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Abstract

Non standard analysis is a model of analysis, reals, functions and also
infinitesimals, which differs from the usual interpretation of those but
satisfies the same class of first order formulas. In this situation, we say
that there is a transfer principle. Here we study variations of this principle,
in constructive non standard analysis. We also study an application to
the modelling of hybrid systems, and see that our weaker principle is not
powerful enough. Then we generalize the transfer in a categorical setting.
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This report is the synthesis of what I have done during my three months
internship in the LMeASI team, in CEA, under the direction of Samuel Mimram.
First of all I would like to thank all the team for their scientific discussion and
especially Samuel Mimram for making me discover research and it’s particular
approach of problems.

1 Introduction

Mathematicians have studied reals or other very well known structures for a
very long time. But with the progress made in logic and model theory, we have
access to lots of other models, such as by doing the “ultraproduct”.

The ultraproduct gives us a new model from any previous model[4]. The
model obtained is interesting because lots of properties valid in the first model
are also valid in the model generated by the ultraproduct. This fact, relating
validity of the same formula in two different models, is called a transfer principle.
The variety of formulas on which we can apply the transfer relates how close the
two models are. In this report we will present the transfer principle between a
model and its ultraproduct, but also for another (weaker) construction of model:
the Fréchet product.

The hyperreals are the ultraproduct of the reals. They are interesting be-
cause they integrate elements that behave exactly like infinitesimals, so hyperre-
als allows us to make analysis with actual infinitesimals and to define derivation
in a new way[3]. Should we redemonstrate everything in this new model, or can
we take advantage of the previous results on the reals? We will see an exam-
ple where infinitesimals are useful and in which the transfer principle give us
directly the result we want[2].

But now the Category Theory had developped a lot[5], we have a generaliza-
tion of the interpretation of formulas[1]. In the last part of this report we try to
see if there is a transfer theorem adapted to this notion of validity of formulas.

Then we show another kind of transfer, with a really different meaning. It
uses an embedding of logic in category theory. The idea remains the same, but
the fact that we embed the logic in category completly change the meaning of
the transfer.

2 Transfer principle

Transfer principles are theorems relating the validity of formulas between two
models. This is useful to prove efficiently lots of statement in one exotic model,
if there is a transfer principle from a very well known model, such as R as in
the next example. In this section we see two transfer principles and an example
in which they are useful.

2.1 Non standard analysis

Infinitesimals have largely been used in analysis, to simplify notations. But they
are not part of the reals so we should be careful when doing calculus with them.
Non standard analysis, also called the hyperreals, is a model of the reals which
includes infinitesimals. To do that, instead of reals we speak about sequences of
reals. An infinitesimal would then be a sequence converging towards 0. But we
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still should be able to inverse these “new reals”, we have to consider quotient
of the sequences: two sequences are in the same equivalence class if the set of
indexes on which they coincide is “large enough”. It turns out that the proper
definition of “large set” is given by the notion of filter.

After having defined this, how can we take advantage of the infinitesi-
mal? For example, we can redefine the derivative of a function f , as: f ′(x) =
f(x+δ)−f(x)

δ where δ is an infinitesimal. But to be sure that it correspond to
the usual notion, we will need a theorem: the transfer principle, that reals and
hyperreals behave the same way.

Definition 1. A filter F over a set I is a (non-empty) subset of P(I), such
that :

1. if A and B are in F then A ∩B is in F

2. if A ⊆ B and A is in F then B is in F

A filter is proper if it does not contain ∅. It is principal if there exists x ∈ I
such that A ∈ F ⇔ x ∈ A.

An example of filter which we will be particularly interested in is the Fréchet
filter.

Definition 2. The Fréchet filter on I is the filter of cofinite subsets of I (the
sets whose complement is finite).

Proof. We prove that the Fréchet filter is a filter. We will write A for the
complementary of A. If A and B are cofinite, then A ∩B = A ∪ B, which is
finite because it is the union of two finite sets, so A ∩ B is cofinite. If A is
cofinite and A ⊆ B, then B ⊆ A so B is finite, that is B is cofinite.

A filter reflects the property of being “large”. Suppose fixed a filter I, we
and say that a set is large if it belongs to the filter, small otherwise. Under
this interpretation, the axioms of filters say that a larger set than a large set
is large, and the intersection of two large sets is large. We remark that in this
case, a set and its complementary can be both small, such as even numbers in
the Fréchet filter on N: both 2N and 2N + 1 are not cofinite.

Definition 3. An ultrafilter U is a filter which satisfies also : for all A ∈ P(E),
either A or A is in U

We will be interested only in proper nonprincipal ultrafilters, because oth-
erwise the induced notion of hyperreals is degenerated. The existence of such
an ultrafilter can be shown assuming the axiom of choice.

Hyperreals are equivalence classes of sequences of reals, those equal on a
large set, that is (xi) and (yi) are in the same equivalence class if {i : xi =
yi} ∈ U . So the ultrafilter decides on wich set of indexes the value of the
sequence is meaningful. On a principal ultrafilter, the only relevant index is the
one generating the ultrafilter, n, and two sequences of reals are equal over this
ultrafilter if and only if they are equal on the index n. With a non principal
ultrafilter, the situation is more interesting.

Proposition 1. If F is a filter over I, and Ai are sets indexed by I, then
the relation on ΠIAi written ∼F and defined by: (xi) ∼F (yi) if and only if
{i ∈ I : xi = yi} ∈ F , is an equivalence relation.
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Proof. It is reflexive because {i ∈ I : xi = xi} = I and I is in every filter over
I. Symmetry is immediate. The transitivity is because if A = {i ∈ I : xi = yi}
and B = {i ∈ I : yi = zi} then since A ∩B ⊆ {i ∈ I : xi = zi}, A and B are in
F which is upward closed and closed under intersection, {i ∈ I : xi = zi} is in
F .

