioms

Operator symbols:
x y : Ob

x ⇒ y : Ob
x y z : Ob f : Hom(x ∧ y, z)

f∗ : Hom(x, y ⇒ z)
x y z : Ob f : Hom(x, y ⇒ z) g : Hom(x, y)

ε(f, g) : Hom(x, z)

Equations:
x y z t : Ob f : Hom(y ∧ z, t) g : Hom(x, y)

f∗ ◦ g = (f ◦
˙

g ◦ πx,y, π′

x,z

¸

)∗ : Hom(x, z ⇒ t)
x y z t : Ob f : Hom(y, z ⇒ t) g : Hom(y, z) h : Hom(x, y)

ε(f, g) ◦ h = ε(f ◦ h, g ◦ h) : Hom(x, t)
x y z : Ob f : Hom(x ∧ y, z) g : Hom(x, y)

ε(f∗, g) = f ◦ 〈idx, g〉 : Hom(x, z)
x y z : Ob f : Hom(x, y ⇒ z)

`

ε(f ◦ πx,y, π′

x,y)
´

∗

= f

Figure 2. Definition of cccs in gat



– A base category C whose objects are called contexts and whose morphisms are called substitu-
tions.

– A functor7 (Type,Term) : Cop → Fam. We write Term (Γ ) ≡ (Γ ` A)A∈Type(Γ ), where Γ ∈ C
and call it the family of terms indexed by types in the context Γ . Moreover, if γ is a morphism
of C then the two components of Type (Γ ) and Term (γ) interpret substitution in types and
terms respectively. We write A[γ] for the application of the first component to a type A and a[γ]
for the application of the second component to a term a.

– A terminal object ¦ called the empty context.
– A context comprehension operation which to an object Γ of C and a type A ∈ Type (Γ ) asso-

ciates:
• an object Γ,A of C;
• a morphism pΓ

A : Γ,A → Γ of C (the first projection);
• a term qΓ

A ∈ (Γ,A ` A[pΓ
A]) (the second projection).

The following universal property holds: for each object ∆ in C, morphism γ : ∆ → Γ , and term
M ∈ ∆ ` A[γ], there is a unique morphism δ = 〈γ,M〉 : ∆ → Γ,A such that pΓ

A ◦ δ = γ and
qΓ
A[δ] = a.

Formally, we can define the rule that must hold by defining cwfs in gat (see fig. 3).

Remark 3. The operators `, →, [ ], etc. are not the same as the on used in the definition of Gat
(fig. 1), we reuse those notations with different meanings (in fact, their meanings are closely related
but are not on the same “meta-level”).

Remark 4 (About the importance of the syntax). To alleviate the notations, some type indications
where or will be omitted, as discussed in [Car86] (§10, Informal syntax ). Cartmell namely distin-
guishes between two types of what he calls “informal syntax” (i.e. a syntax where the operators do
not explicitly depend on all the elements of the context where they were defined in order to have
lighter notations):

– the omission of some formally necessary variables (e.g. writing App (M,N) instead of AppΠ(A,B) (M,N));

– the overloading of operators (e.g. writing p instead of pΓ
A).

The justification of the dropping of those arguments is that they can be recovered from the context.
For example we can simply write p instead of pA

Γ because if we know that a combinator p?
? has type

Γ,A → Γ then we know that it must be pA
Γ (we are able to recover Γ and A from the context).

However there is no precise theorem which justifies that (Cartmell only gives a necessary condition
which is that the implicit parameters of a function symbol must occur implicitly in the context of
the introductory rule of the concerned symbol).

The rules given in fig. 3 are given in informal syntax. However, we might sometimes write
explicitly pΓ

A and qΓ
A instead of p and q for the sake of clarity. We believe that this syntax in

unambiguous (i.e. that implicit arguments can be recovered from the context) but this has yet to
be proven – or the proofs should be done more precisely with the formal syntax.

Moreover, since we are only human beings, we do not want to deal with loads of indexes and
want to keep our proofs a bit readable. Therefore we might omit the index from ◦, [ ] or even from
App. This is not correct from a theoretical point of view because some properties might be verified
in one presentation but not in the other one. We have only used it as a relatively short way to write
terms but the proofs have been checked using the syntax given in fig. 3.

Those considerations might not seem to to be so much interesting but actually this kind of
syntactic details matters. As we will see later, the proof of the equivalence between CwfLF and
LF would have been much simpler with an untyped operator App. However we need this type

7 A functor ϕ is a morphism between two categories C1 and C2 which sends objects of C1 to objects of
C2 and morphisms of C1 to morphisms of C2 such that if f is a morphism from A to B in C1 then ϕ(f)
is a morphism from ϕ(A) to ϕ(B) in C2; moreover ϕ is required to be compatible with composition and
identity.

8



Rules for the category C

Sort symbols: Ctxt : Sort(C-I)
∆ Γ : Ctxt

∆ → Γ : Sort
(M-I)

Operator symbols:
Θ ∆ Γ : Ctxt γ : ∆ → Γ δ : Θ → ∆

γ ◦∆ δ : Θ → Γ
(M-C)

Γ : Ctxt

id : Γ → Γ
(M-Id)

Equations:
Γ ∆ Θ Ψ : Ctxt γ : Θ → Ψ δ : ∆ → Θ θ : Γ → ∆

(γ ◦Θ δ) ◦∆ θ = γ ◦Θ (δ ◦∆ θ) : Γ → Ψ
(M-Assoc)

Γ ∆ : Ctxt γ : Γ → ∆

id ◦∆ γ = γ : Γ → ∆
(M-Id-L)

Γ ∆ : Ctxt γ : Γ → ∆

γ ◦Γ id = γ : Γ → ∆
(M-Id-R)

Rules for the functor (Type, Term)

Sort symbols:
Γ : Ctxt

Type (Γ ) : Sort
(Ty-I)

Γ : Ctxt A : Type (Γ )

Γ ` A : Sort
(Ty-Abs)

Operator symbols:
∆ Γ : Ctxt A : Type (Γ ) γ : ∆ → Γ

A[γ]Γ : Type (∆)
(Ty-S)

∆ Γ : Ctxt A : Type (Γ ) M : Γ ` A γ : ∆ → Γ

M [γ]AΓ : ∆ ` A[γ]Γ
(Tm-S)

Equations:
Γ ∆ Θ : Ctxt A : Type (Θ) γ : ∆ → Θ δ : Γ → ∆

A[γ ◦∆ δ]Θ = A[γ]Θ[δ]∆ : Type (Γ )
(Ty-S-C)

Γ : Ctxt A : Type (Γ )

A[id]Γ = A : Type (Γ )
(Ty-S-Id)

Γ ∆ Θ : Ctxt A : Type (Θ) M : Θ ` A δ : Γ → ∆ γ : ∆ → Θ

M [γ ◦∆ δ]AΘ = M [γ]AΘ[δ]
A[γ]
∆ : Γ ` A[γ ◦∆ δ]Θ

(Tm-S-C)

Γ : Ctxt A : Type (Γ ) M : Γ ` A

M [id]Γ = M : Γ ` A
(Tm-S-Id)

Rules for the terminal object

Operator symbols:
¦ : Ctxt

(C-Emp)

Γ : Ctxt

〈〉 : Γ → ¦
(M-Emp)

Equations:
Γ ∆ : Ctxt γ : Γ → ∆

〈〉 ◦∆ γ = 〈〉 : Γ → ¦
(M-Emp-L)

id = 〈〉 : ¦ → ¦
(M-Emp-Id)

Rules for context comprehension

Operator symbols:
Γ : Ctxt A : Type (Γ )

Γ, A : Ctxt
(C-Ext)

Γ ∆ : Ctxt A : Type (∆) γ : Γ → ∆ M : Γ ` A[γ]∆

〈γ, M〉 : Γ → ∆, A
(M-Ext)

Γ : Ctxt A : Type (Γ )

p : Γ, A → Γ
(M-E-L)

Γ : Ctxt A : Type (Γ )

q : Γ, A ` A[p]Γ
(M-E-R)

Equations:
Γ ∆ : Ctxt A : Type (Γ ) γ : Γ → ∆ M : Γ ` A[γ]∆

p ◦Γ,A 〈γ, M〉 = γ : Γ → ∆
(M-C-L)

Γ ∆ : Ctxt A : Type (Γ ) γ : Γ → ∆ M : Γ ` A[γ]∆

q[〈γ, M〉]∆,A = M : Γ ` A[γ]∆
(M-C-R)

Γ ∆ Θ : Ctxt γ : ∆ → Γ δ : Γ → Θ A : Type (Θ) M : Γ ` A [δ]Θ

〈δ, M〉 ◦Γ γ =
D

δ ◦Γ γ, M [γ]
A[δ]Θ
Γ

E

: ∆ → Θ
(M-Ext-S)

Γ : Ctxt A : Type (Γ )

id = 〈p, q〉 : Γ, A → Γ, A
(M-Ext-Id)

Figure 3. Definition of cwfs in gat



information. The reason for that is that we want the term-model (i.e. the model of syntactic terms)
of the theory of CwfLF to be initial in the category of models8 i.e. that for every model M there
exists one and only one morphism (i.e. an interpretation which preserves the judgments) from the
term model M0 to M . This is important because we want a property to be true in the term model
(in particular the decidability of the equality that we are going to prove) iff it is true in all models.
We did not have enough time to write this in details but the idea to prove that M0 is initial is that
we are going to need to interpret the term model M0 in a model M and this will have to be done
recursively9. Moreover, terms will have to be interpreted with an interpretation which depends on
their type (and certainly also on the context). Therefore we will have to guess the types recursively.

For example, if we write J KΓ
A this interpretation, we will have

r
AppΠ(A,B) (M,N)

zΓ

B[〈id,N〉]Γ,A

≡ AppΠ(A,B)

(

JMKΓ,A
B , JNKΓ

A

)

Clearly the “inferred” type information B [〈id, N〉]Γ,A is not enough to recover the types A and B.
That is why we need to have a typed application operator. As we will see later (§3.3), this will have
important consequences on the complexity of the proof.

The notion of category with families is more natural than the notion of category with attributes
(def. 30) because the pullback-condition does not need to be imposed; it is rather deduced from the
definition. This is why cwf can be simply defined in gat, contrarily to cwa and justifies the introduc-
tion of this theory: it seems to be a rather natural and elegant categorical model of dependent type
theory which can be represented inside itself (of course we cannot prove internally its consistency).
However this remains to be proven and this is precisely one of the goals of this paper to show the
equivalence between the two theories.

Proposition 1. With the notations of the definition 5, the diagram

∆,A[γ]

p∆
A[γ]

²²

〈γ◦p∆
A[γ],q

∆
A[γ]〉

// Γ,A

pΓ
A

²²

∆ γ
// Γ

is a pullback.

The proof is given in annex, section A.3.

Proposition 2. Cwf can be defined as a gat.

Proof. The proof is sketched in [Dyb96]. ut

We will now introduce the notion of weakening which will turn out later to be useful to “remove
useless informations from contexts” (that is why it is called weakening, because it is related to the
weakening rules of the logics).

Definition 6 (Weakening). If Γ and ∆ are contexts, A an element of Type (Γ ), and γ : ∆ → Γ a
morphism, the context morphism p̃ (γ,A) : ∆,A[γ] → Γ,A called the weakening of γ by A is defined
by

p̃ (γ,A) ≡ 〈γ ◦ p, q〉

8 The category of models of a theory is the category where the objects are the models of the theory and
morphisms are the functions between models which are compatible with the interpretations i.e. ϕ is a
morphism between two models M1 and M2 iff for all term t we have I2 (t) = ϕ (I1 (t)) where I1 and I2

are the interpretations of the theory respectively in M1 and M2.
9 There might be an other way to do that which would not require the combinators to be indexed by

uninferable types but we did not find an easy one.

10



We define (fig. 7) a notion of cwf supporting Π-types (product types, intended to be types of
functions). Some operators are introduced to be able to represent functions (in the λ-calculus sense)
and their type in cwfs. For example, if, in a context Γ , A and B are both types then Π (A,B)
(introduced by rule (Exp)) is the type of functions which, given an argument of type A return a
term of type B. Some constructions are also introduced for the terms, those should be quite natural
for anyone who is familiar with λ-calculus. For example, if whenever we add a term of type A to the
context, M is a term of type B then λ(M) can be seen as the function which, whenever given a term
of type A as argument returns the term M where the “hole” in M , introduced by the supposition
of a term of type A in the context when typing M , is filled with N (this is expressed by rules (Abs)
and (Π-C)). This is clearly closely related to the abstraction in λ-calculus: if whenever we suppose
that x is a variable of type A, M is a term of type B then λx.M is a term of type Πx : A.B and
can be seen as the function which, to each term N of type A, associates the term M [N/x]. From
this comparison, we can see that the categorical syntax (of cwfs) is more natural than the syntax of
λ-calculus and actually – this is going to be proven in section 3.3 – the two theories are equivalent
(which means that, modulo interpretation, if a theorem holds in one theory then it holds in the other
one). In particular, there is no need of variables to express bindings which is convenient because
usually λ-terms are considered modulo α-conversion (i.e. renaming of bound variables). Moreover,
substitution in cwfs is not a meta-operation like in λ-calculus. Concerning this point, it is certainly
closer to λ-calculi with explicit substitutions but we did not want to use those since they have been
much less studied than without. From this point of view the categorical syntax seems to be much
closer to the essence of the λ-calculus. This is one of the main reasons why people try to define
categorical models (Cwf is one of them).

The rules (Π-S), (λ-S) and (App-S) are here to define inductively the application of a morphism
to syntactic terms build from the new operators (Π, λ and App). Finally, (Π-η) is the categorical
formulation of the usual η-conversion rule10.

The formulation of some of the rules might seem surprisingly complicated. For example, why
did we not simply write AppΠ(A,B) (M,N) : Γ ` B in the conclusion of the rule (App) (without
the substitution on B)? This is because we wanted those rules to be suitable for dependent types,
which are going to be introduced in the next definition.

Definition 7 (Cwfs supporting Π-types). A cwf C supports Π-types if the derivations rules and
equations of the figure 7 hold.

To have dependent types, we add an operator which injects (modulo equality) terms into types:
for each term M , El M is a type and El M = El M ′ iff M = M ′. Thanks to this operator, types
can depend on terms. For example, we could imagine an extension of our typing system which has
natural numbers and where, for each n : Nat, List (n) is the type of lists of length n (the type List (n)
depends on the term n). This would be useful to define functions which are guaranteed to return lists
of same length as their argument for example (those functions would have type Π (List (n) , List (n))).

Definition 8 (Cwfs supporting LFs). A cwf C supports LFs if it supports Π-types and the
derivation rules of the figure 8 hold.

The theory of cwfs supporting LFs will be named CwfLF.

Remark 5 (Why Star). Of course the Star operator might seem useless here since the rule (Star)
can only be used before a rule (Elem). Both rules could have been merged into the rule

Γ : Ctxt

Elem (M) : Type (Γ )

However our presentation can be much more easily generalized (in the case we would want to
introduce a sort of natural integers in the theory for example).

10 In untyped λ-calculus this equality would be simply written M = λx.Mx.

11



Operator symbols:
Γ : Ctxt A : Type (Γ ) B : Type (Γ, A)

Π(A, B) : Type (Γ )
(Exp)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, A) M : Γ, A ` B

λ(M) : Γ ` Π(A, B)
(Abs)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, A) M : Γ ` Π(A, B) N : Γ ` A

AppΠ(A,B) (M, N) : Γ ` B[〈id, N〉]Γ,A

(App)

Equations:
Γ ∆ : Ctxt A : Type (Γ ) B : Type (Γ, A) γ : ∆ → Γ

Π (A, B) [γ]Γ = Π
“

A[γ]Γ , B [〈γ ◦ p, q〉]Γ,A

”

: Type (∆)
(Π-S)

Γ ∆ : Ctxt A : Type (Γ ) M : Γ ` A γ : ∆ → Γ

λ(M)[γ]Γ = λ
“

M [〈γ ◦ p, q〉]Γ,A

”

: Type (∆)
(λ-S)

Γ ∆ : Ctxt A : Type (Γ ) B : Type (Γ, A) N : Γ ` A M : Γ ` Π (A, B) γ : ∆ → Γ

AppΠ(A,B) (M, N) [γ]Γ = AppΠ(A,B)

“

M [γ]
Π(A,B)
Γ , N [γ]AΓ

”

: ∆ ` B
hD

id, N [γ]AΓ

Ei

∆,A[γ]Γ

(App-S)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, A) N : Γ ` A M : Γ ` Π (A, B)

AppΠ(A,B) (λ (M) , N) = M [〈id, N〉]Γ,A : B [〈id, N〉]Γ,A

(Π-C)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, A) M : Γ ` Π(A, B)

λ
“

AppΠ(A,B[p]Γ )

“

M [p]
Π(A,B)
Γ , q

””

= M : Γ ` Π(A, B)
(Π-η)

Figure 4. Rules for Π-types in cwfs

Operator symbols:
Γ : Ctxt

Star : Type (Γ )
(Star)

Γ : Ctxt M : Γ ` Star

Elem (M) : Type (Γ )
(Elem)

Equations:
Γ ∆ : Ctxt γ : ∆ → Γ

Star [γ]Γ = Star : Type (∆)
(Star-S)

Γ ∆ : Ctxt A : Type (Γ ) M : Γ ` A Star : Type (Γ ) γ : ∆ → Γ

Elem (M) [γ]Γ = Elem
`

M [γ]Γ
´

: Type (∆)
(Elem-S)

Figure 5. Additional rules for cwfs supporting LFs

12



2.4 Logical frameworks

We first present logical frameworks as defined in [CPT03] (we will use later theorems proven in this
paper). It is a λ-calculus with dependent types without pairing (or currifying) operations since we
do not need them to encode context in types as previously mentioned. Most of the rules used to
define should seem quite natural to anyone who is already familiar with simply-typed λ-calculus.
Those rules are direct extensions of the rules of simply-typed λ-calculus to support dependent types.
Here “dependent” means that a type can depend on a term. This is possible thank to the operator
El which “injects” terms into types (for each term M , there is a corresponding type El M). In a
more elaborated type system with natural numbers (Nat) we could imagine to define, for all natural
number n, the type List (n) of lists of length n by the rules

Γ : Ctxt n : Nat

List (n) : Type (Γ )
Γ : Ctxt

[] : Γ ` List (O)

Γ : Ctxt n : Nat l : Γ ` List (n) A : Type (Γ ) M : Γ ` A

l :: M : Γ ` List (S (n))

The type List (n) depends on the term n. This kind of types are present in proof checkers such as
COQ and turn out to be very useful and convenient to manipulate.

