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Abstract

We show that the protocol complex formalization of fault-tolerant pro-
tocols can be directly derived from a suitable semantics of the underlying
synchronization and communication primitives, based on a geometrization
of the state space. By constructing a one-to-one relationship between sim-
plices of the protocol complex and (di)homotopy classes of (di)paths in
the latter semantics, we describe a connection between these two geomet-
ric approaches to distributed computing: protocol complexes and directed
algebraic topology. This is exemplified on atomic snapshot, iterated snap-
shot and layered immediate snapshot protocols, where a well-known com-
binatorial structure, interval orders, plays a key role. We believe that
this correspondence between models will extend to proving impossibility
results for much more intricate fault-tolerant distributed architectures.

1



Contents
1 Concurrent semantics of asynchronous read/write protocols 5

1.1 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Observational equivalence on traces . . . . . . . . . . . . . . . . . 8

2 Solving tasks 15
2.1 Decision tasks and protocols . . . . . . . . . . . . . . . . . . . . . 15
2.2 Variants of the execution model . . . . . . . . . . . . . . . . . . . 17
2.3 Views and the view protocol . . . . . . . . . . . . . . . . . . . . . 17

3 Directed geometric semantics 19
3.1 Dipaths and dihomotopies . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The case of fault-free processes . . . . . . . . . . . . . . . . . . . 20
3.3 Processes with faults . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Equivalence of the standard and geometric semantics . . . . . . . 22

4 Interval orders 26
4.1 From traces to interval orders . . . . . . . . . . . . . . . . . . . . 26
4.2 The effect of processes dying . . . . . . . . . . . . . . . . . . . . 29

5 Views of interval orders 30
5.1 Interval orders and their views . . . . . . . . . . . . . . . . . . . 30
5.2 View orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 View orders and traces . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 View orders and interval orders . . . . . . . . . . . . . . . . . . . 38

6 Protocol complexes, derived from the concurrent semantics 39
6.1 The protocol complex . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Alternative descriptions of the protocol complex . . . . . . . . . 41
6.3 The particular case of 1-round immediate snapshot protocols . . 45
6.4 Input, output, protocol complexes and the solvability of tasks . . 47

7 Conclusion and future work 47

2



Introduction
Fault-tolerant distributed computing is concerned with designing algorithms
and, when possible, solving so-called decision tasks on a given distributed ar-
chitecture, in the presence of faults. The seminal result in this field was es-
tablished by Fisher, Lynch and Paterson in 1985, who proved the existence of
a simple task that cannot be solved in a message-passing (or equivalently a
shared memory) system with at most one potential crash [14]. In particular,
there is no way in such a distributed system to solve the very fundamental con-
sensus problem: each processor starts with an initial value in local memory,
typically an integer, and should end up with a common value, which is one of
the initial values. Later on, Biran, Moran and Zaks developed a characteri-
zation of the decision tasks that can be solved by a (simple) message-passing
system in the presence of one failure [6]. The argument uses a “similarity chain”,
which can be seen as a connectedness result of a representation of the space of
all reachable states, called the view complex [29] or the protocol complex [28].
This argument turned out to be difficult to extend to models with more fail-
ures, as higher-connectedness properties of the protocol complex matter in these
cases. This technical difficulty was first tackled, using homological considera-
tions, by Herlihy and Shavit [27], and independently by Borowsky, Gafni and
Saks [8, 34]: there are simple decision tasks, such as “k-set agreement” (a weak
form of consensus) that cannot be solved in the wait-free asynchronous model,
i.e. shared-memory distributed protocols on n processors, with up to n−1 crash
failures. Then, the full characterization of wait-free asynchronous decision tasks
with atomic reads and writes (or equivalently, with atomic snapshots) was de-
scribed by Herlihy and Shavit [28]: this relies on the central notion of chromatic
(or colored) simplicial complexes, and their subdivisions. All these results stem
from the contractibility of the “standard” chromatic subdivision, which was com-
pletely formalized in [29, 30] (and even for iterated models [23]) and corresponds
to the protocol complex of distributed algorithms solving immediate snapshot
protocols. Actually, the protocol complex that has been considered in [29, 30, 23]
are all based on an atomic snapshot model of some kind; this has been later
refined for atomic reads and writes in [4].

Over the years, the geometric approach to problems in fault-tolerant dis-
tributed computing has been very successful, see [26] for a fairly complete up-
to-date treatment. One potential limitation however is that for some intricate
models, it might be difficult to produce their corresponding protocol complex.
In this paper, we are exploring the links between the semantics of the synchro-
nization and communication primitives we are considering on a given distributed
architecture, and the protocol complex. One of the interests is that the seman-
tics is easier to describe than the full combinatorics of the protocol complex, and
our framework may help finding or proving these protocol complexes correct.

The other aim of this article is to make the link between two geometric the-
ories of concurrent and distributed computations: one based on protocol com-
plexes, and the other, based on directed algebraic topology. Actually, the seman-
tics of concurrent and distributed systems can be given by topological models, as
pushed forward in a series of seminal papers in concurrency, in the early 1990s.
These papers have explored the use of precubical sets and Higher-Dimensional
Automata (which are labeled precubical sets equipped with a distinguished be-
ginning vertex) [33, 35], begun to suggest possible homology theories [22, 18]
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and pushed the development of a specific homotopy theory, part of a general
directed algebraic topology [24]. On the practical side, directed topological mod-
els have found applications to deadlock and unreachable state detection [12],
validation and static analysis [20, 7, 10], state-space reduction (as in e.g. model-
checking) [21], serializability and correctness of databases [25] (see also [19, 13]
for a panorama of applications).

In order to instantiate this link, we will be considering the simple model
of shared-memory concurrent machines with crash failures, where processors
compute and communicate through shared locations, and where reads and writes
are supposed to be atomic. This model can also be presented as atomic snapshot
protocols [1, 2, 31], where processors are executing the following instructions:
scanning the entire shared memory (and copying it into their local memory),
computing in its local memory, and updating its “own value”, i.e. writing the
outcome of its computation in a specific location in global memory, assigned to
him only. The methodology we are describing here is by no means limited
to this simple model: we have provided in this paper a general framework
that builds protocol complexes from the semantics of communication primitives.
However, what is more difficult is determining the set of directed homotopy
classes of directed paths in this semantics. This is one of the reasons why
we chose to exemplify the method on a well-known and simple case in fault-
tolerant distributed computing. In general, this step is by no means trivial,
reinforcing the need for formally deriving protocol complexes from semantics.
The other reason is that the reader will be more familiar with the model and
the expected result, and will be able to focus on the new technical (directed
algebraic topological) aspects of the paper.

Concretely, in this setting, we draw a precise relationship between

• execution traces up to observational equivalence,

• dihomotopy classes of paths in geometric models,

• partially ordered sets of actions,

which is the first contribution of this paper. Another major contribution is to
formally show that the full-information protocol is the most general (i.e. initial)
one, and in that the information retained by each process in this protocol, is the
view, which we define in those different formalisms: informally, the view can be
extracted from causal history as the part on which depends the last scan of a
process. This allows us to provide new constructions of the protocols complex,
based on traces, dipaths, and interval orders.