Definition 4. The F-product of a collection (Ai)i∈I with F a filter over I is
(Πi∈IAi)/ ∼F also written (Πi∈IAi)/F . A Fréchet product over I is a product
over the Fréchet filter on I. An ultraproduct is a product over an ultrafilter.
The set of hyperreals R∗ over an ultrafilter U is the ultraproduct RN/U .

For example, consider the sequence 〈0101010101 . . .〉. If the set of odd in-
dexes is in the ultrafilter, then the sequence is equal to the sequence valued 1
everywhere (written 1∗), otherwise it is equal to 0∗: the ultrafilter decides which
of odd and even members of the sequence are relevant.

We write x∗ for the hyperreal 〈(x)i∈I〉 and x ≤ y for {i : xi ≤ yi} ∈ U ,
x+ y for 〈xi + yi〉 (where (xi) and (yi) are any representants of x and y, it does
not depend on this choice). We say that a positive (resp. negative) hyperreal
h is unlimited if x∗ ≤ h (resp. x∗ ≥ h) for all real x, and limited otherwise.
Similarly, h is be infinitesimal if it is lower than every positive real and greater
than every negative one.

Theorem 2. For all limited h, there exists a unique real r such that h − r is
infinitesimal. This r is called the standard part of h and is written St(h).

Sketch of the proof. The existence is given by the compactness of R: we take the
least upper bound of the up-bounded (since h is limited) set {r ∈ R : r∗ ≤ h}.
The unicity can be verified easily by doing the difference of the two potential
reals, which will be 0.

This theorem is useful to perform computations in hyperreals and then “go
back” into reals, as in the computation of a derivative.

In order to formulate the transfer principle in full generality in the next
section, we will make use of the following notions:

Definition 5. An internal set A is a set equal to 〈(Ai)i∈I〉 for some (Ai), where
〈xi〉 ∈ 〈(Ai)i∈I〉 if and only if {i : xi ∈ Ai} ∈ F . Similarly, an internal function
f : A → B is a function such that there exist (fi : Ai → Bi) with A = 〈Ai〉,
B = 〈Bi〉 and f(〈xi〉) = 〈fi(xi)〉.

It can be checked that internal sets are well defined: if 〈xi〉 = 〈yi〉, then
{i ∈ I : xi ∈ Ai} ∈ F if and only if {i ∈ I : yi ∈ Ai} ∈ F . True, because each
set contains the other set intersected with {i : xi = yi} which is in F . We can
remark that the definition of internal functions coincides with internal sets, if
we see a function as the set {(x, f(x))}.

We write A∗ for 〈A〉, f∗ for 〈f〉. We can see that the function ·+∗ · is equal
to ·+ · for hyperreals as defined previously. The definition of internal sets allows
us to extend relation similarly to how we extended functions.

2.2 The Transfer Principle

The transfer principle states that a formula is valid on R if and only if the
corresponding formula (obtained by replacing involved sets and functions by
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their internal counterparts) is valid on R∗. For instance, the fact that each
real not equal to zero has an inverse implies that each hyperreal not equal
to zero have an inverse. We can express this fact by the following formulas:
∀x ∈ R, x 6= 0⇒ ∃y ∈ R : xy = 1 is valid (over the reals), so ∀x ∈ R∗, x 6= 0⇒
∃y ∈ R∗ : xy = 1 is also valid (over the hyperreals).

We now define exactly to which formulas the transfer can be applied. We
define the formulas themselves, containing terms, and their interpretation.

Definition 6. A term is built from symbols of functions and symbols of con-
stants in an at least countable set T , respecting arity (the number of arguments
of a function). A first order formula is built from the following connectives:

⊥, ∧ , ∨ , ⇒ , ¬, ∃x, ∀x and predicates R(t1, . . . , tn)

It is closed if it has no free variables.

Definition 7. An interpretation function I on a domain K is a mapping from
symbols of functions to functions of K, respecting arities, from variables and
symbols of constant to constant of K (then defined by induction on terms); and
from predicates to relations of K. We say that I |= φ if φ is true when we
interpret the relations and terms with I, using the natural semantics (Tarski’s
one) of the connectives and K for quantification (I |= ∀x : φ(x) iff for all x ∈ K,
I |= φ(x)).

If I is an interpretation function, we write I∗ for the interpretation function
which maps to I( )∗. First it is well defined: (f(x1, . . . , xn))∗ = f∗(x∗1, . . . , x

∗
n).

We remark that it looks correct: if I maps a predicates to the equality relation,
then I∗ maps to the “equality on a large set” which is exactly the equality on
hyperreals. The same remark can be made for ≤ or for the function + for reals
and hyperreals. Thanks to I and I∗ we can interpret a formula in two different
models.

Theorem 3 (Transfer principle). For all interpretation function I on R, we
have:

I |= φ if and only if I∗ |= φ

The proof is by induction. We have to prove a stronger result to make it
works.

Theorem 4 (Lòs theorem). For all interpretation function I and formula φ
with free variables x1, . . . , xn, and r1, . . . , rn ∈ RN, we have:

I∗
x̃ 7→ ˜〈r〉 |=R∗ φ ⇐⇒ {i : Ix̃ 7→r̃i |=R φ} ∈ U

where Ix7→r is the interpretation function I completed by the fact that the vari-
able x is interpreted by r.