Definition 9 (Logical framewok (LF)). A logical framework is defined by three classes

– terms : M,N ::= x | λx.M | AppΠx:A.B (M,N);
– types : A,B ::= ? | El M | Πx : A.B;
– contexts : Γ ::= ¦ | Γ, x : A;

which are such that the inference rules of fig. 6 hold.

Remark 6. App, π and π′ could have equivalently been defined as constants of the language.

Remark 7. In the following we might write MN for AppΠx:A.B (M,N) to have lighter notations.
However it is important to understand that the type index of the application is theoretically necessary
to have the equivalence with CwfLF (cf. remark 4), it is just an informal and concise way of writing
the application.

Remark 8. The rules of defining LFs (fig. 6) are very similar to the rules defining gats (fig. 1). And
actually, we will see later that the theory LF is equivalent to the theory Gat.

Definition 10 (Free, defined variables). The set of variables FV (M) free in a term M is defined
inductively by

FV (x) ≡ {x}
FV (λx.M) ≡ FV (M) \ {x}

FV (AppΠx:A.B (M,N)) ≡ FV (M) ∪ FV (N)
FV (〈M,N〉) ≡ FV (M) ∪ FV (N)

The set of variables DV (Γ ) defined in a context is defined inductively by

DV (x : A) ≡ {x}
DV (Γ, x : A) ≡ DV (Γ ) ∪ {x}

We will now prove some lemmata which show that “everything is going on well” i.e. that the rules
are natural in the sense that they are compatible with most operations among which substitution
and reduction. Those are going to be used later to show that the equality is decidable in LFs. The
proofs of most of those lemmata are given in annex, in section B.1. They are mostly inductions on
the derivation of the hypothesis.

13



Contexts

¦ `
(C-Emp)

Γ ` A x 6∈ DV (Γ )

Γ, x : A `
(C-Ext)

Types

Γ `

Γ ` ?
(Star)

Γ ` M : ?

Γ ` El M
(Elem)

Γ, x : A ` B

Γ ` Πx : A.B
(Exp)

Type equalities

Γ ` A

Γ ` A = A
(Ty-Eq-Refl)

Γ ` A = B

Γ ` B = A
(Ty-Eq-Sym)

Γ ` A = B Γ ` B = C

Γ ` A = C
(Ty-Eq-Trans)

Γ ` M = N : ?

Γ ` El M = El N
(El-Eq-C)

Γ ` Πx : A.B Γ ` A = A′ Γ, x : A ` B = B′

Γ ` Πx : A.B = Πx : A′.B′
(Π-Eq-C)

Terms

Γ, x : A, ∆ `

Γ, x : A, ∆ ` x : A
(Var)

Γ ` M : A Γ ` A = B

Γ ` M : B
(Tm-Conv)

Γ, x : A ` M : B

Γ ` λx.M : Πx : A.B
(Abs)

Γ ` M : Πx : A.B Γ ` N : A

Γ ` AppΠx:A.B (M, N) : B[N/x]
(App)

Term equalities

Γ ` M : A

Γ ` M = M : A
(Tm-Eq-Refl)

Γ ` M = M ′ : A

Γ ` M ′ = M : A
(Tm-Eq-Sym)

Γ ` M = M ′ : A Γ ` M ′ = M ′′ : A

Γ ` M = M ′′ : A
(Tm-Eq-Trans)

Γ ` M = N : A Γ ` A = B

Γ ` M = N : B
(Tm-Eq-Conv)

Γ ` AppA (M, N) : B Γ ` A = A′

Γ ` AppA (M, N) = AppA′ (M, N) : B
(App-Eq-Conv)

Γ ` λx.M : Πx : A.B Γ, x : A ` M = M ′ : B

Γ ` λx.M = λx.M ′ : Πx : A.B
(Π-I-Eq)

Γ ` M : Πx : A.B Γ ` N = N ′ : A

Γ ` AppΠx:A.B (M, N) = AppΠx:A.B

`

M, N ′
´

: B [N/x]
(App-Eq)

Γ ` λx.M : Πx : A.B Γ ` N : A

Γ ` AppΠx:A.B ((λx.M), N) = M [N/x] : B[N/x]
(Π-C)

Γ ` M : Πx : A.B

Γ ` M = λx.AppΠx:A.B (M, x) : Πx : A.B
(Π-η)

Figure 6. Typing rules in LF

14



Types

Γ ` M : A

Γ ` ? [M/x] = ?
(Star-S)

Γ, x : A ` M : ? Γ ` N : A

Γ ` (El M) [N/x] = El (M [N/x])
(El-S)

Γ, x : A ` Πy : B.C Γ ` M : A x 6∈ DV (M)

Γ ` (Πy : B.C) = Πy : (B [M/x]) . (C [M/x])
(Π-S)

Terms

Γ ` x : A Γ ` M : A

Γ ` x [M/x] = M : A
(Var-S)

Γ, x : A ` y : B Γ ` M : A y 6= x

Γ ` y [M/x] = y : B [M/x]
(Var-S’)

Γ, y : B ` λx.M Γ ` N : B x 6∈ DV (M)

Γ ` (λx.M) [N/y] = λx. (M [N/y])
(Abs-S)

Γ, y : B ` AppΠx:C.D (M, N) : A Γ ` P : B

Γ ` (AppΠx:C.D (M, N)) [P/y] = AppΠx:C[P/y].D[P/y] ((M [P/y]) , (N [P/y]))
(App-S)

Figure 7. Rules for substitutions in LF

Lemma 1 (Well-formedness). Let Γ ≡ x1 : A1, . . . , xn : An be a context, A and B two types and
M a term. We shall write dΓ ei ≡ x1 : A1, . . . , xi : Ai. The following rules hold

1. if Γ ` is derivable then for all i such that 1 < i ≤ n, xi 6∈ DV (dΓ ei−1), FV (Ai) ⊂ DV (dΓ ei−1)
and dΓ ei−1 ` Ai appears in the derivation;

2. if Γ ` J is derivable then FV (J ) ⊂ DV (Γ ) and Γ ` appears in the derivation, where J is
either a type, a typed term, an equality between types or a typed equality between terms.

Lemma 2. The following rules hold

1. if Γ ` A = B is derivable then Γ ` A and Γ ` B are derivable;
2. if Γ ` M = N : A is derivable then Γ ` M : A and Γ ` N : A derivable.

Definition 11 (Concatenation of two contexts). The concatenation (written “,”) of a context
and a variable-type couple can be extended to the concatenation of two contexts (that we shall write
“ ,̃ ” here for clarity but that we will write “,” in the remaining of the paper) by

Γ ,̃ ¦ ≡ Γ
Γ ,̃ (∆,x : A) ≡ (Γ ,̃ ∆) , x : A

Definition 12 (Substitution on contexts). The substitution can be extended on contexts by

¦ [M/x] ≡ ¦
(Γ, x : A) [M/x] ≡ Γ
(Γ, y : A) [M/x] ≡ Γ [M/x] , y : A [M/x]

Lemma 3 (Weakening). If x 6∈ DV (Γ ) ∪ DV (∆) and Γ ` C then

1. if Γ,∆ is a context then Γ, x : C,∆ is a context;
2. if Γ,∆ ` A then Γ, x : C,∆ ` A;
3. if Γ,∆ ` A = B then Γ, x : C,∆ ` A = B;
4. if Γ,∆ ` M : A then Γ, x : C,∆ ` M : A;
5. if Γ,∆ ` M = N : A then Γ, x : C,∆ ` M = N : A.

Lemma 4. The following rule holds

Γ ` M : Πx : A.B Γ ` N = N ′ : A

Γ ` AppΠx:A.B (M,N) = AppΠx:A.B (M,N ′) : B [N/x]

15



Lemma 5. If Γ, x : A,∆ ` x : B then Γ ` A = B.

Lemma 6 (Soundness of the substitution). If Γ ` N : B is derivable then

1. if Γ, x : B,∆ is a context then Γ,∆ [N/x] is a context;
2. if Γ, x : B,∆ ` A is derivable then Γ,∆ [N/x] ` A [N/x] is derivable;
3. if Γ, x : B,∆ ` A = A′ is derivable then Γ,∆ [N/x] ` A [N/x] = A′ [N/x] is derivable;
4. if Γ, x : B,∆ ` M : A is derivable then Γ,∆ [N/x] ` M [N/x] : A [N/x] is derivable;
5. if Γ, x : B,∆ ` M = M ′ : A is derivable then Γ,∆ [N/x] ` M [N/x] = M ′ [N/x] : A [N/x] is

derivable.

Definition 13 (β-reduction). The β-reduction relation, written →β is defined inductively on
terms by

(λx.M) N →β M [N/x]
(β-Red-App)

M →β M ′

λx.M →β λx.M ′ (β-Red-Abs-C)

M →β M ′

MN →β M ′N
(β-Red-App-C-L)

N →β N ′

MN →β MN ′ (β-Red-App-C-R)

The transitive closure of →β will be written
β
−→.

The β-convertibility relation, written
β
=, is the reflexive-, transitive- and symmetric-closure of

β
−→ i.e.

1. (β-Eq-Refl): M
β
= M ;

2. (β-Eq-Ext-R): if M
β
= N and N →β N ′ then M

β
= N ′;

3. (β-Eq-Ext-L): if M
β
= N and Nβ ← N ′ then M

β
= N ′.

Lemma 7. The relation
β
= is an equivalence relation.

Lemma 8. The substitution preserves β-convertibility:

1. if M
β
= M ′ then M [N/x]

β
= M ′ [N/x];

2. if N
β
= N ′ then M [N/x]

β
= M [N ′/x].

Lemma 9 (Subject reduction). If Γ ` M : A and M →β M ′ then Γ ` M = M ′ : A.

Lemma 10. If Γ ` M : A and M
β
= M ′ then Γ ` M = M ′ : A.

Lemma 11 (Soundness of a β-convertible substitution). If Γ ` N : B is derivable and

N
β
= N ′ then

1. if Γ, x : B,∆ ` M = M ′ : A is derivable then Γ,∆ [N/x] ` M [N/x] = M ′ [N ′/x] : A [N/x] is
derivable.

2. if Γ, x : B,∆ ` A = A′ is derivable then Γ,∆ [N/x] ` A [N/x] = A′ [N ′/x] is derivable;

Theorem 1 (Church-Rosser). If M
β
= M ′ then there exists a term N such that M

β
−→ N and

M ′ β
−→ N .

Definition 14 (η-reduction). The η-reduction, written →η, is defined inductively on terms by

– ( η-Red): λx.Mx →η M ;
– ( η-Red-Abs-C): if M →η M ′ then λx.M →η λx.M ′;
– ( η-Red-App-C-L): if M →η M ′ then MN →η M ′N ;
– ( η-Red-App-C-R): if N →η N ′ then MN →η MN ′.

16



The η-equivalence is the reflexive-, symmetric-, transitive-closure of →η and is written
η
=.

The βη-equivalence is the composition of the equivalences
β
= and

η
=.

The following lemma is will not be used in following proofs but is helpful to understand that the
equality in the theory is basically the same notion that the untyped βη-equality. However we have
chosen to use a λ-calculus with a typed equality because this way of presenting the theory seemed
to be more natural and extensible. Moreover, typed equality is quite convenient and natural to use.
For example11 we have

2 = 4 : (Z mod 4)

but
2 6= 4 : Z

Lemma 12. If Γ ` M : A, then Γ ` M = M ′ : A iff M
βη
= M ′.

3 Decidability of equality in Cwf

3.1 Decidability of the equality in LF

In this section, we are going to prove that the equality is decidable in LF. More precisely, we are
going to show that there exists an algorithm which, given two terms M and N and the proofs of
their common type in an environment Γ (i.e. the proofs of Γ ` M : A and Γ ` N : A), will answer
in a finite time whether the judgment Γ ` M = N : A is derivable or not.

Deciding the equality of two terms is considered to be an important property of theories because
it is a fundamental result to have decidability results – and those results can be effective (i.e. have
algorithms) since we explicitly give an algorithm to decide the equality.

Moreover, this result is not self-evident. As shown in lemma 12, the equality is basically the βη-
equivalence on typable terms, and the fact that it is only on typable terms is crucial. If we consider
the βη-equivalence on untyped λ-terms then this equality is not decidable anymore. Here is a sketch
of the proof. λ-calculus has been shown to be Turing-complete and two λ-terms are extensionally
equal iff they are βη-convertible; thus, deciding βη-convertibility would be the same as deciding
extensional equality which is undecidable by reduction to the halt problem.

The proof we are going to make is a generalization of the proof given in [Fau02] for the non-
dependent case (the simply-typed λ-calculus). We are also going to use some results of [CPT03].
Our result is also a generalization of their because they show the decidability of the equality only
for a particular model of the dependently-typed λ-calculus: the per-model (see definition 20).

The structure of the proof is the following. First we are going to define a particular η-expansion
based on a type A which is called the incarnation and is written ηA. It has been shown in [CPT03]
that if ` M : A is derivable in LF then ηA(M) is normalizable and therefore, if ` N : A is also

derivable in LF the relation ηA(M)
β
= ηA(N) is decidable (by theorem 1 it is sufficient to check if

they reduce to the same normal form). Then, we are going to prove that ` M = N : A holds in LF

iff ηA(M)
β
= ηA(N), which implies the decidability of the equality in LF. Only a little more work is

needed to show that we can also decide judgments with a context (of the form Γ ` M = N : A).
The proofs of most of the properties given here can be found in annex, in section B.2. They are

mostly inductions on the structure of the derivation of the hypothesis.

Let’s first define environments. These are functions which can be seen as a functional and untyped
equivalent of context morphisms in LF in the sense that they also associate terms to variables.
Actually, for each context Γ , we will be able to define a special environment ρΓ which will turn
out to be helpful to get rid of contexts when deciding equality by replacing each variable by its
incarnation based on its type in the context.

11 Of course this cannot be expressed in our type system (we do not have integers for example) but could
be in an extension of it.

17



Definition 15 (Environment). An environment ρ is a function which to each LF-variable as-
sociates an LF-term. The identity environment idenv is such that for all variable x, idenv(x) = x.
Given an environment ρ and a (variable, term)-couple, we can define the update of ρ by

〈ρ, x 7→ M〉 (y) =

{

M if y = x

ρ(y) else

We will write M [ρ] (resp. A [ρ]) the simultaneous (for all variables x) substitution of ρ(x) for
all free occurrence of x in M (resp. A). The composition of environments is defined by ρ1 ◦ ρ2(x) =
ρ1(x) [ρ2]. Therefore we have M [ρ1 ◦ ρ2] = (M [ρ1]) [ρ2].

Lemma 13. If M
β
= N then M [ρ]

β
= N [ρ].

We will now introduce the concept of incarnation which was first defined by J.-Y. Girard. The
version we use here is a more syntactic definition proposed by T. Coquand in [CPT03]. It is a
syntactic transformation of a term w.r.t. a given type, such that the new term is built according
to the considered type i.e. we forget about the information which is not related to the type and
focus on the part of the term that gives information related to the type. It might not be very clear
here since we work with a really minimal λ-calculus (in particular we do not have a unit element
or paring) but it is really the idea behind this definition. This incarnation will pre-η-expand terms
according to their type in such manner that to check if two terms of same type are equal we will only
need to check if their incarnations are β-convertible (instead of βη-convertible, since by lemma 12
the equality of the theory is the same as the βη-convertibility).

Definition 16 (Incarnation). The incarnation ηA(M) of a term M w.r.t. the type A is defined
inductively on A by:

– η?(M) ≡ M ;
– ηEl N (M) ≡ M ;
– ηΠx:A.B(M) ≡ λz.ηB[ηA(z)/x] (AppΠx:A.B (M, ηA (z))) with z not free in B.

The incarnation ηΓ (ρ) of an environment ρ w.r.t the context Γ is defined inductively on Γ by:

– η¦(ρ) = ρ;
– ηΓ,x:A(ρ) =

〈

ηΓ (ρ), x 7→ ηA[ηΓ (ρ)] (ρx)
〉

.

We will write ρΓ for ηΓ (idenv). The second rule gives immediately the recursive definition

ρΓ,x:A =
〈

ρΓ , x 7→ ηA[ρΓ ] (x)
〉

Remark 9. Of course we have ηB[ηA(z)/x](M) ≡ ηB(M) since substitution on types only replaces vari-
ables in types of the form El N and the incarnation ηEl N does not depend on N . Thus, incarnation of
Π-types could have equivalently and more simply been defined by ηΠx:A.B(M) ≡ λz.ηB (M ηA (z))
(without the substitution on B). However this definition is more natural in the sense that it should
be more scalable, i.e. it should suit better if we wanted to extend this notion to a more complex
type theory.

The incarnation on contexts was defined in order to “get rid” of the context. In fact the equiva-
lence we are going to prove is

Γ ` M = N : A iff ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ]

The incarnation ρΓ of the context Γ is here to close the terms by substituting to the free variables
in M and N their incarnation w.r.t their type in the context of their value in the context since we
want the resulting terms to be β-convertible and not only βη-convertible.

We will now prove some technical lemmata which are of small interest in themselves but are
going to be helpful in the following proofs. In particular, since most proofs are inductions (on the
derivation of a judgment in hypothesis), we will need recursive definitions for some of the previously
defined notions (the application of an environment and the incarnation of a context).