Contents of the paper

Section 1 begins by defining the semantics of protocols, which are distributed
programs whose basic primitives consist in updating and scanning a shared
memory: an operational semantics provides a formal mathematical description
of the effect of those operations (Section 1.1.1) which can be extended to in-
terleaving traces, describing the order in which actions occur in a particular
execution (Section 1.1.2). In Section 1.2, we observe that some of those traces
are observationally equivalent, in the sense that no program can distinguish be-
tween them: we axiomatize and study this notion of equivalence (we provide
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normal forms for equivalence classes and identify well-bracketed traces to which
we will be able to restrict without loss of generality).

The tasks (Section 2.1) specify the behaviors we are interested in imple-
menting: in order to simplify the study of tasks that can be implemented, we
recall some classical simplifications of the execution model which do not restrict
the generality (Section 2.2), and show that it is enough to study the so-called
view protocol because it is shown to be initial in the category of protocols (Sec-
tion 2.3).

In Section 3, we give an alternative geometric semantics, which encodes
independence of actions, as a form of homotopy in the semantics, and show that
it coincides with the previously defined interleaving semantics: traces up to
equivalence correspond to directed homotopy classes of paths in the geometric
models.

We give a third characterization of traces in Section 4: those are precisely
the linearizations of particular partial orders of actions called interval orders,
which will turn out to be particularly convenient to manipulate.

In Section 5, we provide several characterizations of the views: those are
the local states of processes in the initial protocol, thus formally encoding the
communication history. We detail how they can be encoded as a particular
partial order called view order (Section 5.1 and Section 5.2), and show how they
can be extracted from traces (Section 5.3) and interval orders (Section 5.3).

This allows us in Section 6 to provide, several new constructions of the proto-
col complex, which is a classical simplicial complex whose vertices are views and
simplices encode coherence between those, based on traces, directed homotopy
classes of paths or interval orders.

We conclude in Section 7.

1 Concurrent semantics of asynchronous read/write
protocols

In atomic snapshot shared memory protocols, n processes with local memory
communicate through shared memory using two primitives: update and scan.
Informally, the shared memory is partitioned in n cells, each corresponding to
one of the n processes. A process Pi can write only on its associated mem-
ory cell, by calling update: this primitive writes, onto that part of memory, a
value computed from the value stored in the local memory of Pi. Note that
as the memory is partitioned, there are never any write conflicts on memory.
Conversely, all processes can read the entire memory through the scan primi-
tive. Note also that there are never any read conflicts on memory. Still, it is
well known that atomic snapshot protocols are equivalent, with respect to their
expressiveness in terms of fault-tolerant decision tasks they can solve, to the
protocols based on atomic registers with atomic reads and writes [31]. Generic
snapshot protocols are such that all processes loop, any number of times, on
the three successive actions: locally compute a value, update then scan, until
terminating with a decision value. It is also known that, as far as fault-tolerant
properties are concerned, an equivalent model of computation can be consid-
ered [27, 28]: the full-information protocol where, for each process, decisions are
only taken at the end of the protocol, i.e. after rounds of update then scan,
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only remembering the history of communications.

1.1 Operational semantics
1.1.1 Protocols

Formally, we consider a fixed set V of values, together with two distinguished
subsets I and O of input and output values, the elements of V \ (I ∪ O) being
called intermediate values, and an element ⊥ ∈ I ∩O standing for an unknown
value. We suppose that the sets of values and intermediate values are infinite
countable, so that pairs 〈x, y〉 of values x, y ∈ V can be encoded as intermediate
values, and similarly we have an encoding 〈m〉 for every n-uple m ∈ Vn.

We suppose fixed a number n ∈ N of processes. We also write [n] as a
shortcut for the set {0, . . . , n− 1}, and Vn for the set of n-uples of elements
of V, whose elements are called memories. Given v ∈ Vn and i ∈ [n], we write
vi for the i-th component of v. We write ⊥n for the memory m such that
mi = ⊥ for any i ∈ [n]: this is typically the initial state of the global memory.
There are two families of memories, each one containing one memory cell for
each process Pi:

• the local memories l = (li)i∈[n] ∈ Vn, and

• the global (shared) memory : m = (mi)i∈[n] ∈ Vn.

Given a memory l ∈ Vn, i ∈ [n] and x ∈ V, we write l[i ← x] for the memory
obtained from l by replacing the i-th value by x.

A state of a program is a pair (l,m) ∈ Vn×Vn of such memories. Processes
can communicate by performing actions which consist in updating and scanning
the global memory, using their local memory: we denote by ui any update by
the i-th process and si any of its scan. The effect of the actions on the state is
formalized by a protocol as follows.

Definition 1. A protocol π consists of two families of functions

πui : V → V and πsi : V × Vn → V

indexed by i ∈ [n] such that πsi(x,m) = x for x ∈ O.

Starting from a state (l,m), the effect of actions is as follows:

• ui means “replace the contents of mi by πui(li)” and

• si means “replace the contents of li by πsi(li,m)”.

The last condition in the definition of protocols states that once a protocol has
decided upon an output value, it will not change its mind.

In order to study when a protocol can simulate another, it is convenient to
use the following notion of morphism. Informally, the existence of a morphism
φ : π → π′ means that the protocol π′ can simulate the protocol π: given an
input and a trace leading to an output from process i in π, the same input and
trace should also lead to an output from process i in π′.
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Definition 2. Given two protocols π and π′, a simulation φ : π → π′ consists
of two families of functions φi : V → V and φ′i : V → V, indexed by i ∈ [n],
respectively translating local and global memories, such that φi(x) = x for every
x ∈ I, φi(O) ⊆ O and the following diagrams commute:

V
φi
��

πui // V
φ′i
��

V
π′ui

// V

V × Vn

φi×
∏
i φ
′
i

��

πsi // V
φi

��
V × Vn

π′si

// V
(1)

We say that π′ simulates π when there exists such a morphism. We write Prot
for the category with protocols as objects and simulations as morphisms.

Remark 3. This definition of morphism is not entirely satisfactory because the
image of any value under φi (and φ′i) has to be defined, even though this value
might never occur as the local memory of process i during any execution of the
protocol. The right definition consists in having φi and φ′i be partial functions
which are defined only on memory values which are reachable from a specified
set of values (see Section 2.1). We do not detail this here in order to make this
categorical part lighter, but we will implicitly suppose that memory values are
reachable in the following: this is in particular required for Proposition 41 below
to hold.

A simulation φ : π → π′ is strict when φ−1i (O) ⊆ O. In this case, it will
be clear that when π′ implements a task, π also implements it. This remark
can be useful to add, without loss of generality, further constraints to protocols,
in order to simplify their study. An example of this is given by the following
property.

Definition 4. A protocol is full-disclosure when πui(x) = x for every x ∈ V.

A protocol is thus full-disclosure when each process fully discloses its local state
in the global memory. The following lemma ensures that we can restrict to those
protocols:

Lemma 5. Any protocol can be simulated by a full-disclosure one.