Before we start the induction on formulas, we need to prove three little
lemmas on ultrafilters.

Lemma 5. ∀A,B ⊆ I we have A ∪B ∈ U ⇐⇒ A ∈ U or B ∈ U

Proof. 1. If A∪B ∈ U and A 6∈ U ,then A ∈ U , and (A∪B)∩A = B∩A ∈ U .
As B ∩A ⊆ B, we have B ∈ U .
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2. If A ∈ U , then as A ⊆ A ∪B we have A ∪B ∈ U . Symmetrically for B.

Lemma 6. ∀A,B ⊆ I we have A ∩B ∈ U ⇐⇒ A ∈ U and B ∈ U

Proof. 1. If A ∩ B ∈ U then as A ∩ B ⊆ A we have A ∈ U . Symmetrically
for B.

2. If A and B are in U , then A ∩B is in U , by definition of a filter.

Lemma 7. ∀A,B ⊆ I we have A ∪B ∈ U ⇐⇒ if B ∈ U then A ∈ U

Proof. A ∪ B ∈ U ⇐⇒ A ∈ U or B ∈ U ⇐⇒ A ∈ U or B 6∈ U ⇐⇒ if B ∈ U
then A ∈ U .

We write Jφ(r̃)K for {i : Ix̃→r̃i |=R φ}.

Proof of Theorem 4. 1. if φ is a predicate, we have:

I∗
x̃→ ˜〈r〉 |=R∗ R(x̃) iff ˜〈r〉 ∈ R∗ iff {i : r̃i ∈ R} ∈ U iff {i : Ix̃→r̃i |=R

R(x̃)} ∈ U

2. I∗
x̃→ ˜〈r〉 |=R∗ φ ∧ ψ

⇐⇒ I∗
x̃→ ˜〈r〉 |=R∗ φ and I∗

x̃→ ˜〈r〉 |=R∗ ψ

⇐⇒ JφK ∈ U and JψK ∈ U (by induction hypothesis)
⇐⇒ JφK ∩ JψK ∈ U (by Lemma 6)
⇐⇒ Jφ ∧ ψK ∈ U .

3. I∗
x̃→ ˜〈r〉 |=R∗ φ ∨ ψ

⇐⇒ I∗
x̃→ ˜〈r〉 |=R∗ φ or I∗

x̃→ ˜〈r〉 |=R∗ ψ

⇐⇒ JφK ∈ U or JψK ∈ U (by induction hypothesis)
⇐⇒ JφK ∪ JψK ∈ U (by Lemma 5)
⇐⇒ Jφ ∨ ψK ∈ U .

4. I∗
x̃→ ˜〈r〉 |=R∗ φ⇒ ψ

⇐⇒ if I∗
x̃→ ˜〈r〉 |=R∗ φ then I∗

x̃→ ˜〈r〉 |=R∗ ψ

⇐⇒ if JφK ∈ U then JψK ∈ U (by induction hypothesis)
⇐⇒ JφK ∪ JψK ∈ U (by Lemma 7)
⇐⇒ Jφ⇒ ψK ∈ U .

5. I∗
x̃→ ˜〈r〉 |=R∗ ¬φ

⇐⇒ JφK 6∈ U (by induction hypothesis)
⇐⇒ JφK ∈ U
⇐⇒ J¬φK ∈ U

6. Let A(xi) = {i : Ix→xi
|=R φ} and B = {i : ∀x, Ix→x |=R φ}. Then we will

show that:
B ∈ U ⇐⇒ ∀(xi) ∈ RN, A(xi) ∈ U

If B ∈ U , then let xi ∈ RN. B ⊆ A(xi) so A(xi) ∈ U

If B 6∈ U , then B ∈ U . But B = {i : ∃xi, Ix→xi
6|=R φ}. So ∃(xn) ∈ RN

such that {i : Ix→xi
6|=R φ} ∈ U which is by the induction hypothesis:
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∃(xn) ∈ RN such that {i : Ix→xi
|=R φ} 6∈ U or ∃(xn) ∈ RN such that

A(xn) 6∈ U .

This is exactly J∀x : φ(x)K⇐⇒ ∀x : Jφ(x)K.

7. Let A(xi) = {i : Ix→xi |=R φ} and B = {i : ∃x, Ix→x |=R φ}. Then we will
show that:

B ∈ U ⇐⇒ ∃(xi) ∈ RN, A(xi) ∈ U

If A(xi) ∈ U , then since A(xi) ⊆ B, B ∈ U .

If B ∈ U , then we take the (xi) given by B, A(xi) = B ∈ U .

This is exactly J∃x : φ(x)K⇐⇒ ∃x : Jφ(x)K.

The transfer principle is just the particular case of Lòs theorem when φ has
no free variables. If φ is valid in I then {i : I |=R φ} is equal to I ∈ U , and if φ
is not valid in I, it is equal to ∅ 6∈ U . So {i : I |=R φ} ∈ U ⇐⇒ I |=R φ

This gives a precise meaning to the transfer principle: be careful when using
it! It is important to see that the semantics of the connectives are preserved,
the only thing which changes is the range of the quantifiers and the meaning of
the predicates (they change in a natural way).

This theorem can be extended (with a very similar proof) to second order
formulas.

Theorem 8 (Claim). We have the transfer principle over second order formu-
las, where quantifying over sets is quantifying over internal sets.