18



Lemma 14. The following rules hold, giving us a recursive definition of the application of an en-
vironment to a term.

1. If x 6∈ FV (J ) then J [〈ρ, x 7→ M〉] = J [ρ];

2. (Πx : A.B) [ρ] = Πx : (A [ρ]) . (B [〈ρ, x 7→ x〉]);

3. (λx.M) [ρ] = λx. (M [〈ρ, x 7→ x〉]);

4. (MN) [ρ] = (M [ρ]) (N [ρ]);

5. ηA(M) [ρ]
β
= ηA[ρ] (M [ρ]).

Lemma 15. FV (ηA (M)) = FV (M).

Proof. By induction on A. ut

Lemma 16 (Recursive definition of [ρΓ ]). If Γ, x : A is a context then

M [ρΓ,x:A] ≡ M
[〈

ρΓ , x 7→ ηA[ρΓ ] (x)
〉]

≡ M [ηA (x)] [ρΓ ]

Proof. By induction on the length of Γ . ut

Remember that we want to relate equality in the LF-theory and β-conversion of incarnation of
terms. Towards this goal we need some intermediate lemmata which relate both equalities.

Lemma 17. If M
β
= N then ηA(M)

β
= ηA(N).

Proof. By induction on A. ut

Lemma 18. If Γ ` A = B then ηA(M)
β
= ηB(M).

Proof. By induction on the derivation of Γ ` A = B. ut

We now want to prove that if Γ ` M = N : A then ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ] which is one of

the two implications of the goal equivalence. The first idea is of course to prove that by induction
on the derivation of Γ ` M = N : A. However this cannot be done since we would not be able
to use the induction hypothesis when dealing with the rule (App-Eq). This is due to the fact that
the definition of the incarnation of an application is not recursive: we do not have ηB[N/x](MN) ≡
ηΠx:A.B(M)ηB(N) but rather ηB[N/x](MN) ≡ (ηΠx:A.B (M))N . Actually the proof turned out to
be much more complicated than we thought it would be.

We have to interpret LF in a particular model, the model of partial equivalence relations; the
equality in this model has been proven in [CPT03] to imply the result we want (the validity of the

interpretation of the judgment Γ ` M = N : A in this model implies ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ]).

It would be interesting – but would require much more work and time than we actually had – to
understand what really is the cause of the impossibility to make a purely syntactic proof, which
would be more satisfactory since the result we want is purely syntactic.

Write O the set of objects i.e. syntactic terms of the form

M,N ::= x | λx.M | AppΠx:A.B (M,N)

Partial equivalence relations are going to be defined in order to have a model of type theory.
They are based on the intuitive idea that we can prove that M = M : A iff the type A is inhabited
(else this equation is quite meaningless).

19



Definition 17 (per). A partial equivalence relation (per) on a set D is a binary relation A on D

which is symmetric and transitive.
We may write u1 = u2 : A for A(u1, u2) and u : A for u = u : A. Write JAK for the set of all

u ∈ D such that u : A and per (D) for the set of all pers on D. If A ∈ per (D) then Fam (A) is
the set of all functions F : JAK → per (D) such that F(u1) = F(u2) (where = is the extensional
equality12) whenever u1 = u2 : A.

If A ∈ per (O) and F ∈ Fam (A) we can form Π(A,F) ∈ per (O) defined by w1 = w2 : Π(A,F)
iff u1 = u2 : A implies w1u1 = w2u2 : F(u1).

Definition 18 (Neutral terms). A term is neutral iff it is (weakly) normalizable and of the form

ν ::= x | νM

Definition 19 (Saturation). A relation A ∈ per (O) is saturated iff

– ν : A for every neutral ν;
– if u : A then u is normalizable;

– if u1 = u2 : A then u1
β
= u2.

Definition 20 (Per-interpretation). A per-interpretation (in a per-model) of types is constituted
of

– an interpretation ? ∈ per (O) of ?;
– a family E ∈ Fam (?) such that for all M : ?, the interpretation El M ≡ E(M) is saturated.

The interpretation of Πx : A.B is Πx : A.B ≡ Π(A,M 7→ B [M/x]).
The intentional equality is defined by the rules of figure 8. It is intentional in the sense that

? ∼= ?
(Star-Eq-C)

M = N : ?

El M ∼= El N
(El-Eq-C)

A1
∼= A2

M 7→ B1 (M) ∈ Fam
`

A1

´

M 7→ B2 (M) ∈ Fam
`

A2

´

M1 = M2 : A1 ⇒ B1 (M1) ∼= B2 (M2)

Πx : A1.B1
∼= Πx : A2.B2

(Π-Eq-C)

Figure 8. Rules of intentional equality

A = B (extensionally) does not imply A ∼= B.
We will sometime write M : A for M = M : A and writing A will always imply A ∼= A.

Belonging to the interpretation of a Π-type can be defined inductively:

Lemma 19. If N = N ′ : A ⇒ M [N/x] = M ′ [N ′/x] : B [N/x] then λx.M = λx.M ′ : Πx : A.B.

Proof. By definition of Πx : A.B. ut

In this model we are able to define a typed equality between environments. This equality is the
counterpart in per-models of typed equality between morphisms of LF or of CwfLF.

12 Two functions f and g with a common domain D are said to be extensionally equal iff ∀x ∈ D , f(x) = g(x).
The same definition holds for typed λ-terms: two λ-terms M and M ′ of type Πx : A.B in a context Γ are
extensionally equal iff the rule

Γ ` N : A

Γ ` MN = M ′N : B [N/x]

holds.

20



Definition 21 (Judgements in per-models). The judgments ρ1 = ρ2 : Γ (which means that the
two environments ρ1 and ρ2 are equal in the context Γ ), Γ : Ctxt (Γ is a valid context), A1 = A2JΓ K
(the two types A1 and A2 are equal in the context Γ ) and M1 = M2 : AJΓ K (the two terms M1 and
M2 of type A are equal in the context Γ ) are defined by induction by the rules of the figure 9.

We might write AJΓ K for A = AJΓ K and M : AJΓ K for M = M : AJΓ K.

Rules for environments

ρ1 = ρ2 : ¦
(Env-C-Emp)

ρ1 = ρ2 : Γ A [ρ1] ∼= A [ρ2] ρ1x = ρ2x : A [ρ1]

ρ1 = ρ2 : Γ, x : A
(Env-C-Ext)

Rules for contexts

¦ : Ctxt
(C-Emp)

x 6∈ DV (Γ ) AJΓ K

Γ, x : A : Ctxt
(C-Ext)

Rules for equalities

Γ : Ctxt ∀ρ1, ρ2, ρ1 = ρ2 : Γ ⇒ A1 [ρ1] ∼= A2 [ρ2]

A1 = A2JΓ K
(Ty-Eq)

AJΓ K ∀ρ1, ρ2, ρ1 = ρ2 : Γ ⇒ M1 [ρ1] = M2 [ρ2] : A [ρ1]

M1 = M2 : AJΓ K
(Tm-Eq)

Figure 9. Rules for per-models

With those definitions, some derivation rules which are really similar to the derivations in LF
can be proven to be valid. These will help to show that this model is compatible with the judgments
in LF.

Lemma 20. The rules of the figure 10 have been proven to hold in per-models in [CPT03].

Lemma 21. The relations ∼= and = (on environments in a context, on types in a context and on
typed terms in a context) are equivalence relation.

Proof. By induction on the structure of the derivations. ut

Lemma 22. If ρ = ρ′ : Γ and y 6∈ Γ then for any M , ρ = 〈ρ′, y 7→ M〉 : Γ .

Proof. By induction on the proof of ρ = ρ′ : Γ . ut

We can now prove that the interpretation is compatible with the judgments in LF.

Lemma 23 (Interpretation of LF in a per-model). The following rules hold

– if Γ ` then Γ : Ctxt;
– if Γ ` A then AJΓ K;
– if Γ ` A1 = A2 then A1 = A2JΓ K;
– if Γ ` M : A then M : AJΓ K;
– if Γ ` M1 = M2 : A then M1 = M2 : AJΓ K;

Proof. By induction on the structure of the derivation of the hypothesis. ut

Lemma 24. If Γ ` M = N : A then ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ].

Proof. Suppose that Γ ` M = N : A. Then by lemma 23 we have M = N : AJΓ K and this has been

proven to imply ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ] in [CPT03]. ut

21



Type formation and equalities

Γ : Ctxt

?JΓ K
(Star)

M = N : ?JΓ K

El M = El NJΓ K
(El-Eq-C)

A1 = A2JΓ K B1 = B2JΓ, x : A1K

Πx : A1.B1 = Πx : A2.B2JΓ K
(Π-Eq-C)

Terms

Γ, x : A : Ctxt

x : AJΓ, x : AK
(Var)

M : BJΓ, x : AK

λx.M : Πx : A.BJΓ K
(Abs)

M : Πx : A.BJΓ K N : AJΓ K

MN : B [N/x] JΓ K
(App)

Type conversion

M = N : AJΓ K A = BJΓ K

M = N : BJΓ K
(Tm-Eq-Conv)

Weakening

B1 = B2JΓ K Γ, x : A : Ctxt

B1 = B2JΓ, x : AK

M = N : BJΓ K Γ, x : A : Ctxt

M = N : BJΓ, x : AK

Figure 10. Derivable rules in per-models

Lemma 25. If Γ ` M : A then Γ ` M = ηA (M) : A.

Proof. By induction on A. ut

Lemma 26. If Γ ` M : A then Γ ` M = M [ρΓ ] : A.

Proof. By induction on the derivation of Γ ` M : A. ut

Lemma 27. If Γ ` M : A, Γ ` N : A and ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ] then Γ ` M = N : A.

Proof. Since by hypothesis we have Γ ` M : A, using lemmata 25 and 2 we also have Γ ` ηA(M) :
A and by lemmata 26 and 2 we have Γ ` ηA(M) [ρΓ ] : A. Similarly, we can show that Γ `

ηA(N) [ρΓ ] : A. By hypothesis, we also have ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ], which implies by lemma 10

that Γ ` ηA(M) [ρΓ ] = ηA(N) [ρΓ ] : A. Using lemmata 25, 26 and (Tm-Eq-Trans), we have
Γ ` M = ηA (M) [ρΓ ] : A and Γ ` N = ηA (N) [ρΓ ] : A. Finally, using (Tm-Eq-Trans) and
(Tm-Eq-Refl), we can conclude that Γ ` M = N : A. ut

Theorem 2. If Γ ` M : A, Γ ` N : A then: Γ ` M = N : A iff ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ].

Proof. This results directly from lemmata 24 and 27. ut

Theorem 3. The equality is decidable in LF.

Proof. It has been shown in [CPT03] that the relation ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ] is decidable. It

comes from the fact that typable terms are normalizable. Thus to decide equality of two terms M
and N , it is enough to compute their normal forms by making successive β-reductions and check if
they are the same. We can show that two β-convertible normalizable terms have the same normal
form using theorem 1. ut

22



3.2 Definition of LF as a pseudo-gat

Let’s first introduce a slightly different definition of LF. This definition looks much more like a gat.
We do this in order to be able not to handle explicitly the rules implied by gat (the type conversion
rules for example).

Definition 22 (Equivalent definition of LF). LF can be equivalently defined as a pseudo-gat
i.e. the theory defined by the rules (and the notations) of the figure 11 and where additionally the
“meta”-rules implied by Gat (fig. 1) are required to hold – in fact, those rules are the rules of fig. 6
under sections “type equalities” and “term equalities” excepting (Π-C) and (Π-η) and the rule of
lemma 4. We also have slightly changed the notations to make it look much more like the definition
of Gat (fig. 1) in order for the equivalence between the two systems to be visually clearer.

This theory will be written LFGat in the proof of the equivalence of the two definitions but LF
after that (this is motivated by the equivalence).

We do not mention it explicitly but x is supposed to be fresh (i.e. not in the variables defined in
the preceding context Γ ).

Remark 10. The theory defined in fig. 11 is not a proper gat since we use the substitution in those
rules and substitution is a higher-order operation (that is why we have called it a pseudo-gat). To
be defined in gat, LF should be defined with explicit substitutions and De Bruijn indexes. However
we did not want to use explicit substitutions even though a λ-calculus with explicit substitutions
would be more like CwfLF (which would have lead to a simpler proof of equivalence) because the
λ-calculus with explicit substitutions has been less studied than the usual λ-calculus.

Definition 23 (Substution on contexts). Substitution can naturally be extended on contexts by

¦ [M/x] ≡ ¦

(Γ, x : A) [M/x] ≡ Γ

(Γ, y : A) [M/x] ≡ Γ [M/x] , y : A [M/x]

Lemma 28 (Soundess of application of context morphisms). The following rules are deriv-
able

Γ : Ctxt
A : Type (Γ ) x : Γ ` A M : Γ ` A Γ, x : A,∆ : Ctxt B : Type (Γ, x : A,∆)

B [M/x] : Type (Γ,∆ [M/x])
Γ : Ctxt A : Type (Γ )

x : Γ ` A M : Γ ` A Γ, x : A,∆ : Ctxt B : Type (Γ, x : A,∆) N : Γ, x : A,∆ ` B

N [M/x] : Γ,∆ [M/x] ` B [M/x]

Definition 24 (Context morphism). A context morphism γ is a list of variable-term couples.
Morphisms of LF and associated operators are defined by the rules of figure 12.

3.3 Equivalence between LF and CwfLF

In this section, we show the equivalence between LF and CwfLF.
The elaboration of the proof of the equivalence of the two theories was one of the hardest points

we have faced. The first decision we had to make was to decide whether we would chose a semantic
or a syntactic approach.

Historically, the first proof of the equivalence between simply-typed λ-calculus and cartesian-
closed categories (ccc) – proof of which this proof can be seen as an extension – was a semantic one
and is given in [LS86]. It proves the equivalence between the two theories by proving the equivalence
of the respective categories of models. More precisely, for each model of one theory an equivalent
model is given and the equivalence is proven by giving two reciprocal interpretations that are proven

23



Sort symbols:
Ctxt : Sort
Γ : Ctxt

Type (Γ ) : Sort
Γ : Ctxt A : Type (Γ )

Γ ` A : Sort

Contexts

Operator symbols:
¦ : Ctxt

(C-Emp)

Γ : Ctxt A : Type (Γ )

Γ, x : A : Ctxt
(C-Ext)

Types

Operator symbols:
Γ : Ctxt

Star : Type (Γ )
(Star)

Γ : Ctxt M : Γ ` Star

Elem (M) : Type (Γ )
(Elem)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, x : A)

Πx : A.B : Type (Γ )
(Exp)

Terms

Operator symbols:
Γ : Ctxt A : Type (Γ )

x : (Γ, x : A ` A)
(Var)

Γ : Ctxt A B : Type (Γ ) x : Γ ` A x 6≡ y

x : (Γ, y : B ` A)
(Var-Ext)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, x : A) M : Γ, x : A ` B

λx.M : Γ ` Πx : A.B
(Abs)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, x : A) M : Γ ` Πx : A.B N : Γ ` A

AppΠx:A.B (M, N) : Γ ` B [N/x]
(App)

Equations:
Γ : Ctxt A : Type (Γ ) B : Type (Γ, x : A) M : Γ, x : A ` B Γ : N ` A

AppΠx:A.B ((λx.M) , N) = M [N/x] : Γ ` B [N/x]
(Π-C)

Γ : Ctxt A : Type (Γ ) B : Type (Γ, x : A) M : Γ ` Πx : A.B

λx. (AppΠx:A.B (M, x)) = M : Γ ` Πx : A.B
(Π-η)

Figure 11. Definition of LF as a pseudo-gat

24



Sort symbols:
Γ ∆ : Ctxt

∆ → Γ : Sort

Operator symbols:
Γ : Ctxt

〈〉 : Γ → ¦
Γ ∆ : Ctxt γ : ∆ → Γ A : Type (Γ ) x : Γ ` A M : ∆ ` A [γ]

〈γ, x 7→ M〉 : ∆ → Γ, x : A
Γ : Ctxt

idΓ : Γ → Γ
Θ ∆ Γ : Ctxt γ : ∆ → Γ δ : Θ → ∆

γ ◦ δ : Θ → ∆
Γ ∆ : Ctxt γ : ∆ → Γ A : Type (Γ )

A [Γ ] : Type (∆)
Γ ∆ : Ctxt γ : ∆ → Γ A : Type (Γ ) M : Γ ` A

M [γ] : ∆ ` A [γ]

Equations:
〈〉 = id¦ : ¦ → ¦

Γ ∆ : Ctxt γ : ∆ → Γ A : Type (Γ ) x : Γ ` A M : ∆ ` A [γ] B : Type (Γ, x : A)

B [〈γ, x 7→ M〉] = (B [M/x]) [γ] : Type (∆)
Γ : Ctxt A : Type (Γ )

A [idΓ ] = A : Type (Γ )
Γ : Ctxt A : Type (Γ ) M : Γ ` A

M [idΓ ] = M : Γ ` A

Figure 12. Rules for context morphisms in LF

25



to respect some soundness properties (i.e. basically they are compatible with the morphisms of the
categories). This proof is rather complicated with many technical details: they have to introduce
polynomial λ-calculi (which are λ-calculi with extra term-variables added), their calculus has to
have a natural number object (i.e. “contain” N), etc. Some more technical details seem to be very
unnatural. The proof is a also quite difficult to follow because it involves many concepts of category
theory (for example the equivalence between the categories of models is defined using the notion of
natural transformation).

The proof we chose to do is a syntactic one which consists in giving two interpretations of one
theory to the other one. However these interpretations are purely syntactical (no reference is ever
made to a model). This is inspired by work already made to show the equivalence between cccs and
simply-typed λ-calculus. A sketch of the proof is given in [Hue86]. Some encoding is needed because
objects of cccs are types and not contexts. Therefore the translation can only be done on terms
in a context with one element which is not restrictive; the pairing operations13 and the curryfying
operation14 are required to be in both theories to “encode” the context into a type: the context
x1 : A1, x2 : A2, . . . , xn : An is encoded to x : (((A1 ∧ A2) ∧ . . .) ∧ An−1) ∧ An and the variables
xi can be recovered by using projections and is replaced by π′ ◦ πn−i (in cwfs, this structure is in
contexts and no encoding is needed which might seem more natural).