Proof. Suppose given a protocol π′, and consider the full-disclosure protocol π
defined by

πui(x) = x πsi(x,m) = π′si(x, (π
′
s0(m0), . . . , π′sn−1

(mn−1)))

We can then define a morphism φ : π → π′ by φi = idV and φ′i = π′ui , which is
easily checked to satisfy the required axioms.

Remark 6. In a morphism between full-disclosure protocols, the diagram on the
left of (1) reduces to the fact that φ′i = φi.

1.1.2 Interleaving traces

We write Ai = {ui, si, di} and A =
⋃
i∈[n]Ai for the set of actions. As explained

earlier, the action ui (resp. si) amounts to the i-th process updating its local
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memory (resp. writing in the global memory). Since we want to take into
account possible failures of the protocols, we also have an action di meaning
that the i-th protocol dies: in a trace containing di, the process Pi is said to be
dead, and alive otherwise. We sometimes write ai to denote an arbitrary action
in Ai.

We denote by A∗ the free monoid over A: its elements T are finite sequences
of elements of A, i.e. words, which will be called interleaving traces (or simply
traces) in the following. We also denote by Aω the set of countably infinite
sequences of actions; we always specify an infinite trace for an element of this
set. We write ε for the empty one and T ·U , or simply TU , for the concatenation
of two traces T and U . We write proji : A∗ → A∗i for the projections, keeping
only the actions of the i-th process, and similarly proj¬i : A∗ → (

⋃
j 6=iAi)∗

for the projection keeping all actions excepting those of the i-th process. Given
a trace T ∈ A∗, we write dead(T ) for the set of indices i ∈ [n] such that di
occurs in T , i.e. the set of dead processes, and alive(T ) = [n] \ dead(T ), i.e. the
set of alive processes. A trace is non-dying if dead(T ) = ∅, or equivalently
alive(T ) = [n].

Given a trace T ∈ A∗, we write JT Kπ(l,m) for the state reached by the pro-
tocol π after executing the actions in T , starting from the state (l,m). Formally,
it is defined as follows:

Definition 7. Given a protocol π and a trace T , we write JT Kπ : Vn×Vn → Vn×Vn
for its denotational semantics, which is the function defined by induction on the
length of the trace T by

Jui · T Kπ = JT Kπ ◦ JuiKπ
Jsi · T Kπ = JT Kπ ◦ JsiKπ
Jdi · T Kπ = Jproj¬i(T )Kπ

JuiKπ(l,m) = (l,m[i← πui(li)])

JsiKπ(l,m) = (l[i← πsi(li,m)],m)

JεKπ(l,m) = (l,m)

This extends the functions πui and πsi on traces, and is such that once a pro-
cess has died it has no effect on the memory. Its computation is illustrated in
Example 40. Notice that we do not have Jdi · T Kπ = JT Kπ ◦ JdiKπ, so that the
above does not define a right monoid action from the monoid of actions onto
memories in general.

1.2 Observational equivalence on traces
1.2.1 Observational equivalence

It can be noticed that different interleaving traces may induce the same final
local view for any process. Indeed, if i 6= j, then ui and uj modify different
parts of the global memory and thus uiuj and ujui induce the same action on a
given state. Similarly, si and sj change different parts of the local memory, and
thus sisj and sjsi induce the same action on a given state. On the contrary,
uisj and sjui may induce different traces as ui may modify the global memory
that is scanned by sj . Finally, there are similar relations expressing the fact
that once a process has died, what it does afterward does not matter. This
suggests introducing the following equivalence relations on traces:
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Definition 8. The strong equivalence u is the smallest congruence on inter-
leaving traces such that

ujui u uiuj sjsi u sisj uiui u ui

diui u di disi u di didi u di

djui u uidj djsi u sidj djdi u didj

for every i, j ∈ [n] with i 6= j. The equivalence ≈ is the smallest congruence on
interleaving traces containing strong equivalence and the relation

sidi ≈ di

Intuitively, the last relation expresses the fact that when a process dies, it does
not really matter whether it has recently updated his knowledge or not. We
separate it from other relations because, contrarily to other, it does not preserve
the local memory, only the one of the alive processes, as formalized by following
propositions.

Proposition 9. The strong equivalence u of traces induces an operational
equivalence: two equivalent interleaving traces starting from the same initial
state lead to the same final state.

Proof. Direct verification that for all the generating relations of Definition 8
for u, we have for any π, JT Kπ = JT ′Kπ. For instance, the case of the relation
ujui = uiuj , with i 6= j, is

JujuiKπ(l,m) = JuiKπ ◦ JujKπ(l,m) = JuiKπ(l,m[j ← πuj (lj)])

= (l,m[j ← πuj (lj)][i← πui(li)]) = (l,m[i← πui(li)][j ← πuj (lj)])

= JujKπ(l,m[i← πui(li)]) = JujKπ ◦ JuiKπ(l,m)

= JuiujKπ(l,m)

Other cases are similar.

Remark 10. Note that the relation sisi u si is not valid, in the sense that
previous proposition would not be true if we added it to the definition of strong
equivalence: it is easy to come up with a protocol for which the local memory
is modified each time a scan is performed.

Lemma 11. Given two traces T and T ′ such that T ≈ T ′, we have dead(T ) = dead
(T ′) and alive(T ) = alive(T ).

Proof. Direct verification that the set of dead processes is preserved under the
relations of Definition 8 for ≈.

Given a set I ⊆ [n] of indices with I = {i1, . . . , ik} and a memory l ∈ Vn, we
extend previous notation and write l[I ← ⊥] = l[i1 ← ⊥] . . . [ik ← ⊥].

Proposition 12. The equivalence ≈ on traces preserves global memory, and
local memory of alive traces: given two traces T ′ and T ′′ such that T ′ ≈ T ′′, and
memories such that (l′,m′) = JT ′Kπ(l,m) and (l′′,m′′) = JT ′′Kπ(l,m), writing
I = dead(T ′) = dead(T ′′), we have m′ = m′′ and l′[I ← ⊥] = l′′[I ← ⊥].

Proof. Direct verification as in the proof of Proposition 9.
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Remark 13. This approach using monoid presentations for specifying the exe-
cution and failure model, seems to be quite general. For instance, the monoid
corresponding to atomic read-write is given as follows. The alphabet is now
A =

{
rji , w

j
i , di

}
where rji (resp. wji ) corresponds to the i-th process reading

from (resp. writing to) the memory cell j, with the expected relations.

1.2.2 Normal forms for traces up to equivalence

In order to handle traces up to equivalence, it is sometimes convenient to
use rewriting systems, which provide canonical representatives for equivalence
classes and allow one to decide efficiently whether two traces are equivalent or
not. These can be defined by orienting the relations defining equivalence in or-
der to obtain rewriting rules: in the case where the obtained rewriting systems
are convergent (i.e. confluent and terminating), the normal forms are canonical
representatives. We study here some possible such orientations of the rules as
well as the associated normal forms. This section is quite independent of the
rest of the paper and can be skipped by readers not familiar with rewriting
theory (see [3, 5] for an introduction to the subject).