The proof works the same way as the previous one. We really need to
quantify only over internal sets and not over all sets of hyperreals, otherwise
the transfer is false. An example of formula on which the transfer would not
work (quantifying over every sets): the compactness property. It is true in R,
but false in R∗: R (seen as hyperreals) is bounded (by any unlimited) in R∗ but
has no least upper bound, since if h is unlimited then h − 1 is also unlimited,
and any bound of R is unlimited. The transfer seen here allows us to prove that
any bounded and internal subset of R∗ has a least upper bound.

We can deduce from this property that R ⊆ R∗ is not internal.

2.3 Constructive non standard analysis

The problem with the ultraproduct construction is that the notion of ultrafilter
is not constructive, and an infinitesimal would not always be expressed by a
sequence converging towards 0. An infinitesimal is a sequence converging to-
wards 0 wrt. the ultrafilter U , whereas we would like our usual definition of
convergence. Our notion of convergence corresponds to the one of the Fréchet
filter, so we will try to replace U by F the Fréchet filter.

It is only a filter so we do not have anymore A ∈ F ∨ A ∈ F . But we will
still try to have a transfer. Using (·)∗ for the Fréchet product, we have:

Theorem 9. If φ is made from predicates, ∀, ∃, ∧ (so does not contains ¬, ∨,
⇒), then

I |=R φ =⇒ I∗ |=R∗ φ
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If φ is made from predicates, ¬, ∃, ∨, ∧ (so does not contains ∀, ⇒), then

I |=R φ⇐= I∗ |=R∗ φ

Proof. The proof is similar to the ultraproduct case. However, some lemmas
are weakened.

1. Lemma 5: A ∪B ∈ F ⇐= A ∈ F or B ∈ F

2. Lemma 6: A ∩B ∈ F ⇐⇒ A ∈ F and B ∈ F

3. Lemma 7: A ∪B ∈ U =⇒ if B ∈ U then A ∈ U

Also the induction does only work on some connectives:

1. Predicates work similarly,

2. Conjunction work similarly as Lemma 6 is inchanged,

3. Disjunction lose the converse way as Lemma 5 lose the converse way,

4. Implication: even if we lose only one way in Lemma 7, the induction does
not work here, because in the previous proof, we used the two ways of the
induction hypothesis to prove one way.

5. Negation: Only the converse way works here.

We can see that we lose the direct way for implication, disjunction and nega-
tion. Intuitively it seems correct because the semantics of the three connectives
are different in intuitionistic and classical logic. Here are some examples of
properties true and false in the Fréchet product of R:

1. ∀x : x 6= 0⇒ ∃y : xy = 1 is valid in R∗ (and in R).

2. ∀x : ¬(x = 0)⇒ ∃y : xy = 1 is not valid in R∗ (but valid in R).

In the first formula the 6= is the predicate of being not equal. Its interpretation
on the Frechet product is to be different in a big set, that is equal to zero on a
finite number of values.

The second formula says that a sequence not (equal to zero on a cofinite)
would be inversible. But the hyperreal 〈010101 . . .〉 is not equal to zero on a
cofinite set, but for any y, xy will be equal to zero on at least the even numbers,
so xy will be different from 1∗.

2.4 Nets, semantics and CPO

Now we give an example where we can use the transfer principle. Instead of
having to prove a difficult thing, we show that it can be expressed with formulas
on which we can apply the transfer principle. Then, as it has already been proved
in R, it is also true in R∗.

Definition 8. A net is a kind of electrical circuit used to model the program-
ming languages “of boxes and wires”.
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a net

The aim of Samuel Mimram and Romain Beauxis’ paper is to give a seman-
tics to Nets wich represent continous time. For that purpose, instead of giving
an ad-hoc semantic, they give a way to interpret nets for every fixpoint category.

Theorem 10. If we have a fixpoint category and way to interpret boxes, we
can interpret every nets using these boxes (for a formal claim see ?? Romain
Beauxis and Samuel Mimram).

Here we do not give the details, not even the definition of a fixpoint category
but they can be found in [5]. We could guess what would be a semantic of nets
according to how we represent them as electrical circuits, with boxes with input,
output, and wires connecting them. But here the main point is that it gives a
context to show that a transfer principle can be useful.

2.4.1 Sampling with non standard analysis

CPO is a fixpoint category. If we interpret boxes as continuous function from
and to R≤N, the cpo of possibly finite sequences of R ordered by the length of
the sequences, then we recover the usual “Kahn-semantic”: discrete time, and
at each step values are propagated over the wires.

But we would like to be able to do it and recover a “continuous time”
semantic: as in electrical circuits, data flow over the wire continuously, such
that we can integrate or derivate it.

To do that we can think of interpret boxes in R≤R+ but we also want to
be able to express derivation and integration. With this Cpo and continuous
functions, we could not do that. But we can achieve it with infinitesimals: f ′(x)

would then be f(x+δ)−f(x)
δ which is expressible with boxes and wires. A natural

candidate, close to R≤R+ but with access to infinitesimals, is R∗≤N
∗
. We can

relate these two sets by a kind of sampling: δ will represent a discrete but
infinitesimal step in time.

But we need to show that R∗≤N
∗

is an object of an interesting fixpoint
category, which would give us a continuous semantic of nets. To do that we use
a transfer. Our set is member of ICPO the collection of ultraproduct of Cpos.
So if we prove that ICPO is a fixpoint category, we have achieved our goal.