Both theories have roughly the same operators and the same structure. So it might seem quite
easy to prove the equivalence. However, when looking at it attentively many technical details have
to be dealt with (see [Cur86] and [San87]) especially when relating the substitution of λ-calculus
(which is a semantic operation, of high-order) with the substitution of cwfs (which is a syntactic
operation and is part of the calculus). Many presentations of the calculi are possible and are not all
equivalent, in particular some operators can be typed or not (the abstraction and the application
for example).

The second approach seems more natural and simple. That is why we chose it. Actually, you
have to deal with less technical details and the proof is conceptually simpler. However the first one
may seem more satisfactory in the sense that what we really want to talk about is the category of
models and not so much the theory which has generated this category.

We have adopted the structure of the proof given in [San87] for the equivalence between simply-
typed λ-calculus and cccs or of the one given in [Rit92] for the equivalence between the Calculus
of Constructions (a calculus a bit different from our LF) and categories with attributes (a theory
similar to cwfs). The sketch of the proof is rather simple. We are going to define two interpretations
of one theory in one another. Those are entirely syntactical. J K

CwfLF
interprets LF-terms, -types

and -contexts in Cwf and reciprocally J K
LF

will interpret Cwf -terms, -types and -contexts in LF.
Those interpretation will be then proven to be sound which means that if a judgment Γ ` J holds
in LF then its interpretation JΓ K

CwfLF
` JJ K

CwfLF
in CwfLF holds and reciprocally. Finally, we

will show that the two interpretations are inverse of one another modulo equality. Those conditions
are enough to show that an equality Γ ` M = N : A holds in CwfLF iff its interpretation holds
in LF. Therefore, since we have shown that the equality was decidable in LF, we will be able to
conclude that the equality is decidable in CwfLF.

The general idea may seem to be simple but we will see that we will have face some complicated
details in particular when we will have to relate the substitution of the two theories. The main
problem comes from the fact that substitution is in the theory in cwfs whereas it is a meta-operation
in λ-calculus. The proof of the equivalence might have been easier if we had chosen a λ-calculus
with explicit substitutions but we did not want to do that since λ-calculi with explicit substitution
have been much less studied than without.

We have already explained that the operator App of CwfLF has to be typed in order to have
the decidability of the initial model of CwfLF; the App of CwfLF must therefore also be typed in

13 For each two types A and B there is a sum type A ∧ B and there is also a sum object for each pair of
morphisms of same domain, along with the respective projections.

14 The curryfying operator is basically the operation which to each morphism f associates the morphism
“λx.λy.f 〈x, y〉” (in OCaml this operator would be defined by let curry f x y = f (x, y)).

26



order for the equivalence not to be too complicated (it might even have been unfeasible). However it
would have been much simpler and more clean with untyped operators in both theories (in fact this
is the proof we had begun to do before we became aware of the initial model problem). For example
in [Rit92], they have untyped theories and they have completed their interpretation with “stubs”
(i.e. meaningless values) in order to have a total interpretation. For example the interpretation of
xi in an empty context is quite meaningless (or on the other way, the interpretation of q in an
empty context). They have however given an arbitrary value (a stub) to the interpretation of xi;
this way, their interpretation is total and they can avoid using the Kleene equality15 which is rather
difficult to manipulate and not very natural since we always have to wonder whereas the objects we
manipulate are defined or not.

Remark 11. To avoid having to pass the type of the interpreted term as an argument of the in-
terpretations, we are going to use slightly different notations than previously mentioned for the
abstraction in LF and Cwf : those will be indexed by the type of the argument. For example we
will write λxA.M instead of λx.M in LF and λA (M) instead of λ (M) in Cwf . This is not strictly
necessary but the syntax for the interpretations is already hard enough to read as you will see.

The proofs of most properties can be found in annex C.

Interpretation of LF into CwfLF We first provide an interpretation of terms, types and contexts
of objects of LF into objects of LF. It is largely inspired of [Hof97] and [Rit92].

The theory LF can be interpreted into a CwfLF with the interpretation J K
Cwf

defined by

– contexts of LF are interpreted into contexts (objects) of CwfLF

J¦K
CwfLF

≡ ¦

JΓ, x : AK
CwfLF

≡ JΓ K
CwfLF

, JAKΓ
CwfLF

– types of LF in a context Γ are interpreted into types of CwfLF in the context JΓ K
CwfLF

JStarKΓ
CwfLF

≡ Star

JElem (M)KΓ
CwfLF

≡ Elem
(

JMKΓ
CwfLF

)

JΠx : A.BKΓ
CwfLF

≡ Π
(

JAKΓ
CwfLF

, JBKΓ,x:A
CwfLF

)

– terms of LF of type A in a context Γ ≡ x1 : A1, . . . , xn : An are interpreted into terms of CwfLF

of type JAKΓ
CwfLF

in the context JΓ K
CwfLF

(we write Γ ′ the context xA : A1, . . . , xn−1 : An−1)

JxiKΓ
CwfLF

≡











q
JAnKΓ ′

CwfLF

if i = n

JxiKΓ ′

CwfLF

[

p
JAnKΓ ′

CwfLF

]

else

JλxA.MKΓ
CwfLF

≡ λA

(

JMKΓ,x:A
CwfLF

)

JAppΠx:A.B (M,N)KΓ
CwfLF

≡ App
Π

“

JAKΓ
CwfLF

,JBKΓ,x:A
CwfLF

”

(

JMKΓ
CwfLF

, JNKΓ
CwfLF

)

Proof (Well-foundedness). This definition is well founded since:

– the interpretation of contexts calls itself recursively on structurally smaller contexts;
– the interpretation of types calls itself recursively on structurally smaller types;

15 The Kleene equality a ∼= b is defined by: a is defined iff b is defined and in this case a and b are equal.

27



– the interpretation of terms calls itself recursively on structurally smaller terms except for the

rule JxiKΓ
CwfLF

which only recursively calls JxiKΓ ′

CwfLF
with a context Γ ′ structurally smaller than

Γ . ut

Remark 12. The interpretation is partial: the interpretation of a term might not be defined. This
is why we are going to need to use Kleene equality. It would have been better to have a total
interpretation but this seems much more difficult to do.

To show that this translation has good soundness properties (cf. proposition 3), we must first
relate the syntactic substitution in LFs to semantic substitution in cwfs. This is why the following
definitions are required.

Definition 25 (Projection and unprojection morphisms). Let Γ and ∆ be two contexts, A a
type and M a term.

The projection morphism Px is defined inductively by:

Px(Γ, x : A) ≡ pJAKΓ
CwfLF

Px(Γ, x : A,∆, y : B) ≡ p̃
(

Px (Γ, x : A,∆) , JBKΓ,∆
CwfLF

)

=
〈

Px (Γ, x : A,∆) ◦ pJBKΓ,x:A,∆
CwfLF

, qJBKΓ,x:A,∆
CwfLF

〉

where p̃ is the weakening as defined in definition 6.
Similarly, the unprojection morphism UM

x is defined inductively by:

UM
x (Γ, x : A) ≡

〈

idΓ , JMKΓ
CwfLF

〉

UM
x (Γ, x : A,∆, y : B) ≡ p̃

(

UM
x (Γ, x : A,∆) , JBKΓ,x:A,∆

CwfLF

)

=

〈

UM
x (Γ, x : A,∆) ◦ p

JBK
Γ,∆[M/x]
CwfLF

, q
JBK

Γ,∆[M/x]
CwfLF

〉

The idea is that Px (Γ, x : A,∆) is a morphism

Px (Γ, x : A,∆) : JΓ, x : A,∆K
CwfLF

→ JΓ,∆K
CwfLF

in CwfLF projecting out the A-part. Similarly

UM
x (Γ, x : A,∆) : JΓ,∆[M/x]K

CwfLF
→ JΓ, x : A,∆K

CwfLF

is a morphism in CwfLF.
For possibly undefined expression s and t, we shall write s ∼= t to mean that if either side is

defined then so is the other one and both agree (Kleene equality).

Lemma 29 (Weakening). Let Γ and ∆ be pre-contexts, A and B be pre-types, M be a pre-
term and x a fresh variable. Let J be either M or A. The expression Px (Γ, x : A,∆) is defined iff
JΓ, x : A,∆K

CwfLF
and JΓ,∆K

CwfLF
are defined and in this case is a morphism from the former to

the latter. If JJ KΓ,∆
CwfLF

is defined then

JJ KΓ,x:A,∆
CwfLF

∼= JJ KΓ,∆
CwfLF

[Px (Γ, x : A,∆)]

Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -
contexts. ut

Lemma 30 (Substitution). Let Γ and ∆ be pre-contexts, A and B be pre-types, M and N be

pre-terms and x be a fresh variable. Let J be either A or M and suppose that JMKΓ
CwfLF

is defined.

The expression UM
x (Γ, x : A,∆) is defined iff JΓ,∆ [M/x]K

CwfLF
and JΓ, x : A,∆K

CwfLF
are both

defined and in this case is a morphism from the former to the latter. If JJ KΓ,x:A,∆
CwfLF

is defined then

JJ [M/x]KΓ,∆[M/x]
CwfLF

∼= JJ KΓ,x:A,∆
CwfLF

[

UM
x (Γ, x : A,∆)

]

28



Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -contexts
as in the proof of lemma 29. ut

Proposition 3 (Soundness). The interpretation function enjoys the following soundness proper-
ties

1. if Γ ` then JΓ K
CwfLF

: Ctxt is derivable in CwfLF;

2. if Γ ` A then JAKΓ
CwfLF

: Type
(

JΓ K
CwfLF

)

is derivable in CwfLF;

3. if M : Γ ` A then JMKΓ
CwfLF

: JΓ K
CwfLF

` JAKΓ
CwfLF

is derivable in CwfLF;

4. if Γ ` A = B then JAKΓ
CwfLF

= JBKΓ
CwfLF

: Type (Γ ) is derivable in CwfLF;

5. if M = N : Γ ` A then JMKΓ
CwfLF

= JNKΓ
CwfLF

: JAKΓ
CwfLF

is derivable in CwfLF.

Proof. The proof is done by induction on the derivations. ut

Interpretation of CwfLF into LF CwfLF can be interpreted into LF with the interpretation
J K

LF
defined by:

– contexts of CwfLF are interpreted into contexts of LF

JΓ K
LF

=

{

¦ if Γ = ¦

JΓ ′K
LF

, x : JAKΓ ′

LF
else, where x is a “fresh” variable (i.e. x 6∈ DV (JΓ ′K

LF
))

– types of CwfLF in a context Γ are interpreted into types of LF in the context JΓ K
LF

JStarKJΓ K
LF

LF
≡ Star

JElem (M)KJΓ K
LF

LF
≡ Elem

(

JMKJΓ K
LF

LF

)

JΠ(A,B)KJΓ K
LF

LF
≡ Πx : JAKJΓ K

LF

LF
. JBKJΓ K

LF
,x:JAK

JΓ KLF

LF

LF
with x 6∈ DV (() JΓ K

LF
)

JΣ(A,B)KJΓ K
LF

LF
≡ Σx : JAKJΓ K

LF

LF
. JBKJΓ K

LF
,x:JAK

JΓ KLF

LF

LF
with x 6∈ DV (JΓ K

LF
)

– terms of CwfLF in a context Γ are interpreted into terms of LF in the context JΓ K
LF

JqKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF
≡ x with x 6∈ DV (JΓ K

LF
)

JλA(M)KJΓ K
LF ≡ λxA.

(

JMKJΓ K
LF

,x:JAKΓ
LF

LF

)

with x 6∈ DV (JΓ K
LF

)

JApp (M,N)KJΓ K
LF

LF
≡

(

JMKJΓ K
LF

LF

)(

JNKΓ
LF

)

– morphisms of CwfLF are interpreted into context morphisms of LF

J〈〉KJΓ K
LF

LF
≡ 〈〉

J〈γ,M〉KJΓ K,x:JAK
JΓ KLF

LF

LF
≡

〈

JγKJΓ K
LF

LF
, x 7→ JMKJΓ K

LF
,x:JAK

JΓ KLF

LF

LF

〉

with x 6∈ DV (JΓ K
LF

)

Definition 26 (Projection and unprojection morphisms). Let Γ and ∆ be two LF-contexts
in CwfLF, A a CwfLF-type in the context Γ and M an LF-term.

The projection morphism Px is defined inductively by:

Px(Γ, x : A) ≡ idΓ

Px(Γ, x : A,∆, y : B) ≡ 〈Px (Γ, x : A,∆) , y 7→ y〉

The unprojection morphism UM
x is defined inductively by:

UM
x (Γ, x : A) ≡ idΓ ,MΓ

LF

UM
x (Γ, x : A,∆, y : B) ≡

〈

UM
x (Γ, x : A,∆) , y 7→ y

〉

29



Just like for the previous way, the idea is that Px (Γ, x : A,∆) is a context morphism

Px

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
, J∆K

LF

)

: JΓ,A,∆K
LF

→ JΓ,∆K
LF

in LF projecting out the A-part. Similarly, if M is a term of type Γ ` A in CwfLF then

UM
x

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
,∆

)

: JΓ,∆ [〈idΓ ,M〉]K
LF

→ JΓ,A,∆K
LF

is a context morphism in LF.

Lemma 31 (Weakening). Let Γ and ∆ be pre-contexts, A and B be pre-types, M be a pre-term

and x a fresh variable. Let J be either M or A. The expression Px

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
,∆

)

is

defined iff JΓ,A,∆K
LF

and JΓ,∆K
LF

are defined and in this case is a morphism from the former to

the latter. If JJ KΓ,∆
CwfLF

is defined then

JJ KJΓ,A,∆K
LF

∼= JJ KJΓ,∆K
LF

LF

[

Px

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
, J∆K

LF

)]

Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -contexts
as in the proof of lemma 29. ut

Lemma 32 (Substitution). Let Γ and ∆ be pre-contexts, A and B be pre-types, M and N

be pre-terms and x be a fresh variable. Let J be either A or M and suppose that JMKΓ
LF

is

defined. The expression UM
x

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
, J∆K

LF

)

is defined iff
q
Γ,∆

[〈

idJΓ K
LF

,M
〉]y

LF

and JΓ,A,∆K
LF

are both defined and in this case is a morphism from the former to the latter. If

JJ KJΓ K
LF

,x:JAK
JΓ KLF

LF
,J∆K

LF

LF
is defined then

q
J

[〈

idJΓ K
LF

,M
〉]yJΓ K

LF
,J∆[〈idJΓ KLF

,M〉]K
LF

LF

∼= JJ KJΓ K
LF

,x:JAK
JΓ KLF

LF
,J∆K

LF

LF

[

UM
x

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
, J∆K

LF

)]

Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -contexts
as in the proof of lemma 31. ut

Proposition 4 (Soundness). The interpretation function enjoys the following soundness proper-
ties

1. if Γ : Ctxt then JΓ K
LF

is a context;

2. if A : Type (Γ ) then JAKJΓ K
LF

LF
is a type in the context JΓ K;

3. if M : Γ ` A then JMKJΓ K
LF

LF
is a term of type JΓ K

LF
` JMKJΓ K

LF

LF
: JAKJΓ K

LF

LF
;

4. if Γ ` A = B then JAKJΓ K
LF

LF
= JBKJΓ K

LF

LF
: Type (JΓ K

LF
);

5. if M = N : Γ ` A then JMKJΓ K
LF

LF
= JNKJΓ K

LF

LF
: JΓ K

LF
` JAKJΓ K

LF

LF
;

6. if γ : ∆ → Γ then JγKJ∆K
LF

LF
: J∆K

LF
→ JΓ K

LF
;

7. if γ = δ : ∆ → Γ then JγKJ∆K
LF

LF
= JδKJ∆K

LF

LF
: J∆K

LF
→ JΓ K

LF
.

The last two properties are not strictly required for the proof of the equivalence between LF
and CwfLF but are required to prove the other properties.

Proof. By induction on the derivation rules. ut

Proposition 5. The interpretations inverse of one another modulo equality

1. if Γ `LF A then
r
JMKΓ

CwfLF

zΓ

LF

= M : Γ ` A;

2. if A : TypeLF (Γ ) then
r
JAKΓ

CwfLF

zΓ

LF

= A : Type (Γ );

30



3. if Γ `CwfLF
A then

r
JMKJΓ K

LF

LF

zJΓ K
LF

CwfLF

= M : Γ ` A;

4. if A : TypeCwfLF
(Γ ) then

r
JAKJΓ K

LF

LF

zJΓ K
LF

CwfLF

= A : Type (Γ ).

Proof. By induction on terms, types and contexts. ut

Theorem 4. The theories LF and CwfLF are equivalent.

Theorem 5 (Decidability of the equality in CwfLF). The equality is decidable in CwfLF.

Proof. This is a direct consequence of theorems 3 and 4. ut

4 Possible formalization of the proof

We have tried to see how difficult it would be to formalize our proofs in COQ. The first question
which arises is: how can we define category theory in COQ’s type theory (which is based on the
calculus of inductive constructions)? We have used the work already done by Säıbi to define category
theory (see [Sai96]). One important point is that the equality of COQ is the Leibnitz equality (two
terms are equal iff they are provably equal) whereas the equality used to define categories is the
extensional equality (two functions f and g are extensionally equal iff ∀x, f(x) = g(x)). This is
why the notion of setoid needs to be introduced to be able to make proofs about categories in an
intentional type theory like COQ’s without depending on a particular equality: instead of simply
sets, the collections of objects and of morphisms of a category are required to be a setoid.

Definition 27 (Setoid). A setoid is a quintuple A = 〈A,∼A, reflA, symA, transA〉. The set A a is
called the carrier of A and ∼A is an equivalence relation on A along with reflA, symA and transA

which are the proofs of respectively reflexivity, symmetry and transitivity of ∼A.