Proposition 14. The following rewriting system on the alphabet A is termi-
nating and confluent:

ujui ⇒ uiuj sjsi ⇒ sisj uiui ⇒ ui

diui ⇒ di disi ⇒ di didi ⇒ di (2)
di′ui ⇒ uidi′ di′si ⇒ sidi′ djdi ⇒ didj

for every i, i′, j ∈ [n] with i < j and i 6= i′. It is thus a convergent presentation
of the monoid of traces up to strong equivalence.

Proof. The termination can easily be shown by remarking that the rewriting
system decreases the number of actions, puts di actions at the end and puts
actions with low indices first. Confluence is established by checking confluence
of critical pairs, which are as follows, for i < j < k and i 6= i′ and j 6= j′:

ukujui ujuiui ujujui djujui dj′ujui

sksjsi djsjsi dj′sjsi uiuiui diuiui

di′uiui didiui djdiui didisi djdisi

dididi di′di′ui di′di′si djdjdi djdidi

djdiui′ djdisi′ dkdjdi

For instance, the confluence of the two first critical pairs is given by

ukujui

s{ #+
ujukui

��

ukuiuj

��
ujuiuk

#+

uiukuj

s{
uiujuk

ujuiui

s{ "*
uiujui

��

ujui

}�

uiuiuj

#+
uiuj

Other cases are similar.
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The above convergent rewriting system is not the only possible one. Apart
from the arbitrary ordering of processes, it tends to make processes die as late
as possible. In order to illustrate this, we briefly investigate another possible
orientation of the rules where processes die as early as possible. There is a
corresponding convergent rewriting system, although with an infinite number of
rules:

Proposition 15. The following rewriting system on A∗ forms a convergent
presentation of the monoid of traces up to strong equivalence:

ujui ⇒ uiuj sjsi ⇒ sisj uiui ⇒ ui

diTui ⇒ diT diTsi ⇒ diT diTdi ⇒ diT

ui′di ⇒ diui′ si′di ⇒ disi′ djdi ⇒ didj

for every i, i′, j ∈ [n] with i < j and i 6= i′, and trace T ∈ A∗ which does not
contain any action from the process i.

Proof. The presentation can be obtained by a suitable Knuth-Bendix completion
process. It can also be shown directly that the new relations are derivable and
that the rewriting system is terminating and has confluent critical pairs.

From previous proposition we easily deduce that in each equivalence class there
is a representative such that, once the process Pi has died, it does not perform
any further action. Moreover, the above axiomatization of equivalence gives rise
to the same equivalence relation when applied to those representatives only. In
the following, we will only consider representatives satisfying this condition.

Lemma 16. Given an execution trace of the form T · di · T ′, we have

T · di · T ′ u T · di · proj¬i(T
′)

A representative of a trace is called strongly properly dying when it contains
no action of process i after an action di for every i ∈ [n]. Two properly dying
representatives are equivalent if and only if they are equivalent by applying the
relations of Definition 8 between properly dying traces only.

Proof. The fact that any trace is equivalent to a properly dying one can be
shown by rewriting it using the rules of the second line of Proposition 15. The
last part of the proposition follows from the fact that the axiomatization given
in Proposition 15 is convergent and noticing that the rules preserve the property
of being properly dying.

Similar, results can be obtained for traces up to (non-strong) equivalence.

Proposition 17. The monoid of traces up to equivalence admits a convergent
presentations obtained either

1. by adding to the rewriting system of Proposition 14 the rules

siTdi ⇒ Tdi

for i ∈ [n] and T ∈ A∗ a trace not containing actions from process i,
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2. by adding to the rewriting system of Proposition 15 the rules

sidi ⇒ di

for i ∈ [n].

Note that in both cases the rewriting systems are infinite. A generalization of
Lemma 16 can also be shown:

Lemma 18. A trace is called properly dying when

• it is strongly properly dying (it contains no action of process i after a di),

• the action of process i preceding an action di is not si.

Every class of traces up to equivalence contains a properly dying one, and equiv-
alence faithfully restricts to those traces.

The normal forms of these rewriting systems can be characterized as regular
language (as for any string rewriting system) of which an explicit description
can be given. Because those are much simpler in the case of well-bracketed
traces, see Section 1.2.3, we will only describe them in this case, which is the
one that we will use in this paper. However, a characterization similar to the one
of Proposition 24 can be provided. In the following, we will be mostly interested
in traces up to equivalence (by opposition to strong equivalence).

1.2.3 Well-bracketed and numbered traces

An action ui can be thought of as an “opening bracket”, and si or di as a “closing
bracket”. This suggests introducing the following class of words, which we will
be mostly interested in the following.

Definition 19. A trace T ∈ A∗ is well-bracketed when for every i ∈ [n] we have
proji(T ) in the regular language (uisi)

∗(ε+uidi). The notion of well-bracketed
infinite trace is defined similarly.

Note that a well-bracketed trace is necessarily properly dying. Also note that,
with our definition, a process cannot be immediately dying (the trace di is not
well-bracketed): we could incorporate this at the cost of adding many particular
cases, moreover a process which is dying immediately can also be modeled as
having ⊥ as initial memory, which we will use when defining tasks. Usual
characterizations of well-bracketed words extend to our case. For instance, one
can define the set of processes which have updated, but not scanned yet as
follows. We write ℘([n]) for the set of subsets of [n].

Definition 20. We write updated : A∗ → ℘([n]) for the function defined by
induction on traces by

• updated(ε) = ∅,

• updated(Tui) = updated(T ) ∪ {i} whenever i 6∈ updated(T ),

• updated(Tsi) = updated(T ) \ {i} whenever i ∈ updated(T ),

• updated(Tdi) = updated(T ) \ {i} whenever i ∈ updated(T ).

12



Because of the side conditions, the above function is not defined on every trace,
and one can show:

Lemma 21. A trace T ∈ A∗ is well-bracketed if and only if

1. updated(T ) is well-defined,

2. updated(T ) = ∅, and

3. T is strongly properly dying.

The notion of equivalence restricts to the class of well-bracketed words as follows.

Proposition 22. The equivalence on well-bracketed traces can be axiomatized
by the following relations:

ujui ≈ uiuj sjsi ≈ sisj djdi ≈ didj (3)
di′ui ≈ uidi′ di′si ≈ sidi′

for i, i′, j ∈ [n] with i 6= j and i 6= i′. Moreover, the rewriting system obtained
by orienting the relations from left to right when i < j is convergent.

Proof. Suppose given two equivalent traces T and T ′. By Proposition 14 they
rewrite to a common normal form using the rewriting system (2). The re-
lations (3) are the only one of (2) which can be applied to a well-bracketed
trace and the confluence of (2) implies the one of (3), oriented as described
above.