We only need one way in our transfer principle: we have the result in the
standard model, and we want to have it in the product. But we still need the
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formulas to be simple enough to be expressed in the language of the transfer.
Here is a non exhaustive list of what we had to verify:

1. Axioms of Cpos:

(a) Directed(A) ≡ ∀x, y ∈ A : ∃z ∈ A : x ≤ z ∧ y ≤ z
(b) Supremum(m,A) ≡ ∀x ∈ A : x ≤ m ∧ ∀m′ ∈ A : (∀x ∈ A : x ≤

m′)⇒ m ≤ m′

(c) CPO(E) ≡ ∀A ⊆ E : Directed(A)⇒ ∃m ∈ E : Supremum(m,A)

(d) Scott(f) ≡ ∀A ⊆ E : ∀m ∈ E : Supremum(m,A)
⇒ Supremum(f(m), f(A))

2. Axioms of Category:

(a) ∀A,B, f : A→ B, g : B → C : CPO(A,B)∧Scott(f, g)⇒ Scott(g◦f)

(b) Identity(f,A) ≡ ∀B : CPO(B),∀g : A → B : Scott(g) ⇒ g ◦ f =
g ∧ ∀g : B → A : Scott(g)⇒ f ◦ g = g

(c) ∀A,∃idA : A→ A : CPO(A) ∧ Identity(idA, A)

3. Axioms of fixpoint

We need to be careful: after applying the transfer, it is not really the same
property that is true, because the semantic of quantification has changed. So
Internal Cpos are not always Cpos. But we have chosen our category carefully:
the property of being in ICPO is exactly the transfer of the property of being
in CPO. So by transfer we have that ICPO is a fixpoint category !

2.4.2 Conclusion of the example

Even if it does not add new possibilities, transfer principle allows us to simplify
some proofs, and to take benefit of a very well known set, to prove things that
would otherwise be very unpractical.

Here we have not been clear about which (·)∗ we were talking about. As
only the transfer principle for ultraproducts is powerful enough, it is the (·)∗ of
ultraproduct. The first aim of the internship was to find a transfer principle to
have a semantic of net with a constructive object, the Fréchet filter. But, even
if we don’t have any disjunction in our formulas, we still need the implication.
So the transfer principle I proved is not powerful enough. But I next moved to
another transfer principle to see what it can offers.

3 Categorical Logic

Here we study a more abstract way to define a semantic for formulas, which
is more general in the sense that the usual semantic is an instance of this con-
struction (but the most natural one). We then study to what extent the transfer
principle holds in this semantics both for the ultraproduct and the Frechet prod-
uct, and how it differs from the previous transfer. The particularity is that the
semantic of every connectives depends on which model we are interpreting the
formula. By doing the ultraproduct of a model, we change the semantic of every
connectives, instead of only the quantifiers as in the previous transfer.
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It requires some definitions. It is not important to understand all of them in
full generality, but it is important to see what they do mean in Set. An advice
would be to have a first overview of the definitions, then to read how we embed
logic in category, refering back to the definition when needed. The idea is to
embed the semantic in a category, which will be our model, using categorical
property of existence, such that the interpretation in Set corresponds to the
usual semantic.

3.1 Definitions

We often use notions of category theory that we recall here.

Definition 9. A category consists of a collection of objects and a collection
of morphisms between objects, together with an associative composition ◦ of
morphisms, such that for all objects A there exists an identity morphism IdA
which is neutral for right and left composition.

Example 1. The category of sets and functions between sets,

2. The category of groups and morphisms of groups,

3. The category of open spaces of a topological space with the inclusion as
arrow relation,

4. . . .

Definition 10. A functor F : C → D between categories C and D is a mapping
of objects (and resp. morphisms) of C to objects (and resp. morphisms) of D
such that if f : A→ B then Ff : FA→ FB and compatible with composition
and identity: F (f ◦ g) = Ff ◦ Fg and F (IdA) = IdFA.

Functors are the canonical morphisms of categories. Cat is the category of
(small) categories with functor as arrows.

Definition 11. A natural transformation η from F to G, two functors from C
to D, is a collection of morphisms of D indexed by objects of C such that the
following diagram:

F (X)
F (f) //

ηX

��

F (Y )

ηY

��
G(X)

G(f)
// G(Y )

commutes.

Definition 12. A limit for a diagram in C (diagram as the one above) is an
object L, and an arrow from L to every object of the diagram, such that the
diagram commutes and universal in the sense that for every other object L′ and
arrows making the diagram commutes, there exists a unique arrow from L′ to
L making the whole diagram commute. Cartesian product and pullbacks are
examples of limits. Finite limits are limits from finite diagrams.
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Definition 13. A cartesian product is a limit for the diagram of two objects
without arrows. A pullback is a limit of B −→ C ←− A:

A cartesian product: , and a pullback:

F

A

C

B

P

f g

g*ff*g

.
Note that the way we denote the morphisms (π1 and f ∗ g) will be used.

Definition 14. An adjunction from C to D is two functors: F : C → D and
G : D → C and for each c ∈ C, d ∈ D, a bijection φc,d between D(Fc, d) and
C(c,Gd) which is natural in c and d.

Definition 15. A mono m is an arrow which is left invertible: for every mor-
phisms f, g, g ◦m = f ◦m implies g = f .

In Set, monos are injective functions.

Definition 16. A subobject of an object X is an object A together with a mono
A� X.

In Set, subobjects modulo bijections are subsets. Subobjects can be view as
a preorder, (or a poset when quotienting cycles), with i1 ≤ i2 iff there is mono
m such that i1 = i2 ◦m. If A is an object of the category, we write Sub(A) for
the category of subobjects

Definition 17. An object ZY , together with a morphism

eval : (ZY × Y )→ Z

is an exponential object if for any object X and morphism g : (X × Y ) → Z
there is a unique morphism

λg : X → ZY

such that the following diagram commutes:

Definition 18. In a category C with finite limits, a subobject classifier is an
object Ω together with a monomorphism true : ∗ � Ω out of the terminal
object, such that for every monomorphism U � X in C there is a unique
morphism χU : X → Ω such that there is a pullback diagram

12



U //
��

��

∗��

true

��
X χU

// Ω

Definition 19. A topos is a category with

1. Finite limits and colimits

2. Exponential objects

3. A subobject classifier

Set is a topos. Topoi have a lots of categorical property, and are quite
similar to Set.