Since the proofs are not using COQ’s equality but the equivalence relations of the setoids, the
proofs get very long and fastidious: the rewrite tactics cannot be used and everything has to be
done by hand using the reflexivity, the symmetry and the transitivity properties of the equivalence
relation. For example, it took us more than 500 lines of COQ only to define the category of families
(definition 4, not to be confused with categories with families). Defining generalized algebraic the-
ories, categories with families as a gat, the logical framework and completely formalizing the proof
of the equivalence between the two theories would require tremendous amounts of time and work
(which would not be very complicated but very technical). Rewrite-like tactics could be developed
using reflexion techniques to make the proofs easier and shorter but the elaboration of such tactics
would be rather technical and fastidious.

Another way of solving this problem could be to formalize the proof in a prover like NuPrl which
is based on an extensional type theory and would maybe lead to simpler proofs.

Another problem arises from a limitation of COQ: we cannot define mutually inductive types with
different parameters (else COQ raises the error User error: Parameters should be syntactically

the same for each inductive type). And this is needed to define gats: Type (Γ ) depends on the
context Γ , Γ ` A depends on the context Γ and on the type A, etc. This might not be a theoretical
limitation of COQ. The explanation given in the manual is:

It is also possible to parameterize these inductive definitions. However, parameters cor-
respond to a local context in which the whole set of inductive declarations is done. For this
reason, the parameters must be strictly the same for each inductive types.

31



5 Conclusion

We have proven that the equality was decidable in LF (a dependently-typed λ-calculus) and have
shown the equivalence between LF and categories with families by giving two reciprocal interpre-
tation of the syntax of one theory into the other one. This proves that the equality is decidable in
cwfs.

There is many work left to see why the syntax and the proofs are so complicated: this is a sign
that there are things left to understand and maybe to change in the involved theories.

Acknowledgements

I would like to thank Thierry Coquand for having accepted to direct my training period in Chalmers,
for giving me the opportunity to discover the world of type and category theories and for the time
he spent with me.

I also want to thank Peter Dybjer who kindly explained to me what were his motivations when
defining cwfs.

Finally, thank you Martin and #sos for being someone to talk to during those three months in
Sweden and Caroline for being too much of the ball.

32



A From Gat to Cwf

A.1 Contextual categories

In this section, we introduce a few notions that are close to categories with families (in fact they are
even equivalent to cwfs) and which were historically introduced before (in [Car86]). They are inter-
esting for several reasons. First they inspired the definition of cwfs. Actually cwfs were introduced to
solve some of the problems those theories had (in particular, terms cannot be easily manipulated in
those theories and they have a pullback condition which is rather unnatural and prevents them from
being defined as gats). Moreover, they have been studied and it is quite easy to see that they are
all equivalent. We will not be able to make a detailed presentation of those theories. The interested
reader could read [Car86] and [Hof97].

The multiplicity slighly different categorical models of dependently-typed λ-calculus reflects the
fact that the categorical interpretation of dependent types is undoubtly complicated.

We first introduce the categorical notion of pullback which is used in the definition of Con and
Cwa.

Definition 28. Let C be a category and f and g two morphisms of same codomain consists of an
object P and two morphisms f ′ and g′ such that f ◦ f ′ = g ◦ g′ and, for all Q such that there exists
two morphisms f ′′ and g′′ such that f ◦ f ′′ = g ◦ g′′, there exists a unique morphism from Q to P :

Q

g′′

¿¿

f ′′

""

?

?

ÂÂ
?

?

P

g′

²²

f ′

// A

f

²²

B g
// C

Definition 29 (Contextual category). A contextual category consists of

– A category C with terminal object ¦.
– A tree structure on the objects of C such that the terminal object ¦ is the unique least element

of the tree. This means that there exists a function p ( father function) on objects of C such that
p(¦) = ¦, p is injective on C \ {¦}. If p(B) = A we will write A / B.

– For all A,A′ ∈ C, for all f : A → A′ in C for all B ∈ C such that A′ / B, an object f∗B of C
and a morphism q(f,B) : f∗B → B such that the diagram

f∗B

²²

q(f,B)
// B

²²

A
f

// A′

is a pullback in C; for all A,B ∈ C, if A / B then id∗
AB = B and q(idA, B) = idB; and for

all A,B,C ∈ C, f : A → A′ and f ′ : A′ → A′′, the identities (f ◦ f ′)∗B = f∗(f ′∗B) and
q(f ◦ F ′, B) = q(f, f ′∗B) ◦ q(f ′, B) hold.

Remark 13. We have removed the condition: for each Γ ∈ C there is a minimal integer n (the level
of Γ ) such that pn(Γ ) = ¦ because we do not require the contexts to be finite.

Proposition 6. The theories Gat and Con are equivalent.

Proof. Given in [Car86]. ut

In contextual categories, types cannot be easily manipulated which was corrected by the defini-
tion of categories with attributes.

33



A.2 Categories with attributes

Definition 30 (Category with attributes (cwa)). A category with attributes consists of

– a category C with a terminal object ¦;
– for each object Γ in C, a collection Type (Γ ), whose elements are called Γ -indexed types in C

and a function f∗ : Type (Γ ) → Type (∆) for each f : ∆ → Γ such that for all A ∈ Type (Γ ),
the relations id∗

Γ A = A and (g ◦ f)∗A = g∗(f∗A) hold;
– for each A ∈ Type (Γ ) and object Γ,A and a morphism πA : Γ,A → Γ ;
– for each f : ∆ → Γ and A ∈ Type (Γ ), a pullback diagram

∆, f∗A

πf∗A

²²

〈f,A〉
// Γ,A

πA

²²

∆
f

// Γ

such that 〈idΓ , A〉 = idΓ.A and 〈f ◦ g,A〉 = 〈f,A〉 ◦ 〈g, f∗A〉.

Proposition 7. The theories Con and Cwa are equivalent.

Proof. A proof is given in [Hof97]. Two functors O : Cwf → Con and W : Con → Cwf such that
OW ∼= idCon and WO ∼= idCwf are defined, which proves the equivalence. ut

By transitivity of the equivalence of categories, we can claim:

Lemma 33. The theories Gat and Cwa are equivalent.

A.3 Pullback in Cwf

Proposition 8. With the notations of the definition 5, the diagram

∆,A[γ]

p∆
A[γ]

²²

〈γ◦p∆
A[γ],q

∆
A[γ]〉

// Γ,A

pΓ
A

²²

∆ γ
// Γ

is a pullback.

Proof. Let ∆ be a context and p′ : ∆′ → ∆ and γ′ : ∆′ → Γ,A be two morphisms such that
γ ◦ p′ = pΓ

A ◦ γ′. Therefore the diagram

∆′

p′

ÂÂ

γ′

&&

δ
G

G

##G

G

∆,A[γ]

p∆
A[γ]

²²

〈γ◦p∆
A[γ],q

∆
A[γ]〉

// Γ,A

pΓ
A

²²

∆ γ
// Γ

(without δ) is commutative. We must show that there exists a unique δ : ∆′ → ∆,A[γ] such that
〈

γ ◦ p∆
A[γ], q

∆
A[γ]

〉

◦ δ = γ′ and p∆
A[γ] ◦ δ = p′.

34



We can decompose γ′ as γ′ (M-Ext-Id)
=

〈

pΓ
A, qΓ

A

〉

◦ γ′ (M-Ext-S)
=

〈

pΓ
A ◦ γ′, qΓ

A [γ′]
〉

= 〈γ ◦ p′,M〉 where
M ≡ qΓ

A[γ′] (of type ∆′ ` A [γ ◦ p′]). Let δ be the morphism

δ ≡ 〈p′,M〉 : ∆′ → ∆,A[γ]

which is suitable since p∆
A[γ] ◦ δ

(M-C-L)
= p′ and

〈

γ ◦ p∆
A[γ], q

∆
A[γ]

〉

◦ δ
(M-Ext-S)

=
〈

γ ◦ p∆
A[γ] ◦ δ, q∆

A[γ][δ]
〉

(M-C-R)
=

〈

γ ◦ p′, qΓ
A[γ′]

〉

=
〈

pΓ
A ◦ γ′, qΓ

A[γ′]
〉

(M-Ext-S)
=

〈

pΓ
A, qΓ

A

〉

◦ γ′

(M-Ext-Id)
= γ′

Conversely, let’s suppose that there is an other morphism δ′ : ∆′ → ∆,A[γ] such that
〈

γ ◦ p∆
A[γ], q

∆
A[γ]

〉

◦

δ′ = γ′ and p∆
A[γ]◦δ

′ = p′. As before, we have δ′ =
〈

p∆
A[γ] ◦ δ′, q∆

A[γ][δ
′]
〉

= 〈p′, N〉 where N ≡ q∆
A[γ][δ

′].

The following equalities hold:

N = q∆
A[γ][δ

′]

= qΓ
A

[〈

γ ◦ p∆
A[γ] ◦ δ′, q∆

A[γ] [δ
′]
〉]

= qΓ
A

[〈

γ ◦ p∆
A[γ], q

∆
A[γ]

〉

◦ δ′
]

= qΓ
A [γ′]

= M

and therefore δ′ = δ. ut

B Proof of the decidability of equality in LF

B.1 Soundness of LF

Lemma 34 (Well-formedness). Let Γ ≡ x1 : A1, . . . , xn : An be a context, A and B two types
and M a term. We shall write dΓ ei ≡ x1 : A1, . . . , xi : Ai. The following rules hold

1. if Γ ` is derivable then for all i such that 1 < i ≤ n, xi 6∈ DV (dΓ ei−1), FV (Ai) ⊂ DV (dΓ ei−1)
and dΓ ei−1 ` Ai appears in the derivation;

2. if Γ ` J is derivable then FV (J ) ⊂ DV (Γ ) and Γ ` appears in the derivation, where J is
either a type, a typed term, an equality between types or a typed equality between terms.

Proof. Both properties can simultaneously be proven by a straightforward induction on the structure
of the derivation of the hypothesis. ut

Remark 14. A requirement for the context Γ, x : A to be well-formed is the property x 6∈ Γ . However,
to improve the readability of the proofs, we might omit some of the arguments related to this in
the following but they have been verified. The main reason for that it that it leads to very long and
technical proofs which are not really difficult.

Lemma 35. The following rules hold

1. if Γ ` A = B is derivable then Γ ` A and Γ ` B are derivable;

35



2. if Γ ` M = N : A is derivable then Γ ` M : A and Γ ` N : A derivable.

Proof. We will only show the first results of the conclusions (i.e. Γ ` A and Γ ` M : A) since the
other ones can be obtained using (Ty-Eq-Sym) and (Tm-Eq-Sym).

By induction on the derivation of the hypothesis.

– (Ty-Eq-Refl): B ≡ A and Γ ` A was derived.
– (Ty-Eq-Sym): Γ ` B = A was derived and we can conclude by application of the induction

hypothesis.
– (Ty-Eq-Trans): Γ ` A = C and Γ ` C = B were derived and we can conclude by application

of the induction hypothesis.
– (El-Eq-C): A and B are of the form A ≡ El M and B ≡ El N and Γ ` M = N : ? was derived.

By induction hypothesis we have Γ ` M : ? and Γ ` N : ?. We can conclude using (El-Eq-C).
– (Π-Eq-C): A and B are of the form A ≡ Πx : A′.B′ and B ≡ Πx : A′′.B′′ and Γ ` Πx : A′.B′

was derived.
– (Tm-Eq-Refl): N ≡ M and Γ ` M : A was derived.
– (Tm-Eq-Sym): Γ ` N = M : A was derived and we can conclude by application of the induction

hypothesis.
– (Tm-Eq-Trans): Γ ` M = P : A and Γ ` P = N : A were derived and we can conclude by

application of the induction hypothesis.
– (Tm-Eq-Conv): Γ ` M = N : B and Γ ` B = A were derived. By induction hypothesis we

have Γ ` M : B and we can conclude that Γ ` M : A by (Tm-Conv).
– (App-Eq-Conv): the goal is of the form Γ ` AppA (M,N) = AppA′ (M,N) : B and Γ `

AppA (M,N) : B was derived.
– (Π-I-Eq): M , N and A are of the form M ≡ λx.M ′, N ≡ λx.N ′ and A ≡ Πx : A′.B′ and

Γ ` λx.M ′ : Πx : A′.B′ was derived.
– (App-Eq): M , N and A are of the form M ≡ AppΠx:A′.B′ (() M ′, N ′), N ≡ AppΠx:A′.B′ (M ′, N ′′)

and A ≡ B′ [N ′/x] and Γ ` M ′ : Πx : A′.B′ and Γ ` N ′ = N ′′ : A′ were derived. By induction
hypothesis Γ ` N ′ : A′ holds and therefore we have Γ ` AppΠx:A′.B′ (M ′, N ′) : B′ [N/x] using
(App).

– (Π-C): M , N and A are of the form M ≡ AppΠx:A′.B′ ((λx.M ′) , N ′), N ≡ M ′ [N ′/x] and
A ≡ B′ [N ′/x] and Γ ` λx.M ′ : Πx : A′.B′ and Γ ` N ′ : A′. By (App), we can conclude that
Γ ` AppΠx:A′.B′ ((λx.M ′) , N ′) x : B′ [N ′/x].

– (Π-η): A is of the form A ≡ Πx : A′.B′ and Γ ` M : Πx : A′.B′ was derived. ut

Lemma 36 (Weakening). If x 6∈ DV (Γ ) ∪ DV (∆) and Γ ` C then

1. if Γ,∆ is a context then Γ, x : C,∆ is a context;
2. if Γ,∆ ` A then Γ, x : C,∆ ` A;
3. if Γ,∆ ` A = B then Γ, x : C,∆ ` A = B;
4. if Γ,∆ ` M : A then Γ, x : C,∆ ` M : A;
5. if Γ,∆ ` M = N : A then Γ, x : C,∆ ` M = N : A.

Proof. By induction on the structure of the derivation of the hypothesis.

– (C-Emp): we have Γ ≡ ∆ ≡ ¦ and by hypothesis ¦ ` C therefore ¦, x : C, ¦ is a context by
(C-Ext).

– (C-Ext): ∆ is of the form ∆ ≡ ∆′, y : A and Γ,∆′ ` A was derived. By induction hypothesis
we have Γ, x : C,∆′ ` A and therefore Γ, x : C,∆′, y : A is a context.

– (Star): since Γ,∆ is a context, by induction hypothesis Γ, x : C,∆ is a context and by (Star)
we have Γ, x : C,∆ ` ?.

– (Elem): Γ,∆ ` ? was derived, therefore by induction hypothesis Γ, x : C,∆ ` ? holds and by
(Elem) we have Γ, x : C,∆ ` El M .

– (Exp): A is of form A ≡ Πy : A′.B′ and Γ,∆, y : A′ ` B′ was derived, therefore by induction
hypothesis Γ, x : C,∆, y : A ` B holds and by (Exp) we have Γ, x : C,∆ ` Πy : A′.B′.

36



– (Ty-Eq-Refl): B ≡ A and Γ,∆ ` A was derived. By induction hypothesis we have Γ, x :
C,∆ ` A and we conclude using (Ty-Eq-Refl).

– etc. The property is proven for all the other rules using the same model, by applying the
induction hypothesis to the judgments obtained by inverting the rules and reapplying the rule
to the obtained judgments. ut

Lemma 37. The following rule holds

Γ ` M : Πx : A.B Γ ` N = N ′ : A

Γ ` AppΠx:A.B (M,N) = AppΠx:A.B (M,N ′) : B [N/x]

Proof. Suppose that Γ ` M = M ′ : Πx : A.B and Γ ` N : A hold. The following derivation is valid

Γ, x : Πy : A.B ` x : Πy : A.B
(Var)

Γ ` N : A
(Hypothesis)

Γ, x : Πy : A.B ` N : A
(Lemma 3)

Γ, x : Πy : A.B ` xN : B [N/y]
(App)

Γ ` λx.xN : Πx : (Πy : A.B) .B [N/y]
(Abs)

Since Γ ` M = M ′ : Πx : A.B, by lemma 1 we know that y 6∈ FV (B) and therefore B [N/y] ≡ B.
By (App-Eq) we have Γ ` (λx.xN) M = (λx.xN) M ′ : B [M/x] and by (Π-C) we have Γ `
(λx.xN) M = MN : B [M/x] and Γ ` (λx.xN) M ′ = M ′N : B [M/x]. Finally we can conclude that
Γ ` MN = M ′N : B [M/x] using (Tm-Eq-Sym) and (Tm-Eq-Trans). ut

Lemma 38. If Γ, x : A,∆ ` x : B then Γ ` A = B.

Proof. The proof is done by induction on the derivation of Γ, x : A,∆ ` x : B.

– (Var): we have B ≡ A and the result follows by (Ty-Eq-Refl).
– (Tm-Conv): Γ, x : A,∆ ` x : C and Γ, x : A,∆ ` C = B where derived for some type C. By

induction hypothesis Γ, x : A,∆ ` A = C holds and the result follows using (Tm-Eq-Trans).
ut

Lemma 39 (Soundness of the substitution). If Γ ` N : B is derivable then

1. if Γ, x : B,∆ is a context then Γ,∆ [N/x] is a context;
2. if Γ, x : B,∆ ` A is derivable then Γ,∆ [N/x] ` A [N/x] is derivable;
3. if Γ, x : B,∆ ` A = A′ is derivable then Γ,∆ [N/x] ` A [N/x] = A′ [N/x] is derivable;
4. if Γ, x : B,∆ ` M : A is derivable then Γ,∆ [N/x] ` M [N/x] : A [N/x] is derivable;
5. if Γ, x : B,∆ ` M = M ′ : A is derivable then Γ,∆ [N/x] ` M [N/x] = M ′ [N/x] : A [N/x] is

derivable.

Proof. The proof is done by induction on the derivation of the hypothesis.