Remark 23. As in Proposition 15, there is a variant of the orientations of rules
where processes die as early as possible, which is given by

ujui ⇒ uiuj sjsi ⇒ sisj djdi ⇒ didj

ui′di ⇒ diui′ si′di ⇒ disi′

for i, i′, j ∈ [n] with i < j and i 6= i′.
The normal forms for the rewriting system of Proposition 22 can be character-
ized as follows (similar normal forms could be given for other rewriting system,
but this one is by far the most manageable one). Given a set I ⊆ [n] of process
indices with I = [i1, . . . , ik], where i1 < . . . < ik, we write uI = ui1 . . . uik , and
similarly for other actions.

Proposition 24. The normal forms for the rewriting system of Proposition 22
on well-bracketed traces are of the form

uI1sJ1uI2sJ2 . . . uIksJkdK (4)

where the sets of indices Ii, Ji,K ⊆ [n] are such that, for every i ∈ [n],

1. opening brackets were closed:

Ii ⊆ [n] \ Ui−1

2. closing brackets were open:

Ji ⊆ Ui−1 ∪ Ii
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3. dying brackets were open:
K ⊆ Uk

4. all the brackets are closed:

Uk \K = ∅

where Ui is defined by induction on i by U0 = ∅ and

Ui+1 = (Ui ∪ Ii) \ Ji
Proof. It is easy to show by induction on i that Ui = updated(uI1sI1 . . . uIisIi),
from which it can be deduced that words of the form (4) are well-bracketed.
Moreover, none of the rules (3) applied, and therefore those are in normal form.
Finally, every well-bracketed trace will be put in this form by the rewriting
system (3): informally, the rules of the second line put all the di in the end,
and the rules of the first line order blocks of ui (resp. si, resp. di) by increasing
order of indices.

Remark 25. The two last condition can of course be replaced by the only con-
dition K = Uk, but our formulation makes it clearer the contribution of both
inclusions.

In an execution trace, in order to distinguish between multiple instances of
a same action, we will sometimes write upi for the p-th occurrence of ui in a
trace T , and similarly for si: we call this a numbered action. A numbered trace
is a trace where all the actions are decorated with their occurrence number. We
generally omit the occurrence number for di since they occur at most once in
well-bracketed traces. Notice that in a trace of the form TuiuiT

′, considered
up to equivalence, replacing uiui by ui will force us to renumber all the actions
ui in T ′. For this reason, we will restrict to well-bracketed traces for which
the axiomatization of Definition 8 can be reformulated as follows on numbered
traces.

Proposition 26. The equivalence of Proposition 22 corresponds to the following
one on numbered well-bracketed traces:

uqju
p
i ≈ upi uqj sqjs

p
i ≈ spi sqj djdi ≈ didj

dqju
p
i ≈ upi dqj djs

p
i ≈ spi dj

for every i, j ∈ [n] with i 6= j and p, q ∈ N. A convergent presentation can be
obtained by considering the rewriting system whose rules rewrite the left members
of the above equivalences to the corresponding right members, when i < j.

Remark 27. Note that two equivalent numbered well-bracketed traces contain
exactly the same numbered actions since the relations preserve those.
The numbering does not bring new information on traces since it can always be
computed in an unambiguous way. Therefore, we will allow ourselves to seam-
lessly switch between numbered and non-numbered traces. A statement similar
to the above lemma of course holds if we further restrict to non-dying traces: in
this case, only the relations of the first line are required. The expected proper-
ties hold for numbered well-bracketed traces, and follow easily from Lemma 21.
They will be implicitly used in the following:
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Lemma 28. Given a numbered well-bracketed trace T ,

• if the action upi occurs in T then either the action spi or the action di
occurs afterward in T ,

• given actions upi and sqi occurring in T , with p ≤ q, sqi occurs after upi ,

• given actions upi and uqi occurring in T , with p < q, the actions sri with
p ≤ r < q occur in between,

• given actions spi and sqi occurring in T , with p < q, the actions uri with
p ≤ r < q occur in between.

Finally, we provide a convenient characterization of the equivalence of num-
bered well-bracketed traces: two such traces are equivalent when the relative
positions of updates with respect to scans scans are the same. Given a num-
bered well-bracketed trace T and numbered actions a and b occurring in T , we
write a ≤T b whenever the action a occurs before b in T : this relation is relation
is a total order on the actions of T .

Proposition 29. Suppose given two numbered well-bracketed traces T and T ′
with the same set of numbered actions. Then T and T ′ are equivalent if and
only if

sqj ≤T upi iff sqj ≤T ′ upi (5)

for every process numbers i, j ∈ [n] with i 6= j, and round numbers p and q.

Proof. The left-to-right implication is obtained by induction on the number of
equivalence steps between T and T ′, and then by examining each equivalence
step. We now show the right-to-left implication. By the convergent rewriting
system of Proposition 26, the numbered traces T and T ′ rewrite to their respec-
tive normal forms T̂ and T̂ ′. From the previous implication, we deduce that, for
every process numbers i 6= j and round numbers p and q, sqj ≤T̂ u

p
i iff s

q
j ≤T̂ ′ u

p
i ;

and by contraposition, we also have that upi ≤T̂ sqj iff upi ≤T̂ ′ s
q
j . Finally, by

Lemma 28 the ordering of actions of a given process is also the same in T̂ and T̂ ′.
Thus the traces T̂ and T̂ ′ only differ by commuting some consecutive actions
of the form upi (resp. spi , resp. di), but since their relative order is fixed in a
normal form (they are sorted by increasing order of process number), we have
T̂ = T̂ ′. One can also observe more directly that the relations between scans
an update of (5) determine a unique normal form of the form given by Propo-
sition 24. Finally, since a trace is equivalent to its normal form, we conclude
that T ≈ T ′.

2 Solving tasks

2.1 Decision tasks and protocols
We are going to consider the possibility of solving a particular task with an
asynchronous protocol. A task is formalized as a relation expressing, for each
possible input, the acceptable outputs from a protocol. Since we are considering
a setting where processes may fail, the tasks have to take this in account. A
process which has never taken part of the computation (or has died immediately)
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is represented here as one having ⊥ in its initial local memory. Moreover, if a
process dies during the execution, we consider that task specifications are such
that a process that never chooses an output does not constrain the outputs for
processes that do.

Definition 30. A task Θ is a non-empty relation Θ ⊆ In × On such that for
every (l, l′) ∈ Θ and i ∈ [n],

• li = ⊥ if and only if l′i = ⊥,
• there exists l′′ ∈ On such that (l, l′′) ∈ Θ and (l[i← ⊥], l′′[i← ⊥]) ∈ Θ.