Definition 20. A Heyting algebra H is a bounded lattice such that for all a
and b in H there is a greatest element x of H such that

a ∧ x ≤ b
x is be written a ⇒ b. We can also say that a Heyting algebra is a poset

cartesian closed category.

Proposition 11. If C is a topos, then for all A object of C, Sub(A) is a Heyting
algebra, and has finite limits (so has binary meets ∧).

f 7→ g ∗ f is a functor, written g∗ (see the definition of the pullback).

Proposition 12. If C is a topos, then for all projection π : A × B → A, the
functor π∗ has both a right and a left adjoint.

3.2 Interpreting logic in categories

The language on which we work is sligthly different from the one of section
2.2. It is be more expressive: variables are typed in quantification. We fix a
category C as model for formulas, an interpretation of a type T will be an object
of the category, (in Set the set of elements of type T ). An interpretation of an
environment will be the cartesian product of the types of the environment. And
finally the interpretation of a formula with free variables in a context typing
its free variables will be a subobject of the interpretation of the environment.
In Set it will be a subset, the elements of the environment which satisfies the
formula.

Now we define the language. It is sorted: terms will have a type, predicates
a signature (types of its argument).

Definition 21. A language L consists of:

• a set of types,

• terms: constants together with their types, symbols of functions with their
signature (A1, · · · , An;B) (the type of its argument and the type of the
resulting term)

13



• predicates: symbols together with signatures.

The formulas of L are defined inductively with:
∧, ∨, ⇒, >, ⊥, ∃x, ∀x, R(t1, . . . , tn)

Now we define the notion of categorical model. Most of the several properties
used here are defined in the previous section, but here we will discuss their
meaning. We will often see what does it means in Set to have an intuition of
the soundness of the definitions.

Definition 22. An interpretation consists of a category C and a mapping J·K
such that:

1. The category C is a topos (think of Set)

2. A type A is interpreted by an object of C

3. An environment Γ = (x1 : A1, . . . , xn : An) is interpreted by JA1K× · · · ×
JAnK.

4. A function symbol with signature (A1, . . . , Am;B) will be interpreted as
a morphism JfK : JA1K× . . .× JAmK→ JBK

5. A term in a context Γ = x0 : A0, · · · , xn : An is interpreted as a functions
from the interpretation of the environment to the interpretation of the
type of the term, as follows:

(a) A variable JΓ | xiK is the ith projection.

(b) A composite term JΓ | f(t1, · · · , tm)K is the composition: JfK ◦
〈Jt1K, · · · , JtmK〉
Here if the environment is empty, JΓK will be the terminal object, in
Set a singleton. And a function from this singleton to a set of a type
is exactly an element of this type! A “closed” term of type T is, as
expected, an element of JT K.

6. A basic relation symbol R with signature (A1, ..., An) is interpreted as a
subobject JRK ∈ Sub(JA1K× . . .× JAnK)

7. A formula in a context Γ | φ will be interpreted as a subobject JΓ | φK ∈
Sub(JΓK) in the way described below.

8. We will say that we have a logical entailement Γ | φ ` ψ verified if JφK ≤
JψK (≤ is on subobjects).

In Set, ≤ is the inclusion order. It means that the subset of Γ verifying
ψ is included in the subset verifying ψ. That sounds correct in regard to
our usual meaning of φ ` ψ.

It remains to explain how formulas are interpreted as subobjects. What we
define should be reflecting our common sense of the semantics, but we will have
a discussion about soundness later. So, formulas are interpreted such that:

1. Γ | ⊥ will be interpreted as the initial object (and its unique morphism to
JΓK).
In Set the initial object corresponds to the empty set. For every given
environment, the subset verifying false is empty.
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2. Γ | > by the maximal subobject: 1JΓK : JΓK→ JΓK

It means that the subobject verifying > is the object itself: all elements
of an environment verify >.

3. An atomic formula Γ | R(t1, · · · , tm) is interpreted as the pullback :

JΓ | R(t1; · · · , tm)K //
��

��

JRK
��

JRK

��
JΓK

〈Jt1K,··· ,JtmK〉
// JA1K× · · · JAmK

In Set, this pullback selects the elements of Γ such that the corresponding
(t1, · · · , tn) belongs to R.

4. JΓ | φ∧ψK = JΓ | φK∧ JΓ | ψK. The first ∧ is syntactic, whereas the second
is the meet on Sub(JΓK), and its existence is given by the fact that our
category is a topos. The meet in Set is the biggest subset included in
the two subset: the intersection. That correspond to our intuition of the
conjunction.

5. JΓ | φ⇒ ψK = JΓ | φK⇒ JΓ | ψK where the first⇒ is syntactic whereas the
second is the Heyting operation on Sub(JΓK) (which is a Heyting algebra
because C is a topos)

6. JΓ | ∃x : A.φK = ∃AJΓ, x : A | φK where ∃A is the right adjoint of πA∗, and
where πA is the projection JΓK× JAK −→ JΓK. Cf. Proposition 12.

7. JΓ | ∀x : A.φK = ∀AJΓ, x : A | φK where ∀A is the left adjoint of πA∗, and
where πA is the projection JΓK× JAK −→ JΓK.