– (C-Emp): this rule cannot have been used to prove that Γ, x : B,∆ since Γ, x : B,∆ 6≡ ¦.
– (C-Ext): ∆ is of the form ∆ ≡ ∆′, y : A and Γ, x : B,∆′ ` A was derived and by induction

hypothesis Γ,∆′ [N/x] ` A [N/x] holds. We can conclude using (C-Ext).
– (Star): we have ? [N/x] ≡ ? and Γ, x : B,∆ ` was derived. By induction hypothesis Γ,∆ [N/x]

holds and Γ,∆ [N/x] ` ? is derivable using (Star).
– (Elem): A is of the form A ≡ El M , therefore A [N/x] ≡ El (M [N/x]) and Γ, x : B,∆ ` M : ?

was derived. By induction hypothesis we have Γ,∆ [N/x] ` M [N/x] : ? [N/x] and therefore,
since ? [N/x] ≡ ?, Γ,∆ [N/x] ` El (M [N/x]) is derivable using (Elem).

– (Exp): A is of the form A ≡ Πy : A′.B′ and Γ, x : B,∆, y : B′ ` B′ was derived. By induc-
tion hypothesis we have Γ,∆ [N/x] , y : A′ [N/x] ` B′ [N/x] and by (Exp) we conclude that
Γ,∆ [N/x] ` (Πy : A′.B′) [N/x].

37



– . . .
– (Var):

• Suppose that M ≡ x. Then M [N/x] ≡ N and since Γ, x : B,∆ ` was derived, by induction
hypothesis we know that Γ,∆ [N/x] is a context. By hypothesis Γ ` N : B holds. This
implies that Γ,∆ [N/x] ` N : B is also derivable by induction on ∆.
The property is immediate if ∆ ≡ ¦.
Suppose that ∆ ≡ ∆′, y : C and assume that Γ,∆′ [N/x] ` N : B. Since by hypothesis
Γ, x : B,∆′, y : C ` x : A, by lemma 1 Γ, x : B,∆′, y : C is a context and therefore
y 6∈ DV (Γ )∪DV (∆′)∪{x}. Since Γ ` N : B, by lemma 1, FV (N) ⊆ DV (Γ ) which implies
y 6∈ DV (N). Thus y 6∈ DV (∆)∪DV (∆′ [N/x]). Moreover since Γ, x : B,∆′, y : C is a context,
by lemma 1 Γ, x : B,∆′ ` C was derived and by induction hypothesis Γ,∆′ [N/x] ` C [N/x].
By lemma 3 we can finally conclude that Γ,∆′ [N/x] , y : C [N/x] ` N : B.
By lemma 5, since Γ, x : B,∆ ` x : A was derived, Γ ` A = B holds. Since we also have
Γ,∆ [N/x] ` N : B, we can conclude that Γ,∆ [N/x] ` M [N/x] : A by using (Tm-Conv).

• Suppose that M ≡ y. Then Γ, x : B,∆ ≡ Γ ′, y : A,∆′. The proof can be done by distin-
guishing the cases where y : A appears in Γ or in ∆, applying the induction hypothesis to
the judgments obtained by inversion of the rules and concluding using (Var).

– . . .
The omitted cases can all be proven the same way, by applying the induction hypothesis to the
judgments obtained by inversion of the rules and concluding using (Var). ut

Lemma 40. The relation
β
= is an equivalence relation.

Proof. By definition of
β
=. ut

Lemma 41. The substitution preserves β-convertibility:

1. if M
β
= M ′ then M [N/x]

β
= M ′ [N/x];

2. if N
β
= N ′ then M [N/x]

β
= M [N ′/x].

Proof. 1. By induction on the proof of M
β
= M ′.

– (β-Eq-Refl): In this case M ′ ≡ M and the result follows by reflexivity of
β
=.

– (β-Eq-Ext-R): We have M
β
= M ′′ and M ′′ →β M ′. We can show that M ′′ [N/x]

β
= M ′ [N/x]

by induction on the proof of M ′′ →β M ′ (the proof is quite straightforward). By induction

hypothesis we have M [N/x]
β
= M ′′ [N/x] and we conclude using the transitivity of

β
=.

– (β-Eq-Ext-L): The proof is similar to the previous case.
2. By induction on M .

– M ≡ x: M [N/x]
β
= N

β
= N ′ β

= M [N ′/x].

– M ≡ y: M [N/x]
β
= M

β
= M [N ′/x].

– M ≡ λy.M ′: by induction hypothesis M ′ [N/x]
β
= M ′ [N ′/x] and therefore (λy.M ′) [N/x] ≡

λy.M ′ [N/x]
(β-Red-Abs-C)

= λy.M ′ [N ′/x] ≡ (λy.M ′) [N ′/x].
– M ≡ M ′M ′′: the result is obtained similarly using the induction hypothesis and (β-Red-

App-C-L) and (β-Red-App-C-R). ut

Lemma 42 (Subject reduction). If Γ ` M : A and M →β M ′ then Γ ` M = M ′ : A.

Proof. The proof is done by induction on the derivation of Γ ` M : A.

– (Var): M is a variable and cannot β-reduce.
– (Tm-Conv): Γ ` M : B and Γ ` B = A were derived and by induction hypothesis we have

Γ ` M = M ′ : B. We can conclude using (Tm-Eq-Conv).

38



– (Abs): M and A are of the form M ≡ λx.N and A ≡ Πx : A′.B′ and Γ, x : A′ ` N : B′ was
derived. By hypothesis, M →β M ′ holds and it must have been derived using (β-Red-Abs-

C): M ′ must be of the form M ′ ≡ λx.N ′ with N →β N ′. By induction hypothesis we have
Γ, x : A′ ` N = N ′ : B′. And we conclude using (Π-I-Eq).

– (App): We distinguish cases according to the rule used to prove M →β M ′.
• (β-Red-App): M , M ′ and B are of the form M ≡ (λx.M ′) N ′, M ′ ≡ M ′ [N/x] and B ≡

B′ [N/x] and Γ ` λx.M ′ : Πx : A′.B′ and Γ ` N : A′ were derived. We can conclude using
(Π-C).

• (β-Red-App-C-L): M , M ′ and B are of the form M ≡ M ′N ′, M ′ ≡ M ′′N ′ and B ≡
B′ [N ′/x], Γ ` M ′ : Πx : A′.B′ and Γ ` N ′ : A′ were derived and M ′ →β M ′′. By induction
hypothesis we have Γ ` M ′ = M ′′ : Πx : A′.B′ and we can conclude by lemma 4 that
Γ ` M ′N ′ = M ′′N ′ : B′ [N ′/x].

• (β-Red-App-C-R): M , M ′ and B are of the form M ≡ M ′N ′, M ′ ≡ M ′N ′′ and B ≡
B′ [N ′/x], Γ ` M ′ : Πx : A′.B′ and Γ ` N ′ : A′ were derived and N ′ →β N ′′. By induction
hypothesis we have Γ ` N ′ = N ′′ : A and we conclude by (App-Eq) that Γ ` M ′N ′ =
M ′N ′′ : B′ [N ′/x]. ut

Lemma 43. If Γ ` M : A and M
β
= M ′ then Γ ` M = M ′ : A.

Proof. By induction on the proof of M
β
= M ′.

– (β-Eq-Refl): M ′ ≡ M and we conclude using (Tm-Eq-Refl).

– (β-Eq-Ext-R): We have M
β
= M ′′ →β M ′. By induction hypothesis we have Γ ` M = M ′′ : A

and by lemma 9 we have Γ ` M ′′ = M ′ : A. We can conclude using (Tm-Eq-Trans).

– (β-Eq-Ext-L): We have M
β
= M ′′

β ← M ′. By induction hypothesis we have Γ ` M = M ′′ : A
and by lemma 9 we have Γ ` M ′ = M ′′ : A. We can conclude using (Tm-Eq-Sym) and (Tm-

Eq-Trans). ut

Lemma 44 (Soundness of a β-convertible substitution). If Γ ` N : B is derivable and

N
β
= N ′ then

1. if Γ, x : B,∆ ` M = M ′ : A is derivable then Γ,∆ [N/x] ` M [N/x] = M ′ [N ′/x] : A [N/x] is
derivable.

2. if Γ, x : B,∆ ` A = A′ is derivable then Γ,∆ [N/x] ` A [N/x] = A′ [N ′/x] is derivable;

Proof. 1. Since Γ, x : B,∆ ` M = M ′ : A is derivable, by lemma 2 we have Γ, x : B,∆ ` M : A.

Therefore Γ,∆ [N/x] ` M [N/x] : A [N/x] by lemma 6. We also have N
β
= N ′, which implies,

by lemma 8, M [N/x]
β
= M [N ′/x]. Finally, by lemma 10 we can conclude that Γ,∆ [N/x] `

M [N/x] = M [N ′/x] : A [N/x].
2. The proof is done by induction on the derivation of Γ, x : B ` A = A′.

– (Ty-Eq-Refl): A′ ≡ A and the result is obtained by (Ty-Eq-Refl).
– (Ty-Eq-Sym): Γ, x : B,∆ ` A′ = A was derived and by induction hypothesis Γ,∆ [N/x] `

A′ [N/x] = A [N ′/x] is derivable. We can conclude using (Ty-Eq-Sym).
– (Ty-Eq-Trans): Γ, x : B,∆ ` A = A′′ and Γ, x : B,∆ ` A′′ = A′ were derived, thus

by induction hypothesis Γ,∆ [N/x] ` A [N/x] = A′′ [N ′/x] and by lemma 6 Γ,∆ [N/x] `
A′′ [N ′/x] = A′ [N ′/x]. We conclude using (Ty-Eq-Trans).

– (El-Eq-C): A ≡ El M , A′ ≡ El M ′ and Γ, x : B,∆ ` M = M ′ : ? was derived. By 1. we
deduce that Γ,∆ [N/x] ` M [N/x] = M ′ [N ′/x] : ? (since ? [N/x] ≡ ?). Thus by (El-Eq-C)
we conclude that Γ,∆ [N/x] ` El M [N/x] = El M ′ [N ′/x].

– (Π-Eq-C): A ≡ Πx : A′.B′, A′ ≡ Πx : A′′.B′′ and Γ, x : B,∆ ` Πy : A′.B′, Γ, x :
B,∆ ` A′ = A′′ and Γ, x : B,∆, y : A′ ` B′ = B′′ were derived. By lemma 6 we have
Γ,∆ [N/x] ` Πy : A′ [N/x] .B′ [N/x] and by induction hypothesis we have Γ,∆ [N/x] `
A′ [N/x] = A′′ [N ′/x] and Γ,∆ [N/x] , y : A′ [N/x] ` B′ [N ′/x] = B′′ [N/x]. We can then
conclude using (Π-Eq-C). ut

39



Theorem 6 (Church-Rosser). If M
β
= M ′ then there exists a term N such that M

β
−→ N and

M ′ β
−→ N .

Proof. This property is classic; we will not reproduce its demonstration here (see for example [LS86]
or [Fau02]).

Lemma 45. If Γ ` M : A, then Γ ` M = M ′ : A iff M
βη
= M ′.

Proof. Two quite straightforward inductions. ut

B.2 Decidability of equality in LF

Lemma 46. If M
β
= N then M [ρ]

β
= N [ρ].

Proof. The proof is similar to the one of lemma 8. ut

Lemma 47. The following rules hold, giving us a recursive definition of the application of an en-
vironment to a term.

1. If x 6∈ FV (J ) then J [〈ρ, x 7→ M〉] = J [ρ];
2. (Πx : A.B) [ρ] = Πx : (A [ρ]) . (B [〈ρ, x 7→ x〉]);
3. (λx.M) [ρ] = λx. (M [〈ρ, x 7→ x〉]);
4. (MN) [ρ] = (M [ρ]) (N [ρ]);

5. ηA(M) [ρ]
β
= ηA[ρ] (M [ρ]).

Proof. The lemmata can be proven independently.

1. Immediate.
2. Immediate.
3. Immediate.
4. Immediate.
5. By induction on A:

– if A ≡ ? or A ≡ El N then ηA(M) [ρ]
β
= M [ρ]

β
= ηA[ρ] (M [ρ])

– if A ≡ Πx : A′.B′ then

ηΠx:A′.B′(M) [ρ]
β
=

(

λz.ηB′[ηA′ (z)/x] (MηA′ (z))
)

[ρ]

β
= λz.

(

ηB′[ηA′ (z)/x] (MηA′ (z)) [〈ρ, z 7→ z〉]
)

IH
= λz.

(

ηB′[ηA′ (z)/x][〈ρ,z 7→z〉] ((MηA′ (z)) [〈ρ, z 7→ z〉])
)

β
= λz.ηB′[ηA′ (z)/x][〈ρ,z 7→z〉]

(

(M [〈ρ, z 7→ z〉]) ηA′[〈ρ,z 7→z〉] (z)
)

β
= λz.ηB′[〈ρ,x7→x〉][ηA′[ρ](z)/x]

(

(M [ρ]) ηA′[ρ] (z)
)

β
= ηΠx:(A′[ρ]).(B′[〈ρ,x7→x〉]) (M [ρ]) = η(Πx:A.B)[ρ] (M [ρ])

ut

Remark 15. To prove the last point, we took care not to use the fact that ηA[ρ] ≡ ηA (cf. remark 9)
in order to improve the extensibility of the proof.

Lemma 48. FV (ηA (M)) = FV (M).

Proof. Straightforward induction on A. ut

Lemma 49 (Recursive definition of [ρΓ ]). If Γ, x : A is a context then

M [ρΓ,x:A] ≡ M
[〈

ρΓ , x 7→ ηA[ρΓ ] (x)
〉]

≡ M [ηA (x)] [ρΓ ]

40



Proof. By induction on the length of Γ .

– If Γ ≡ ¦ then the property is immediate.
– Else, since Γ, x : A is a context x 6∈ DV (Γ ). Moreover by lemma 15, FV

(

ηA[ρΓ ] (x)
)

= {x}.

Therefore M
[〈

ρΓ , x 7→ ηA[ρΓ ] (x)
〉]

≡ M
[

ηA[ρΓ ] (x)
]

[ρΓ ] since ρΓ will not do any substitution
on x. Finally ηA (M) ≡ ηA[ρ] since substitution is only done in El N which does not change the
incarnation. ut

Lemma 50. If M
β
= N then ηA(M)

β
= ηA(N).

Proof. By induction on A.

– The property is immediate if A ≡ ? or A ≡ El P .

– If A ≡ Πx : B.C then, since M ηB (z)
β
= N ηB (z) because M

β
= N , using the induction

hypothesis, we have

ηA(M) ≡ λz.ηC[ηB(z)/x] (M ηB (z))

β
= λz.ηC[ηB(z)/x] (N ηB (z))

≡ ηA(N)

This induction is well-founded since the number of Π in A strictly decreases for each recursive
application of the lemma. ut

Lemma 51. If Γ ` A = B then ηA(M)
β
= ηB(M).

Proof. By induction on the derivation of Γ ` A = B.

– (Ty-Eq-Refl), (Ty-Eq-Sym) and (Ty-Eq-Trans): the result is obtained by using the induc-

tion hypothesis and respectively the reflexivity, symmetry and transitivity of
β
=.

– (El-Eq-C): A and B are of the form A ≡ El M ′ and B ≡ El N ′ therefore ηA(M) ≡ M ≡ ηB(M).
– (Π-Eq-C): A and B are of the form A ≡ Πx : A′.B′ and B ≡ Πx : A′′.B′′ and Γ ` A′ = A′′

and Γ, x : A′ ` B′ = B′′ were derived. From Γ ` A′ = A′′, using the induction hypothesis, we

can deduce that for all term N ηA′(N)
β
= ηA′′(N). From the last one we can deduce Γ, x : A′ `

B′ [ηA′ (z) /x] = B′′ [ηA′ (z) /x] by lemma 6. Therefore, by induction hypothesis, for all term N

we have ηB′[ηA′ (z)/x](N)
β
= ηB′′[ηA′ (z)/x](N). Thus, we can write using lemma 17

ηA(M) ≡ ηΠx:A′.B′(M)

≡ λz.ηB′[ηA′ (z)/x] (M ηA′ (z))

β
= λz.ηB′[ηA′ (z)/x] (M ηA′′ (z))

β
= λz.ηB′′[ηA′ (z)/x] (M ηA′′ (z))

ut

Lemma 52. If N = N ′ : A ⇒ M [N/x] = M ′ [N ′/x] : B [N/x] then λx.M = λx.M ′ : Πx : A.B.

Proof. By definition of Πx : A.B. ut

Lemma 53. The rules of the figure 10 have been proven to hold in per-models in [CPT03].

Lemma 54. The relations ∼= and = (on environments in a context, on types in a context and on
typed terms in a context) are equivalence relation.

Proof. Straightforward induction on the structure of the derivations. ut

41



Type formation and equalities

Γ : Ctxt

?JΓ K
(Star)

M = N : ?JΓ K

El M = El NJΓ K
(El-Eq-C)

A1 = A2JΓ K B1 = B2JΓ, x : A1K

Πx : A1.B1 = Πx : A2.B2JΓ K
(Π-Eq-C)

Terms

Γ, x : A : Ctxt

x : AJΓ, x : AK
(Var)

M : BJΓ, x : AK

λx.M : Πx : A.BJΓ K
(Abs)

M : Πx : A.BJΓ K N : AJΓ K

MN : B [N/x] JΓ K
(App)

Type conversion

M = N : AJΓ K A = BJΓ K

M = N : BJΓ K
(Tm-Eq-Conv)

Weakening

B1 = B2JΓ K Γ, x : A : Ctxt

B1 = B2JΓ, x : AK

M = N : BJΓ K Γ, x : A : Ctxt

M = N : BJΓ, x : AK

Figure 13. Derivable rules in per-models

Lemma 55. If ρ = ρ′ : Γ and y 6∈ Γ then for any M , ρ = 〈ρ′, y 7→ M〉 : Γ .