The domain of a task Θ is

dom Θ = {l ∈ In | ∃l′ ∈ On, (l, l′) ∈ Θ}
and its codomain is

codom Θ = {l′ ∈ On | ∃l ∈ In, (l, l′) ∈ Θ}
Remark 31. As one of the referees observed, in our definition, a “consensus”
task where one process starts with 1 and eventually dies before deciding, and
all other processes start with 0 and eventually decide 1, would be incorrect. In
more standard definitions of task solvability, processes that would start their
execution would not fail, hence our definition of task is slightly more general.
Example 32. In the binary consensus problem each process starts with a value
in {0, 1} and should end in the same set, thus I = O = {0, 1,⊥}, in such a way
that in the end all the values chosen by the different processes are the same,
and chosen among the initial values of the alive processes. For instance, with
n = 2, the corresponding task is

Θ = {(⊥⊥,⊥⊥), (b⊥, b⊥), (⊥b,⊥b), (bb′, bb), (b′b, bb) | b, b′ ∈ {0, 1}}
In the case n = 2, we can also consider the variant called binary quasi-consensus,
which restricts the output so that it cannot happen that p1 decides 0 and p0
decides 1 at the same time: the corresponding task is

{(⊥⊥,⊥⊥), (b⊥, b′⊥), (⊥b,⊥b′), (bb′, cc′) | b, b′, c, c′ ∈ {0, 1} , c 6= 1 ∨ c′ 6= 0}
Definition 33. A protocol π solves a task Θ when for every l ∈ dom Θ, and well-
bracketed infinite sequence of actions T ∈ Aω which is fair (i.e. the projection
on Ai is infinite or contains di for each i ∈ [n]) there exists a finite prefix T ′ of T
such that (l[I ← ⊥], l′[I ← ⊥]) ∈ Θ, where I = dead(T ) and l′ is the local mem-
ory and m′ is the global memory after executing T ′, i.e. (l′,m′) = JT ′Kπ(l,⊥n).

Given a task Θ, a memory state (l,m) is reachable when (l,m) = JT Kπ(l′,⊥n)
for some finite execution trace T and l′ ∈ dom Θ.

It can be shown [28] that, w.r.t. task solvability, the most important case is
the following one:

Definition 34. A task Θ has standard input (or is inputless) when dom Θ
contains only the memory l such that li = i, and its “faces”, i.e. memories of the
form l[I ← ⊥] for some I ⊆ [n].

For simplicity we will do so in Section 6. All other cases can be deduced from
this one by suitably renaming the indices and gluing multiple copies. Given an
execution trace T , we simply write JT Kπ instead of JT Kπ(l,⊥n), were l is the
standard input.
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2.2 Variants of the execution model
Many variants of the execution model are considered in the literature, in order
to tame the combinatorial complexity of the execution traces. For instance, we
have already seen in Lemma 5 that we can restrict, without loss of generality
to full-disclosure protocols. Here, we briefly mention further possible classical
restrictions, and refer to [31, 26] for details (in particular for the proof that they
do not restrict solvability). First, it can be shown that one can consider traces
which are well-bracketed as the only possible executions:

Proposition 35. One can, without changing task solvability, restrict to proto-
cols which operate on well-bracketed traces only: those are called well-bracketed
protocols.

In the well-bracketed setting, a round of a process Pi is a sequence of actions uisi,
or uidi, and we write ri ∈ N for the number of rounds executed by a process Pi.
For instance, in the trace u0s0u0u1s1s0 we have r0 = 2 and r1 = 1. One can
suppose that all the rounds of the process are synchronized, thus forbidding
traces such as the previous one, where the process P0 starts its second round
(the second u0) before P1 has performed its first round. A protocol is iterated
if the loops of the various processes are synchronized: no process starts its
(k + 1)-th round before every process has ended its k-th round or is dead.

Proposition 36. Restricting to iterated well-bracketed protocols does not re-
strict task solvability.

In a well-bracketed execution, rounds are either in “parallel” (such as in the trace
u0u1s0s1) or in “sequence” (such as in the trace u0s0u1s1). A protocol is imme-
diate snapshot when in a parallel execution, all the updates of parallel rounds
are performed concurrently, and then all the scans are. Formally, this means
that we restrict to the executions such that after a scan has been performed, no
update can be performed unless no other scan can be performed:

Definition 37. A well-bracketed trace T ∈ A∗ is immediate snapshot when for
every prefix of the form T ′siT

′′uj , where T ′′ contains only actions of the form
dk, one has updated(T ′siT

′′) = ∅.

For instance, with three processes, the execution u0u1s1s0u2s2 is immediate
snapshot, but u0u1s0u2s1s2 is not: after the prefix u0u1s0 the scan s1 can be
performed so that doing u2 is not allowed.

Proposition 38. Restricting to immediate snapshot executions does not affect
protocol solvability.

In the following, unless otherwise stated, we only restrict to protocols which are
full information and well-bracketed, and explicitly state so if we consider other
of the restrictions mentioned above.

2.3 Views and the view protocol
Of particular interest is the following, very general, protocol:

Definition 39. The view protocol π^ is the full-disclosure (well-bracketed)
protocol such that π^

si(x,m) = 〈x, 〈m〉〉 for x ∈ V and m ∈ Vn.
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When reading the global memory, the protocol stores (an encoding as a value
of) the pair constituted of its current local memory x and (an encoding as a
value of) the global memory m it has read. Because, it remembers all history
and shares it with others (it is full-disclosure), this protocol is often called a full-
information protocol. This protocol will allow us to formulate a definition of
view (Definition 42), which is shown to coincide with the usual one in Section 6.
In order to simplify notations, we write 〈x,m〉 instead of 〈x, 〈m〉〉 in the following
(this notation never brings in ambiguities).

Example 40. For instance, with two processes, consider the trace

u0u1s1u1s0s1u0s0

Writing
l0 l1
m0 m1

for the (local and global) memory, the memory will evolve

as follows when the trace is executed:

0 1
⊥ ⊥

u0−→ 0 1
0 ⊥

u1−→ 0 1
0 1

s1−→ 0 〈1, 01〉
0 1

u1−→ 0 〈1, 01〉
0 〈1, 01〉

s0−→ 〈0, 0〈1, 01〉〉 〈1, 01〉
0 〈1, 01〉

s1−→ 〈0, 0〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
0 〈1, 01〉

u0−→ 〈0, 0〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
〈0, 0〈1, 01〉〉 〈1, 01〉

s0−→ 〈〈0, 0〈1, 01〉〉 , 〈0, 0〈1, 01〉〉 〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
〈0, 0〈1, 01〉〉 〈1, 01〉

The fact that this protocol is the “most general” one, can be formalized as
follows.

Proposition 41. The view protocol π^ is initial in the category of full-disclosure
well-bracketed protocols.

Proof. Suppose given a protocol π. We have to construct a morphism φ : π^ → π
and show that this is the only possible such morphism. Notice that since we
are considering morphisms between full-disclosure protocols, the diagram on the
left of (1) reduces to the fact that φi = φ′i for every i ∈ [n]. By Remark 3, we
only have to define φ on reachable states, i.e. those of the form JT Kπ^ for some
execution trace T . A local memory of the i-th process is thus either of the
form i, in which case we must have φi(i) = i because morphisms are required
to preserve initial values, or of the form 〈x,m〉, in which case we should have
φi(〈x,m〉) = π′si (φi(x), (

∏
i φi)(m)) by the second diagram of (1), which is well-

defined by induction since the states x and m have been produced by prefixes
of T . Conversely, suppose given a reachable memory x for the process i. Since
the memory is reachable there exists a trace T such that li = x with l = JT Kπ^ ,
and we define φi(x) = l′i where (l′,m′) = JT Kπ. By definition of JT Kπ, it satisfies
the above requirements for the uniqueness part of the proof. We only have to
check that it does not depend on the choice of the trace T . By Proposition 9,
it does not depend on the representative of T in its equivalence class. Showing
that it only depends on li (which we will call the i-view of T in the following)
is a much more delicate task, for which we will need the tools of Section 5. We
will see in Proposition 84 that T leads to 〈x,m〉 for process i if and only if its
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i-restriction is a given trace T ′ (i.e. T contains T ′ as a particular subtrace) and
that the local memory for process i resulting from the execution of the trace T
only depends on T ′ (Proposition 83).