An important remark is that an interpretation is fully defined by its value
on the types, terms, relations and by the domain topos. The values are what
define the interpretation itself: what sense do we give to the syntactic relation,
symbols of functions... and the topos gives us the notion of logic: what sense
do we give to conjunction, implication, ... But are our definitions interesting
and suitable for our purpose? This can be answered in a way by the soundness
theorem.

Theorem 13 (Soundness 1). An interpretation on Set validates a formula iff
the corresponding interpetation validates the formula in Tarski’s semantics (the
one of section 2.2).

Theorem 14 (Soundness 2). If an interpretation validates each axiom of a
theory, then it validates each formula that can be derived from these axioms.

The next step is to define the Fréchet product of categories and interpreta-
tion, and to show the Categorical Lòs Theorem to have the transfer. But here
the transfer actually has a very different meaning.
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3.3 Ultraproducts of categories and interpretation

Definition 23. Let F be a filter on I and (Ci, J·Ki)i∈I be categorical interpre-
tations. We call Frechet product the couple (ΠICi, J·KΠI

) where:

1. ΠICi is (the category of the) collections 〈Ai〉, Ai ∈ Ob(Ci) and 〈fi : Ai →
bi〉 : 〈Ai〉 → 〈Bi〉, fi ∈ Arrow(Ci). The composition is 〈fi〉◦〈gi〉 = 〈fi◦gi〉.
We will then prove that it is well defined.

2. J·KΠI
is (the interpretation) 〈J·Ki〉.

Now we are almost done with the definitions. The transfer theorem in this
case would be : If a logical entailment is verified for almost all interpretation
J·Ki, then it is for J·KΠI

. We first prove that the above definition makes sense,
i.e. that ΠICi is a category and that J·KΠI

is an interpretation. It is most of the
work as the interpretation embed the logic.

Theorem 15. If I is a set and F a filter over I, (J·Ki)i∈I interpretations, and
J·KΠ the F-product of the J·Ki, then J·KΠ is an interpretation.

Proof. We will prove each of the conditions of the definition.

1. Topos: We will admit the fact that the ultraproduct of toposes is a topos,
but we will need some more powerful things, such as the commutation of
operations with the equivalence relation.

A morphism 〈fi : Ai → Bi〉 is of domain 〈Ai〉 and codomain 〈Bi〉. If we
have 〈f̃i : Ãi → B̃i〉 = 〈fi : Ai → Bi〉, then {i : fi = f̃i} ∈ F , but as it is
bigger, {i : Ai = Ãi} ∈ F and 〈Ai〉 = 〈Ãi〉 and the domain is well defined.
Codomain is well defined as well.

The composition defined by 〈fi〉 ◦ 〈gi〉 = 〈fi ◦ gi〉 is well defined : if the
domain of 〈fi〉 and codomain of 〈gi〉 are equal, they are equal on a set
of F and fi ◦ gi is defined on a set of F . So 〈fi ◦ gi〉 is well defined and
has good domain and codomain. And if 〈fi〉 = 〈f̃i〉, then 〈fi〉 ◦ 〈gi〉 =
〈fi ◦ gi〉 = 〈f̃i ◦ gi〉 = 〈f̃i〉 ◦ 〈gi〉 so it does not depend of the representant
and is well defined on equivalence classes.

For an object 〈Ai〉, the morphism 〈IdAi
: Ai → Ai〉 is well defined and is

the identity of 〈Ai〉.

2. Commutation with finite limits: We have to prove that we have binary
cartesian product, terminal object and equalizer.

• The terminal object is the equivalence class of the constant terminal
object.

• Binary cartesian product. Let’s show that 〈Ai〉 × 〈Bi〉 = 〈Ai × Bi〉,
with the two projections π1 = 〈(π1)i〉 and π2 = 〈(π2)i〉. First of all
it is well defined: if 〈Ãi〉 = 〈Ai〉 then 〈Ãi×Bi〉 = 〈Ai×Bi〉. Then, if
we have C and two morphism 〈fi〉 : C → 〈Ai〉 and 〈gi〉 : C → 〈Bi〉,
〈fi × gi〉 will be a good candidate for 〈fi〉 × 〈gi〉.

• Equalizer: the equalizer Eq(〈fi〉, 〈gi〉) is 〈Eq(fi, gi)〉. It is well defined
because Eq(fi, gi) is defined on a set of F and is the equalizer because
we have commutation with ◦.
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As every limit is generated by cartesian product and equalizer, and we
have proved that they commute with equivalence classes, we have proved
that the limit of a diagram of equivalence class is the equivalence class of
the limit of the diagram.

3. Meets and Heyting algebra: As the meet is a cartesian product on the
category of subobject, which is a pullback on the category, we have com-
mutation: 〈Ai〉 ∧ 〈Bi〉 = 〈Ai ∧Bi〉.
We have that 〈A ⇒ B〉 is equal to 〈A〉 ⇒ 〈B〉. The proof is very similar
to the previous ones.

We have shown that each operations (Heyting,...) are compatible with
equivalences classes : 〈A〉?〈B〉 = 〈A?B〉 where ? is any previous operation.

4. Now we will show that ΠM is an interpretation :

• J1KΠM = 〈J1KΠMi〉 = 〈1Mi〉 = 1ΠM

• Jx1 : A1, ..., xn : AnKΠM = JA1KΠM × ...× JAnKΠM because we have
already proved the stability of products throught equivalence class

• JfKΠM : JA1KΠM × ...× JAmKΠM → JBKΠM as proved throught the
fact that ΠM is a category (for dom and codom of JfKΠM).