Proof. By induction on the proof of ρ = ρ′ : Γ .
Consider a proof ending with

ρ = ρ′ : Γ A [ρ] = A [ρ′] ρx = ρ′x : A [ρ]

ρ = ρ′ : Γ, x : A

If suffices to show ρ = 〈ρ′, y 7→ M〉 : Γ and ρx = 〈ρ′, y 7→ M〉x : A [ρ]. The former holds by induction
hypothesis, the latter because y 6∈ DV (Γ, x : A), so y 6= x. ut

Lemma 56 (Interpretation of LF in a per-model). The following rules hold

– if Γ ` then Γ : Ctxt;
– if Γ ` A then AJΓ K;
– if Γ ` A1 = A2 then A1 = A2JΓ K;
– if Γ ` M : A then M : AJΓ K;
– if Γ ` M1 = M2 : A then M1 = M2 : AJΓ K;

Proof. By induction on the structure of the derivation of the hypothesis.

– (C-Emp): by (Env-C-Emp).
– (C-Ext): by (Env-C-Ext).
– (Star): by (Star).
– (Elem): by (El-Eq-C).
– (Exp): by (Π-Eq-C), using the fact that by lemma 1, Γ ` A was derived and therefore AJΓ K

holds.
– (Ty-Eq-Refl), (Ty-Eq-Sym) and (Ty-Eq-Trans): by lemma 21.
– (El-Eq-C): by (El-Eq-C).
– (Π-Eq-C): by (Π-Eq-C).

42



– (Var): by (Var).
– (Tm-Conv): by (Tm-Eq-Conv).
– (Abs): by (Abs).
– (App): by (App).
– (Tm-Eq-Refl), (Tm-Eq-Sym) and (Tm-Eq-Trans): by lemma 21.
– (Tm-Eq-Conv): by (Tm-Eq-Conv).
– (Π-I-Eq): we want to derive Γ ` λx.M = λx.M ′ : Πx : A.B and by inversion Γ ` λx.M : Πx :

A.B and Γ, x : A ` M = M ′ : B. By induction hypothesis we have λx : M : Πx : A.BJΓ K and
M = M ′ : BJΓ, x : AK. Obviously, we are going to use the rule (Tm-Eq) to prove the conclusion.
By lemma 1 Γ ` A was derived and therefore by induction hypothesis AJΓ K holds. What remains
to be proven is ∀ρ, ρ′, ρ = ρ′ : Γ ⇒ (λx.M) [ρ] = (λx.M ′) [ρ′] : (Πx : A.B) [ρ].
Let ρ and ρ′ be two environments such that ρ = ρ′ : Γ .
Let N and N ′ be two terms such that N = N ′ : A [ρ]. Since Γ, x : A ` M = M ′ : B
holds, by lemma 1 Γ, x : A is a context and x 6∈ DV (Γ ). Therefore, by lemma 22 we have
〈ρ, x 7→ N〉 = 〈ρ′, x 7→ N ′〉 : Γ , and by inversion on (Ty-Eq) which was used to derive AJΓ K, we
have A [〈ρ, x 7→ N〉] ∼= A [〈ρ′, x 7→ N ′〉]. By definition of N and N ′ we also have 〈ρ, x 7→ N〉x ≡
N = N ′ ≡ 〈ρ′, x 7→ N ′〉x : A [ρ]. We can now use (Env-C-Ext), which shows that 〈ρ, x 7→ N〉 =
〈ρ′, x 7→ N ′〉 : Γ, x : A.
By inversion of the rule (Tm-Eq) on the hypothesis M = M ′ : BJΓ, x : AK, we have there-
fore M 〈ρ, x 7→ N〉 = M ′ 〈ρ′, x 7→ N ′〉 : B [〈ρ, x 7→ N〉]. This can be rewritten as M [ρ] [N/x] =
M ′ [ρ′] [N ′/x] : B [ρ] [N/x]. Finally, by lemma 19, this implies λx.M [ρ] = λx.M ′ [ρ′] : Πx : A [ρ] .B [ρ].

– The other rules ((App-Eq), (Π-C), (Π-η)) can be handled using the same kind of arguments. ut

Lemma 57. If Γ ` M = N : A then ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ].

Proof. Suppose that Γ ` M = N : A. Then by lemma 23 we have M = N : AJΓ K and this has been

proven to imply ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ] in [CPT03]. ut

Lemma 58. If Γ ` M : A then Γ ` M = ηA (M) : A.

Proof. By induction on A.

– If A ≡ ? or A ≡ El M then ηA (M) ≡ M and the result is obtained by (Tm-Eq-Refl).
– Suppose that A ≡ Πx : A′.B′. Then ηA (M) ≡ λz.ηB′[ηA′ (z)/x] (M ηA′ (z)). Since Γ, z : A′ ` z :

A′, by induction hypothesis we have Γ, z : A′ ` z = ηA′(z) : A′. Therefore, by rules (App-Eq),
we have Γ, z : A′ ` Mz = M (ηA′ (z)) : B′[z/x]. By induction hypothesis and (Tm-Eq-Trans)
this implies Γ, z : A′ ` Mz = ηB′[ηA′ (z)/x] (M (ηA′ (z))) : B′[z/x]. Then, by (Abs), we have
Γ ` λz.Mz = λz.ηB′[ηA′ (z)/x] (M (ηA′ (z))) : Πx : A′.B′. Finally, we can conclude by (Π-η) and
(Tm-Eq-Trans) that Γ ` M = λz.ηB′[ηA′ (z)/x] (M (ηA′ (z))) : Πx : A′.B′ holds. ut

Lemma 59. If Γ ` M : A then Γ ` M = M [ρΓ ] : A.

Proof. By induction on the derivation of Γ ` M : A.
As usual the only case to be handled with care is (Var) by distinguishing whether the variable

is changed by ρΓ – in which case the conclusion is obtained using lemma 25 – or not – in this case
the conclusion is immediately obtained by (Tm-Eq-Refl). All the other cases can be handled by
applying the induction hypothesis to the judgments obtained by inversion. ut

Lemma 60. If Γ ` M : A, Γ ` N : A and ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ] then Γ ` M = N : A.

Proof. Since by hypothesis we have Γ ` M : A, using lemmata 25 and 2 we also have Γ ` ηA(M) :
A and by lemmata 26 and 2 we have Γ ` ηA(M) [ρΓ ] : A. Similarly, we can show that Γ `

ηA(N) [ρΓ ] : A. By hypothesis, we also have ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ], which implies by lemma 10

that Γ ` ηA(M) [ρΓ ] = ηA(N) [ρΓ ] : A. Using lemmata 25, 26 and (Tm-Eq-Trans), we have
Γ ` M = ηA (M) [ρΓ ] : A and Γ ` N = ηA (N) [ρΓ ] : A. Finally, using (Tm-Eq-Trans) and
(Tm-Eq-Refl), we can conclude that Γ ` M = N : A. ut

43



Theorem 7. If Γ ` M : A, Γ ` N : A then: Γ ` M = N : A iff ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ].

Proof. This results directly from lemmata 24 and 27. ut

Theorem 8. The equality is decidable in LF.

Proof. It has been shown in [CPT03] that the relation ηA(M) [ρΓ ]
β
= ηA(N) [ρΓ ] is decidable. It

comes from the fact that typable terms are normalizable. Thus to decide equality of two terms M
and N , it is enough to compute their normal forms by making successive β-reductions and check if
they are the same. We can show that two β-convertible normalizable terms have the same normal
form using theorem 1. ut

C Proof of the equivalence between CwfLF and LF

C.1 Interpretation of LF into CwfLF

Lemma 61 (Weakening). Let Γ and ∆ be pre-contexts, A and B be pre-types, M be a pre-
term and x a fresh variable. Let J be either M or A. The expression Px (Γ, x : A,∆) is defined iff
JΓ, x : A,∆K

CwfLF
and JΓ,∆K

CwfLF
are defined and in this case is a morphism from the former to

the latter. If JJ KΓ,∆
CwfLF

is defined then

JJ KΓ,x:A,∆
CwfLF

∼= JJ KΓ,∆
CwfLF

[Px (Γ, x : A,∆)]

Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -
contexts.

Base case of the induction on ∆. Suppose that the argument of P is of the form Γ, x : A (∆ ≡ ¦).
Then Px(Γ, x : A) ≡ pA

(

JΓ, x : AK
CwfLF

)

is defined iff JΓ, x : AK
CwfLF

and JΓ K
CwfLF

are defined
and in this case the relation

JJ KΓ,x:A
CwfLF

∼= JJ KΓ
CwfLF

[Px (Γ, x : A)]

is verified since we have (by induction on length of involved pre-terms and -types).

For types, we have

– J ≡ Star:

JStarKΓ,x:A
CwfLF

def
∼= Star
∼= Star [Px (Γ, x : A)]

∼= JStarKΓ
CwfLF

[Px (Γ, x : A)]

– J ≡ Elem (M):

JElem (M)KΓ,x:A
CwfLF

def
∼= Elem

(

JMKΓ,x:A
CwfLF

)

ind
∼= Elem

(

JMKΓ
CwfLF

[Px (Γ, x : A)]
)

∼= Elem
(

JMKΓ
CwfLF

)

[Px (Γ, x : A)]

∼= JElem (M)KΓ
CwfLF

[Px (Γ, x : A)]

44



– J ≡ Πy : B.C:

JΠy : B.CKΓ,x:A
CwfLF

def
∼= Π

(

JBKΓ,x:A
CwfLF

, JCKΓ,x:A,y:B
CwfLF

)

ind
∼= Π

(

JBKΓ
CwfLF

[Px (Γ, x : A)] , JCKΓ,y:B
CwfLF

[Px (Γ, x : A, y : B)]
)

∼= Π
(

JBKΓ
CwfLF

, JCKΓ,y:B
CwfLF

)

[Px (Γ, x : A)]

∼= JΠy : B.CKΓ
CwfLF

[Px (Γ, x : A)]

The penultimate equality is verified because we have

Π
(

JBKΓ
CwfLF

, JCKΓ,y:B
CwfLF

)

[Px (Γ, x : A)] =

Π
(

JBKΓ
CwfLF

[Px (Γ, x : A)] , JCKΓ,y:B
CwfLF

[〈

Px (Γ, x : A) ◦ pJBKΓ
CwfLF

, qJBKΓ
CwfLF

〉])

and
〈

Px (Γ, x : A) ◦ pJBKΓ
CwfLF

, qJBKΓ
CwfLF

〉

=
〈

Px (Γ, x : A) ◦ pJBKΓ,x:A
CwfLF

[Px(Γ,x:A)], qJBKΓ,x:A
CwfLF

[Px(Γ,x:A)]

〉

= p̃
(

Px (Γ, x : A) , JBKΓ,x:A
CwfLF

)

= Px (Γ, x : A, y : B)

We won’t mention such details in the following and will write
∗
≡ when they have been omitted

to justify the equality.

and for terms

– J ≡ x: JxKΓ
CwfLF

is not defined
– J ≡ y:

JyKΓ,x:A
CwfLF

def
∼= JyKΓ

CwfLF

[

pJAKΓ
CwfLF

]

∼= JyKΓ
CwfLF

[Px (Γ, x : A)]

– J ≡ λyB.M :

JλyB.MKΓ,x:A
CwfLF

def
∼= λB

(

JMKΓ,x:A,y:B
CwfLF

)

ind
∼= λB

(

JMKΓ,y:B
CwfLF

[Px (Γ, x : A, y : B)]
)

∗
≡ λB

(

JMKΓ,y:B
CwfLF

)

[Px (Γ, x : A)]

∼= JλyB.MKΓ
CwfLF

[Px (Γ, x : A)]

– J ≡ MN :

JMNKΓ,x:A
CwfLF

def
∼= App

(

JMKΓ,x:A
CwfLF

, JNKΓ,x:A
CwfLF

)

∼= App
(

JMKΓ
CwfLF

[Px (Γ, x : A)] , JNKΓ
CwfLF

[Px (Γ, x : A)]
)

∼= App
(

JMKΓ
CwfLF

, JNKΓ
CwfLF

)

[Px (Γ, x : A)]

∼= JMNKΓ
CwfLF

[Px (Γ, x : A)]

45



Induction step of the induction on ∆. Suppose that the argument of P is of the form Γ, x : A,∆, y :
B. Then Px (Γ, x : A,∆, y : B) ≡ pA

(

JΓ, x : A,∆, y : BK
CwfLF

)

is defined iff JΓ, x : A,∆, y : BK
CwfLF

and JΓ,∆, y : BK
CwfLF

are defined and in this case the relation

JJ KΓ,x:A,∆,y:B
CwfLF

∼=
(

JJ KΓ,∆,y:B
CwfLF

)

[Px (Γ, x : A,∆, y : B)]

is verified since we have (by induction on length of involved pre-terms and -types).

For types, we have

– J ≡ Star:

JStarKΓ,x:A,∆,y:B
CwfLF

def
∼= Star
∼= Star [Px (Γ, x : A,∆, y : B)]

∼= JStarKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]

– J ≡ Elem (M):

JElem (M)KΓ,x:A,∆,y:B
CwfLF

def
∼= Elem

(

JMKΓ,x:A,∆,y:B
CwfLF

)

ind
∼= Elem

(

JMKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]
)

∼= Elem
(

JMKΓ,∆,y:B
CwfLF

)

[Px (Γ, x : A,∆, y : B)]

∼= JElem (M)KΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]

– J ≡ Πz : C.D:

JΠz : C.DKΓ,x:A,∆,y:B
CwfLF

def
∼= Π

(

JCKΓ,x:A,∆,y:B
CwfLF

, JDKΓ,x:A,∆,y:B,z:C
CwfLF

)

ind
∼= Π

(

JCKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)] , JDKΓ,∆,y:B,z:C
CwfLF

[Px (Γ, x : A,∆, y : B, z : C)]
)

∗
≡ Π

(

JCKΓ,∆,y:B
CwfLF

, JDKΓ,∆,y:B,z:C
CwfLF

)

[Px (Γ, x : A,∆, y : B)]

∼= JΠz : C.DKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]

and for terms

– J ≡ y:

JyKΓ,x:A,∆,y:B
CwfLF

def
∼= qJBKΓ,x:A,∆

CwfLF

ind
∼= q“

JBKΓ,∆
CwfLF

[Px(Γ,x:A,∆)]
”

∗
≡ qJBKΓ,∆

CwfLF

[Px (Γ, x : A,∆, y : B)]

∼= JyKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]

– J ≡ x: JxKΓ,∆,y:B
CwfLF

is not defined

46



– J ≡ z with z ∈ DV (Γ ) ∪ DV (∆):

JzKΓ,x:A,∆,y:B
CwfLF

def
∼= JzKΓ,x:A,∆

CwfLF

[

pJBKΓ,x:A,∆
CwfLF

]

ind
∼= JzKΓ,∆

CwfLF
[Px (Γ, x : A,∆)]

[

pJBKΓ,x:A,∆
CwfLF

]

∼= JzKΓ,∆
CwfLF

[

Px (Γ, x : A,∆) ◦ pJBKΓ,x:A,∆
CwfLF

]

∼= JzKΓ,∆
CwfLF

[

pJBKΓ,∆
CwfLF

◦
〈

Px (Γ, x : A,∆) ◦ pJBKΓ,x:A,∆
CwfLF

, qJBKΓ,x:A,∆
CwfLF

〉]

∼= JzKΓ,∆
CwfLF

[

pJBKΓ,∆
CwfLF

] [〈

Px (Γ, x : A,∆) ◦ pJBKΓ,x:A,∆
CwfLF

, qJBKΓ,x:A,∆
CwfLF

〉]

∼= JzKΓ,∆,y:B
CwfLF

[〈

Px (Γ, x : A,∆) ◦ pJBKΓ,x:A,∆
CwfLF

, qJBKΓ,x:A,∆
CwfLF

〉]

∼= JzKΓ,∆,y:B
CwfLF

[〈

Px (Γ, x : A,∆) ◦ pJBKΓ,∆
CwfLF

[Px(Γ,x:A,∆)], qJBKΓ,∆
CwfLF

[Px(Γ,x:A,∆)]

〉]

∼= JzKΓ,∆,y:B
CwfLF

[

p̃
(

Px (Γ, x : A,∆) , JBKΓ,∆
CwfLF

)]

∼= JzKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]

– J ≡ λzC .M :

JλzC .MKΓ,x:A,∆,y:B
CwfLF

def
∼= λC

(

JMKΓ,x:A,∆,y:B,z:C
CwfLF

)

ind
∼= λC

(

JMKΓ,∆,y:B,z:C
CwfLF

[Px (Γ, x : A,∆, y : B)]
)

∗
≡ λC

(

JMKΓ,∆,y:B,z:C
CwfLF

)

[Px (Γ, x : A,∆)]

∼= JλzC .MKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]

– J ≡ MN :

JMNKΓ,x:A,∆,y:B
CwfLF

def
∼= JMKΓ,x:A,∆,y:B

CwfLF
JNKΓ,x:A,∆,y:B

CwfLF

ind
∼=

(

JMKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]
) (

JNKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]
)

∼=
(

JMKΓ,∆,y:B
CwfLF

) (

JNKΓ,∆,y:B
CwfLF

)

[Px (Γ, x : A,∆, y : B)]

∼= JMNKΓ,∆,y:B
CwfLF

[Px (Γ, x : A,∆, y : B)]
ut

Lemma 62 (Substitution). Let Γ and ∆ be pre-contexts, A and B be pre-types, M and N be

pre-terms and x be a fresh variable. Let J be either A or M and suppose that JMKΓ
CwfLF

is defined.