This property says that protocols π are in bijection with morphisms φ : π^ → π.
This is akin to the use of generic protocols in normal form [28], where proto-
cols only exchange their full history of communication for a fixed given num-
ber of rounds, and then apply a local decision function (corresponding to our
morphism φ). Those protocols are moreover restricted to traces which are well-
bracketed, see below. For this reason, we will be satisfied with describing the
potential sets of histories of communication between processes, without having
to encode the decision values: this is the basis of the geometric semantics of
Section 3. As a direct consequence, we recover the usual definition of the solv-
ability of a task as a simplicial map from some iterated protocol complex to the
output complex [28, 26].

Definition 42. Given an execution trace T in which process Pi is alive, the
view of the i-th process is li, where (l,m) = JT Kπ^ is the state reached by the
view protocol after the execution of T , also called an i-view.

3 Directed geometric semantics
In this section, we give an alternative semantics to atomic snapshot protocols,
using a geometric encoding of the state space, together with a notion of “time
direction”. One of the most simple settings in which this can be performed is
the one of pospaces [32, 17]: a pospace is a topological space X endowed with
a partial order ≤ such that the graph of the partial order is closed in X × X
with the product topology. The intuition is that, given two points x, y ∈ X such
that x ≤ y, y cannot be reached before x. The encoding can be done in a quite
general manner [10, 11]. Here, for the sake of simplicity, we define directly the
pospace that gives the semantics we are looking for. It is rather intuitive and we
will check this is sound and complete with respect to the interleaving semantics,
in Section 3.4 : to dipaths, we will associate interleaving traces and show that
equivalence of dipaths give rise to equivalence of interleaving traces. Then, we
will associate to an interleaving trace a dipath such that its associate trace is
equivalent to the starting one.

3.1 Dipaths and dihomotopies
A dipath (or directed path) in a pospace (X,≤) is a continuous map α : [0, 1]→ X
which is non decreasing when [0, 1] is endowed with the order and topology
induced by the real line. A dipath is the continuous counterpart (as we will
make clear later) of a trace in the interleaving semantics, or an execution. A
dipath α : [0, 1] → X is called inextendible, if there is no dipath β : [0, 1] → X
such that α([0, 1]) ( β([0, 1]). This is the analogous, in our geometric setting, to
maximal execution traces. The concatenation of two dipaths α, α′ : [0, 1] → X
with compatible ends, i.e. α(1) = α′(0) is the dipath α ·α′ such that α ·α′(x) is
α(x) (resp. α′(2x− 1)) when x ≤ 0.5 (resp. x ≥ 0.5).

The continuous setting allows us to use the classical concepts of (endpoint-
preserving) (di)homotopy, which is the natural notion of equivalence between
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paths with compatible endpoints, and to use some tools from algebraic topology
to derive properties of protocols (and more generally programs [19]). A dihomo-
topy is a continuous mapH : [0, 1]×[0, 1]→ X such that for all t ∈ [0, 1], the map
H(−, t) is a dipath. Two dipaths α, β such that α(0) = β(0) and α(1) = β(1)
are dihomotopic, if there is a dihomotopy map H : [0, 1] × [0, 1] → X with
H(−, 0) = α and H(−, 1) = β. We denote by [α] the set of inextendible di-
paths dihomotopic to α and dPath(X) the set of dipaths up to dihomotopy.
For instance, the following figure pictures two dipaths that are dihomotopic in
the geometric space X2

(4,2) representing protocols with 2 processes, 4 rounds for
process 0 and 2 rounds for process 1.

r1

r0

u1

s1

u1

s1

u0 s0 u0 s0 u0 s0 u0 s0

u0

u1

s0

u0

s0

u0

s0

u0

s0

s1

u1

s1

(6)

3.2 The case of fault-free processes
As two traces are equivalent only when they have the same set of actions, we
focus on well-bracketed traces with the same number of rounds. Therefore,
we will consider pospaces associated to a number of rounds and inextendible
dipaths in this pospaces.

Consider the pospace Xnr below, indexed by the number n of processes and
the vector of number of rounds (r) = (r0, . . . , rn−1): each ri ∈ N, with i ∈ [n],
is the number of times process Pi performs update followed by scan. Here, we
use a vector to represent the number of rounds, which is rather unusual: this is
because we do not want to treat only the iterated immediate snapshot protocols,
but more general atomic snapshot protocols. We claim now that the geometric
semantics of the generic protocol, for n processes and (r) rounds, is represented
by the pospace

Xn(r) =
∏
i∈[n]

[0, ri] \
⋃

i,j∈[n]
p∈[ri], q∈[rj ]

Upi ∩ Sqj (7)

endowed with the product topology and product order induced by Rn, where

• n, ri ∈ N and u, s ∈ R with 0 < u < s < 1,

• the space

Upi =

x ∈ ∏
i∈[n]

[0, ri]

∣∣∣∣∣∣ xi = p+ u


stands for the region where the i-th process updates the global memory
into its local memory for the p-th time,
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• the space

Sqj =

x ∈ ∏
i∈[n]

[0, ri]

∣∣∣∣∣∣ xj = q + s


stands for the region where the i-th process scans the global memory with
its local memory for the q-th time.

The meaning of (7) is that a state (x0, . . . , xn−1) ∈ ∏
i∈[n]

[0, ri] (i.e. a state in

which each process Pi is at local time xi) is allowed except when it is in Upi ∩Sqj
(for i, j ∈ [n] and p ∈ [ri], l ∈ [rj ]). These forbidden states are precisely the
states for which there is a scan and update conflict. Namely, states in Upi ∩ Sqj
are states for which process Pi updates (for the p-th time) while process Pj scans
(for the q-th time), which is forbidden in the semantics. Indeed, the memory
has to serialize the accesses since shared locations are concurrently read and
written, and either the scan operation will come before the update one, or the
contrary, but the two operations cannot occur at the same time. This is reflected
in the geometric semantics by a hole in the state space, as pictured on the left
of (8) for two processes with one round each, and in (6) for two processes with
several rounds each. Notice that the holes should be points since the operations
are atomic. Here they are depicted as squares instead of points to improve the
visibility on the diagram. In higher-dimensions, the holes exhibit a complicated
combinatorics. For instance, for three processes, and one round each, as in the
right diagram of (8), shows forbidden regions that intersect one another.