• JΓ | t : BKΠM : JΓKΠM → JBKΠM, with

– Projections remain projections

– Composition is stable through equivalence classes

• JRKΠM = 〈JRKMi〉 = 〈[JRKMi → JAKMi ]〉 = [〈JRKMi → JAKMi〉]
because equivalence classes of Sub and ΠM commutes (to do)

• A formula in a context : JΓ | φKΠM :

– JΓ | >KΠM = 1,

– Weakening, substitution: pullback is stable through equivalence
classes,

– Conjunction: meet is stable through equivalence classes,

– Implication: ⇒ (of Heyting algebras) is stable throught equiva-
lence classes,

– Adjoints: same argument.

Here we gave the details of the proof only for the first of the several things
to prove, but each of them works the same way. We showed that product of
an interpretation is still an interpretation because it can still be considered as
defined by induction.

Theorem 16. If {i :Mi |= Γ | φ ` ψ} ∈ F , then ΠM |= Γ | φ ` ψ

Proof. Suppose E = {i :Mi |= Γ | φ ` ψ} ∈ F .
By expanding definition, E = {i : JΓ | φKMi

≤ JΓ | ψKMi
}.

So there exist fi for almost all i such that the JΓ | ψKMi
◦ fi = JΓ | φKMi

.
By choosing any fi for others i, we have: 〈JΓ | ψKMi

◦ fi〉 = 〈JΓ | φKMi
〉,

so JΓ | ψKΠM ◦ 〈fi〉 = JΓ | φKΠM which is exactly JΓ | φKΠM ≤ JΓ | ψKΠM , or
ΠM |= Γ | φ ` ψ
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3.4 A new transfer principle

The usual transfer theorem asserts that validity of first order formulas is the
“same” in standard and non standard (wrt. an ultrafilter) models. For instance,
since the formula ∀x, x ∈ {0; 1} ⇒ x = 0 ∨ x = 1 is valid in R, we know that
the formula ∀x, x ∈ {0; 1}∗ ⇒ x = 0∗ ∨ x = 1∗.

However, we have seen that the transfer for the Fréchet product is not nec-
essarily valid for formulas containing⇒ and ∨. In fact, we actually do not have
that ∀x, x ∈ {0; 1}∗ ⇒ x = 0∗ ∨ x = 1∗ is valid in the Fréchet-hyperreals: think
of 〈010101 . . .〉.

So there is an apparent contradiction: in the transfer theorem 17 since valid-
ity is preserved for all first order formulas, even if the non standard construction
is obtained by a Fréchet product (ie. modulo a filter).

The exotic thing of embedding logic in categories is that the structure of the
category define the semantic of the connectives. Here, when we do the product
over the filter, we change the structure of the category, so the meaning of the
connectives. It was already the case in our previous transfer theorem with the
quantification which applied only for internal sets. But now even the simpler
connectives have changed.

Let’s study our example. The formula ∀x : x ∈ {0; 1} ⇒ x = 0∨x = 1, with
the natural meaning of x ∈ {0; 1}, is true in Set. When we do the product of the
interpretation in Set, we obtain an interpretation in InternalSet, interpreting
x ∈ {0; 1} by x ∈ {0; 1}∗, 0 by 0∗ and 1 by 1∗. The statement seems to become
false: 〈010101 . . .〉 is equal neither to 0∗ nor to 1∗ but is in {0; 1}∗. What is
wrong?

This paradox is due to the fact that the interpretation of ∨ has changed.
The interpretation of x = 0 is the internal set {0}. The interpretation of x = 1
is the internal set {1}. But the interpretation of x = 0 ∨ x = 1 is the meet of
{0} and {1} which is {0; 1}∗ in InternalSet, whereas it is only {0; 1} in Set.

Notice that there is an obvious forgetful functor U from InternalSet to
Set: an internal set is simply a set and an internal function is a function. Now,
in order for the transfer theorem to correspond with the situation described in
section 2.2, the interpretations of connectives should commutes with U : U(A ∧
B) = U(A) ∧ U(B) and the same for every connectives. More generally, we
can consider an injecting functor instead of U , to try to have transfers in other
categories on which there is no canonical forgetful functor.

4 Conclusion

We have shown that there is a number of possible variations on transfer prin-
ciples, all related to ultraproduct or Frechet product, with different power and
usefulness. The first one is about the hyperreals and is an equivalence, the sec-
ond is about Fréchet’s hyperreals but is weaker, the third change the meaning of
the connectives in addition to changing the meaning of the predicates. Hyper-
reals are very useful because they act as the reals but we have access to actual
infinitesimals. But the difficulties are hidden in the ultrafilter, as we want to
see hyperreals as limits of reals. The Fréchet filter is more about our notion of
limit but the corresponding transfer principle is not very powerful.

Because we want to see hyperreals as limits of reals, we can think of the

18



“(ultra)filter monad”: instead of considering AI/F , we consider the set of (ul-
tra)filter over a A. In a way, the ultrafilter monad add the limits to every se-
quence. A monad is a kind of completion, as: Cauchy completion, free monoid
over a set, and many others. If you apply the completion two times you won’t
get anything more: the Cauchy completion of a complete set is in bijection with
the set itself. In the case of the ultrafilter monad, we add for every sequence a
unique limit. It seems possible to construct a kind of hyperreals from that and
to prove a transfer theorem. It would be a new interesting way to hyperreals
as it is a monad, whereas the current construction of hyperreals add limits but
not all of them: it is not a monad!
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