The expression UM
x (Γ, x : A,∆) is defined iff JΓ,∆ [M/x]K

CwfLF
and JΓ, x : A,∆K

CwfLF
are both

defined and in this case is a morphism from the former to the latter. If JJ KΓ,x:A,∆
CwfLF

is defined then

JJ [M/x]KΓ,∆[M/x]
CwfLF

∼= JJ KΓ,x:A,∆
CwfLF

[

UM
x (Γ, x : A,∆)

]

Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -contexts
as in the proof of lemma 29. ut

Proposition 9 (Soundness). The interpretation function enjoys the following soundness proper-
ties

1. if Γ ` then JΓ K
CwfLF

: Ctxt is derivable in CwfLF;

47



2. if Γ ` A then JAKΓ
CwfLF

: Type
(

JΓ K
CwfLF

)

is derivable in CwfLF;

3. if M : Γ ` A then JMKΓ
CwfLF

: JΓ K
CwfLF

` JAKΓ
CwfLF

is derivable in CwfLF;

4. if Γ ` A = B then JAKΓ
CwfLF

= JBKΓ
CwfLF

: Type (Γ ) is derivable in CwfLF;

5. if M = N : Γ ` A then JMKΓ
CwfLF

= JNKΓ
CwfLF

: JAKΓ
CwfLF

is derivable in CwfLF.

Proof. The proof is done by induction on the derivations.

– Contexts rules
• (C-Emp)LF: J¦K

CwfLF
≡ ¦ is a context by rule (C-Emp)CwfLF

.
• (C-Ext)LF: if Γ is a context and A an element of Type (Γ ) then by induction hypothe-

sis JΓ K
CwfLF

is a context and JAKΓ
CwfLF

is an element of Type
(

JΓ K
CwfLF

)

and therefore

JΓ, x : AK
CwfLF

≡ JΓ K
CwfLF

, JAKΓ
CwfLF

is a context by rule (C-Ext)CwfLF
.

– Types rules
• (Star)LF: if Γ is a context then by induction hypothesis JΓ K

CwfLF
is a context and therefore

Star is an element of Type
(

JΓ K
CwfLF

)

.
• (Elem)LF: if Γ is a context and M : Γ ` Star then by induction hypothesis JΓ K

CwfLF
is

a context and JMKΓ
CwfLF

` JStarKΓ
CwfLF

which can be rewritten as JMKΓ
CwfLF

` Star since

JStarKΓ
CwfLF

≡ Star and therefore Elem
(

JMK
CwfLF

)

is an element of Type
(

JΓ K
CwfLF

)

by
rule (Elem).

• (Exp)LF: if Γ is a context, A a type in the context Γ and B a type in the context Γ, x : A then

by induction hypothesis JΓ K
CwfLF

is a context, JAKΓ
CwfLF

is a type in the context JΓ K
CwfLF

and JBKΓ,x:A
CwfLF

is a type in the context JΓ K
CwfLF

, JAKΓ
CwfLF

and therefore JΠx : A.BK ≡

Π
(

JAKΓ
CwfLF

, JBKΓ
CwfLF

)

is a type in the context Γ by rule (Exp)CwfLF
.

– Terms rules
• (Var)LF: if Γ is a context and A is a type in the context Γ then, by induction hypothesis,

JΓ K
CwfLF

is a context and JAKΓ
CwfLF

is a type in JΓ K and therefore JxKΓ,x:A
CwfLF

≡ qJAKΓ
CwfLF

is a

term of type JΓ K
CwfLF

, JAKΓ
CwfLF

` JAKΓ
CwfLF

[

pJAKΓ
CwfLF

]

by rule (M-E-R)CwfLF
, which we

can rewrite into JΓ, x : AK
CwfLF

` JAKΓ,x:A
CwfLF

by lemma 29 since pJAKΓ
CwfLF

≡ Px (Γ, x : A).

• (Var-Ext)LF: if Γ is a context, A and B are types in the context Γ and x is a variable of

type Γ ` A then, by induction hypothesis, JΓ K
CwfLF

is a context, JAKΓ
CwfLF

and JBKΓ
CwfLF

are types in the context JΓ K
CwfLF

and JxK
CwfLF

is a term of type JΓ K
CwfLF

` JAKΓ
CwfLF

and

therefore we have JxKΓ,y:B
CwfLF

≡ JxKΓ
CwfLF

[

pJBKΓ
CwfLF

]

which is of type JΓ K
CwfLF

, JBKΓ
CwfLF

`

JAKΓ
CwfLF

by rule (Tm-S)CwfLF
since pJBKΓ

CwfLF

is a morphism of type JΓ K
CwfLF

, JBKΓ
CwfLF

→

JΓ K
CwfLF

and JAKΓ
CwfLF

[

pJBKΓ
CwfLF

]

≡ JAKΓ,y:B
CwfLF

. This type can be rewritten JΓ,BK
CwfLF

`

JAKΓ
CwfLF

.
• (Abs)LF: if Γ is a context, A is a type in the context Γ , B is a type in the context (Γ, x : A)

and M is a term of type (Γ, x : A ` B) then by induction hypothesis JΓ K
CwfLF

is a con-

text, JAKΓ
CwfLF

is a type in the context JΓ K
CwfLF

, JBKΓ,x:A
CwfLF

is a type in the context

JΓ, x : AK
CwfLF

≡ JΓ K
CwfLF

, JAKΓ
CwfLF

and therefore JλxA.MK ≡ λJAKΓ,x:A
CwfLF

is a term of

type Π
(

JAKΓ
CwfLF

, JBKΓ,x:A
CwfLF

)

≡ JΠx : A.MKΓ
CwfLF

by rule (Abs)CwfLF
.

• (App)LF: if Γ is a context, A a type in the context Γ , B a type in the context Γ, x : A,
M a term of type Γ ` Πx : A.B and N a term of type Γ ` A then by induction hy-
pothesis JΓ K

CwfLF
is a context, JAKΓ

CwfLF
is a type in the context JΓ K

CwfLF
, JBKΓ,x:A

CwfLF

is a type in the context JΓ, x : AK
CwfLF

≡ JΓ K
CwfLF

, JAKΓ
CwfLF

, JMKΓ,x:A
CwfLF

is a term of

type JΓ K
CwfLF

` Π
(

JAKΓ
CwfLF

, JBKΓ,x:A
CwfLF

)

and N is a term of type JΓ K ` JAKΓ
CwfLF

48



and therefore JMNKΓ
CwfLF

≡ App
(

JMKΓ
CwfLF

, JNKΓ
CwfLF

)

is a term of type JΓ K
CwfLF

`

JBKΓ,x:A
CwfLF

[〈

idJΓ K
CwfLF

, JMKΓ
CwfLF

〉]

≡ JΓ K
CwfLF

` JBKΓ,x:A
CwfLF

[

UM
x (Γ, x : A)

]

∼= JΓ K
CwfLF

`

JB [M/x]KΓ
CwfLF

.
• (Π-C)LF: if Γ is a context, A is a type in the context Γ , B a type in the context Γ, x :

A, M a term of type Γ ` Πx : A.B and N a term of type Γ ` A then by induction
hypothesis JΓ K

CwfLF
is a context, JAKΓ

CwfLF
is a type in the context JΓ KCwfLF, JBKΓ,x:A

CwfLF

is a type in the context JΓ, x : AK
CwfLF

≡ JΓ K
CwfLF

, JAKΓ
CwfLF

, JMKΓ,x:A
CwfLF

is a term of type

JΓ K
CwfLF

` Π
(

JAKΓ
CwfLF

, JBKΓ,x:A
CwfLF

)

and N is a term of type JΓ K ` JAKΓ
CwfLF

and therefore

J(λxA.M) NKΓ
CwfLF

≡ App
(

λ
(

JMKΓ,x:A
CwfLF

)

, JNKΓ
CwfLF

)

(Π-C)
= JNKΓ,x:A

CwfLF

[

UM
x (Γ, x : A)

]

∼=

JN [M/x]KΓ
CwfLF

by lemma 30.
• (Π-η)LF: if Γ is a context, A is a type in the context Γ , B is a type in the context Γ, x :

A and M is a term of type Γ ` Πx : A.B then by induction hypothesis JΓ K
CwfLF

is a

context, JAKΓ
CwfLF

is a type in the context JΓ K
CwfLF

, JBKΓ,x:A
CwfLF

is a type in the context

JΓ, x : AK
CwfLF

and JMKΓ
CwfLF

is a term of type JΓ K
CwfLF

` Π
(

JAKΓ
CwfLF

, JBKΓ,x:A
CwfLF

)

and

therefore

JλxA. (Mx)K ≡ λ
(

App
(

JMKΓ,x:A
CwfLF

, JxKΓ
CwfLF

))

≡ λ
(

App
(

JMKΓ
CwfLF

[

pJAKΓ
CwfLF

]

, qJAKΓ
CwfLF

))

(Π-η)
= JMKΓ

CwfLF

Moreover, the rules of gat are verified in both theories and are preserved on the nose by the inter-
pretation. ut

C.2 Interpretation of CwfLF into LF

Lemma 63 (Weakening). Let Γ and ∆ be pre-contexts, A and B be pre-types, M be a pre-term

and x a fresh variable. Let J be either M or A. The expression Px

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
,∆

)

is

defined iff JΓ,A,∆K
LF

and JΓ,∆K
LF

are defined and in this case is a morphism from the former to

the latter. If JJ KΓ,∆
CwfLF

is defined then

JJ KJΓ,A,∆K
LF

∼= JJ KJΓ,∆K
LF

LF

[

Px

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
, J∆K

LF

)]

Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -contexts
as in the proof of lemma 29. ut

Lemma 64 (Substitution). Let Γ and ∆ be pre-contexts, A and B be pre-types, M and N

be pre-terms and x be a fresh variable. Let J be either A or M and suppose that JMKΓ
LF

is

defined. The expression UM
x

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
, J∆K

LF

)

is defined iff
q
Γ,∆

[〈

idJΓ K
LF

,M
〉]y

LF

and JΓ,A,∆K
LF

are both defined and in this case is a morphism from the former to the latter. If

JJ KJΓ K
LF

,x:JAK
JΓ KLF

LF
,J∆K

LF

LF
is defined then

q
J

[〈

idJΓ K
LF

,M
〉]yJΓ K

LF
,J∆[〈idJΓ KLF

,M〉]K
LF

LF

∼= JJ KJΓ K
LF

,x:JAK
JΓ KLF

LF
,J∆K

LF

LF

[

UM
x

(

JΓ K
LF

, x : JAKJΓ K
LF

LF
, J∆K

LF

)]

Proof. The proof proceeds by induction on the lengths of the involved pre-terms, -types and -contexts
as in the proof of lemma 31. ut

49



Proposition 10 (Soundness). The interpretation function enjoys the following soundness prop-
erties

1. if Γ : Ctxt then JΓ K
LF

is a context;

2. if A : Type (Γ ) then JAKJΓ K
LF

LF
is a type in the context JΓ K;

3. if M : Γ ` A then JMKJΓ K
LF

LF
is a term of type JΓ K

LF
` JMKJΓ K

LF

LF
: JAKJΓ K

LF

LF
;

4. if Γ ` A = B then JAKJΓ K
LF

LF
= JBKJΓ K

LF

LF
: Type (JΓ K

LF
);

5. if M = N : Γ ` A then JMKJΓ K
LF

LF
= JNKJΓ K

LF

LF
: JΓ K

LF
` JAKJΓ K

LF

LF
;

6. if γ : ∆ → Γ then JγKJ∆K
LF

LF
: J∆K

LF
→ JΓ K

LF
;

7. if γ = δ : ∆ → Γ then JγKJ∆K
LF

LF
= JδKJ∆K

LF

LF
: J∆K

LF
→ JΓ K

LF
.

The last two properties are not strictly required for the proof of the equivalence between LF
and CwfLF but are required to prove the other properties.

Proof. By induction on the derivation rules.

– Rules for category: the interpretation is clearly compatible with the rules (M-Assoc), (M-Id-L)
and (M-Id-R) by definition of context morphisms (def. 24).

– Rules for the functor T : the interpretation is clearly compatible with the rules (Ty-I), (Ty-Abs)
thanks to the corresponding rules in LF

– . . .
– Rules for Π-types

• the interpretation is clearly compatible with the rules (Exp) and (Abs) thanks to the cor-
responding rules in LF

• (Π-C): if Γ is a context, A a type in the context Γ , B a type in the context Γ,A, N
a term of type Γ ` Π(A,B) and M a term of type Γ,A ` B then, by induction hy-

pothesis, JΓ K
LF

is a context, JAKJΓ K
LF

LF
is a type in the context JΓ K

LF
, and, supposing

that JΓ,AK
LF

= JΓ K
LF

, JAKJΓ K
LF

LF
, JBKJΓ K

LF
,x:JAK

JΓ KLF

LF

LF
is a type in the context JΓ K

LF
, x :

JAKJΓ K
LF

LF
, JNKJΓ K

LF

LF
is a term of type JΓ K

LF
` JAKJΓ K

LF

LF
and JMKJΓ K

LF
,x:JAK

JΓ KLF

LF

LF
is a term

of type JΓ K
LF

, x : JAKJΓ K
LF

LF
` JBKJΓ K

LF
,x:JAK

JΓ KLF

LF

LF
and therefore, by rule (Π-C)LF we have

(

λx
JAK

JΓ KLF

LF

. JMKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF

)

JNKJΓ K
LF

LF
= JMKJΓ K

LF
,x:JAK

JΓ KLF

LF

LF

[

JNKJΓ K
LF

LF
/x

]

: JΓ K
LF

`

JBKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF

[

JNKJΓ K
LF

LF
/x

]

. Thus we have

JApp (λA (M) , N)KJΓ K
LF

LF
∼=

(

λx
JAK

JΓ KLF

LF

. JMKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF

)

JNKJΓ K
LF

LF

= JMKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF

[

JNKJΓ K
LF

LF
/x

]

∼= JMKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF

[〈

idJΓ K
LF

, JNKJΓ K
LF

〉]

≡ JMKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF

[

U
JNK

JΓ KLF

LF

x (JΓ K
LF

)

]

∼=
r
M

[〈

idJΓ K
LF

, JNKJΓ K
LF

LF

〉]zJΓ K
LF

LF

in the type JΓ K
LF

` JBKJΓ K
LF

,x:JAK
JΓ KLF

LF

LF

[

JNKJΓ K
LF

LF
/x

]

.
• . . .

– . . . (the other rules can be handled similarly).
ut

50



Proposition 11. The interpretations inverse of one another modulo equality

1. if Γ `LF A then
r
JMKΓ

CwfLF

zΓ

LF

= M : Γ ` A;

2. if A : TypeLF (Γ ) then
r
JAKΓ

CwfLF

zΓ

LF

= A : Type (Γ );

3. if Γ `CwfLF
A then

r
JMKJΓ K

LF

LF

zJΓ K
LF

CwfLF

= M : Γ ` A;

4. if A : TypeCwfLF
(Γ ) then

r
JAKJΓ K

LF

LF

zJΓ K
LF

CwfLF

= A : Type (Γ ).

Proof. By induction on terms, types and contexts. ut

51



References

[Abb03] M. G. Abbott. Categories of Containers. PhD thesis, University of Leicester, August 2003.
http://www.mcs.le.ac.uk/~mabbott/docs/thesis.ps.

[Awo03] S. Awodey. Categories for Everybody. Draft version, 2003.
http://www.andrew.cmu.edu/course/80-413-713/notes/draft/catbook.ps.

[Car86] J. Cartmell. Generalised Algebraic Theories and Contextual Categories. Annals of Pure and

Applied Logic, 32:209–243, 1986.
[CPT03] T. Coquand, R. Pollack, and M. Takeyama. A Logical Framework with Dependently Typed

Records. In Typed Lambda Calculus and Applications, TLCA’03, volume 2701 of LNCS. Springer-
Verlag, 2003. http://www.cs.nott.ac.uk/~gmh/appsem-slides/pollack.pdf.

[Cur86] P.-L. Curien. Categorical Combinators. PhD thesis, 1986.
[Dyb96] P. Dybjer. Internal Type Theory. LNCS, 1158:120–134, 1996.

http://www.cs.chalmers.se/~peterd/papers/InternalTT.ps.
[Fau02] Germain Faure. Decidability of the Typed Equality in the Simply Typed λ-calculus

with Subtyping. Technical report, Chalmers University of Computer Science, 2002.
http://www.loria.fr/~faure/faure_files/report2002.ps.gz.

[Hof97] M. Hofmann. Semantics of Logics of Computation, chapter Syntax and Semantics of
Dependent Types. P. Dybjer and A. Pitts, eds., Cambridge University Press, 1997.
http://www.dcs.ed.ac.uk/home/mxh/cupart.dvi.gz.

[Hue86] G. Huet. Formal Structures for Computation and Deduction, chapter 7 – 8. Course notes, 1986.
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz.

[Jac92] B. Jacobs. Simply Typed and Untyped Lambda Calculus Revisited. In P.T. John-
stone M.P. Fourman and A.M. Pitts, editors, Applications of Category Theory in

Computer Science, volume LMS 177, pages 119 – 142. Camb. Univ. Press, 1992.
http://www.cs.kun.nl/~bart/PAPERS/Durham.ps.Z.

[LS86] J. Lambek and P. J. Scott. Intruduction to Higher Order Categorical Logic. Cambridge University
Press, 1986.

[Pak02] Scott Pakin. The Comprehensive LATEX Symbol List, octobre 2002.
http://www.ctan.org/tex-archive/info/symbols/comprehensive/.

[Pit95] A. M. Pitts. Handbook of Logic in Computer Science, chapter Categorical Logic. Oxford University
Press, 1995. http://www.cl.cam.ac.uk/~amp12/papers/catl/catl.ps.gz.

[Rit92] E. Ritter. Categorical Abstract Machines for Higher-Order Typed λ-Calculi. PhD thesis, University
of Cambridge, 1992. ftp://ftp.cs.bham.ac.uk/pub/authors/E.Ritter/phd.ps.gz.

[Sai96] Amokrane Saibi. Théorie Constructive des Catégories. Draft, 1996.
http://pauillac.inria.fr/~saibi/Cat_monographie.ps.

[San87] H. P. Sander. Categorical Combinators. PhD thesis, Departement of Computer Science, Chalmers
University of Technology and University of Gteborg, may 1987.

52