U0 S0

U1

S1

U1
1 ∩ S1

0

U1
0 ∩ S1

1

t0

t1

t0

t1

t2

(8)

What happens in dimension 3 is that for all 3 pairs of processes (P ,Q), we have
to produce a forbidden region which has a projection, on the two axes corre-
sponding to P and Q, similar to the one on the left of (8). Hence for all three
pairs of processes, we have two cylinders with square section punching entirely
the set of global states of the system. Each of these 6 cylinders correspond to a
pair (P ,Q) of processes, and a hole created either by a scan of P and an update
of Q, or a scan of Q and an update of P . Consider the cylinder created by the
conflict between the scan of P with the update of Q: it intersects exactly two
cylinders (parallel to the two other axes) in a non trivial way, the one created
by the scan of the third processor R and the update of Q, and the one created
by the update of R and the scan of P , as shown on the right of (8).

3.3 Processes with faults
The model of fault we are studying is the one of crash failures (which are dying
failures). At any point in time, any number of processes Pi can crash, stopping
its execution abruptly right after local time ti. In terms of geometric semantics,
this amounts to forbidding all states (x0, . . . , xn−1) in Rn with xi > ti.
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There are two kinds of times at which a process can fail. The first is when it
fails even before doing its first update. The second one is when a process fails
after its last update. Notice that the relative position of the fails to the scans
is not relevant as nobody else will see the effect of the scan and the concerned
faulty process will not help with solving the task. So that we can consider that
the concerned process halt just before scanning. This implies to erase the hole
due to the conflict between this scan and the updates of other processes and
stop the faulty process at the corresponding round. Let us denote

D0
j =

∏
i<j

[0, ri]× {0} ×
∏
i>j

[0, ri]

Dp+1
j =

∏
i<j

[0, ri]× [0, p+ 1 + s[×
∏
i>j

[0, ri]

D0
j corresponds to the failure of the jth process before it first update and Dp+1

j

corresponds to the failure of the jth process after its p+ 1th update. Now, let
F be the set of faulty processes. Then the corresponding pospace is

Xn(r),F = Xn(r) ∩

⋃
j∈F

D
rj
j

 (9)

endowed with the product topology and product order induced by Rn.
On the figure below, the blue path represents a trace with no failure whereas,

the red path represent a trace with a failure of process 0 after its fourth update.
The blue belongs to X2

(4,2) and the red one belongs to X2
(4,2),{0} = X2

(4,2) ∩D4
0

where D4
0 is the red region. Notice that red points are excluded from X2

(4,2),{0}
as they were points of intersection between update and scan hyperplanes and
they belong to D4

0.

r1

r0

u1

s1

u1

s1

u0 s0 u0 s0 u0 s0 u0 s0

(10)

3.4 Equivalence of the standard and geometric semantics
3.4.1 From dipaths modulo dihomotopy to equivalence classes of in-

terleaving traces

As already mentioned, dipaths geometrically represent execution traces, keeping
in mind that dipaths which can be deformed through a continuous family of
executions are operationally equivalent.

To any inextendible dipath α : [0, 1]→ Xn(r),F , we associate its projection αi
on the ith coordinate and the real numbers upi and s

p
i , respectively corresponding

to the event “α enters an update or scan hyperplane”:
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upi = inf {t ∈ [0, 1] | α(t) ∈ Upi } spi = inf {t ∈ [0, 1] | α(t) ∈ Spi } . (11)

Wlog, we assume that upi < spi (indeed, any dipath can be parameterized in such
a way that this condition holds without changing the graph of the dipath). To a
dipath α, we associate the following interleaving trace Tα. The u

p
i and spi form

a finite total sub-order in (R,≤), hence is isomorphic, as an order, to the order
on {1, . . . , k} for some integer k. Under this isomorphism, some j ∈ {1, . . . , k}
is mapped onto a(j) which is one of the upi or spi . The trace Tα is constructed
as the concatenation a(1) . . . a(k) followed by the di for i ∈ F .

For any i ∈ [n], since αi is non-decreasing, the order in which α enters update
or scan hyperplanes induces a total order on the actions of process i in Tα such
that upi ≤T spi . We can therefore check that Tα is well-bracketed.
Remark 43. One should keep in mind that a dipath α satisfies:

• α(upi )i = p+ u and α(spi )i = p+ s,

• if upi ≤ t < spi , then p+ u ≤ α(t)i < p+ s,

• if spi ≤ t < up+1
i , then p+ s ≤ α(t)i < (p+ 1) + u.

Lemma 44. Let α and β be two inextendible dipaths in Xn(r),F . They inter-
sect the update and scan hyperplanes in the same order if and only if they are
dihomotopic.

Proof. Let us first prove the left-to-right implication. Since α and β intersect
the update and scan hyperplanes in the same order, we can reparametrize β such
that the times at which upi and s

q
j intersect are the same for α and β. Then, the

function defined by H : x, t 7→ t α(x)+(1− t)β(x) is a dihomotopy. Let us prove
that H takes its value in Xn(r),F , that is, for all x, t ∈ [0, 1], H(x, t) /∈ Upi ∩ Sqj .
Assume for instance that upi > sqj . If H(x, t) ∈ Upi , then H(x, t)i = p + u and,
since α, β ∈ Xn(r),F ,

• either α(x)i > p+u and β(x) < p+u, then, as α and β are non decreasing,
x > upi and x < upi and we get a contradiction,

• either α(x)i < p+u and β(x) > p+u, this case is impossible for the same
reason,

• or α(x)i = p+ u and β(x) = p+ u, then, as α and β are non decreasing,
α(x)j ≥ α(upi )j > α(sqj)j = q + s and β(x)j > q + s, thus H(x, t) /∈ Sqj .

If upi < sqj , consider H(x, t) ∈ Sqj to show H(x, t) /∈ Upi .
Let us now prove the right-to-left implication. Let H : [0, 1]× [0, 1]→ Xn(r),F

be a dihomotopy between α = H(−, 1) and β = H(−, 0). Let upi (resp. vpi ) and
spi (resp. tpi ) be the defined as in (11) for α (resp. β). Let us fix i, j ∈ [n] and
prove that, for any p ∈ [ri] and l ∈ [rj ], the dipaths α and β intersect Upi and
Sqj in the same order. More precisely, we want to prove that:

upi < sqj iff vpi < tqj . (12)

Let Hij , αij and βij be the projections of H, α and β respectively on the plan
[0, ri]× [0, rj ] induced by the processes i and j. Notice that Hij , αij and βij are
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continuous and that for any t ∈ [0, 1], Hij(−, t), αij and βij are non-decreasing.
Moreover, since Upi and Sqj are parallel to the direction along which we project,
Hij , αij and βij are taking their values in the pospace:

Xij = [0, ri]× [0, rj ] \
⋃

p∈[ri], l∈[rj ]

Upi ∩ Sqj .

Thus, Hij is a dihomotopy between αij and βij in the space Xij . Since αij
and βij are homotopic, the concatenation of αij and of the reverse of βij is
contractible in Xij . Thus, there is no hole between αij and βij . Since moreover
they are non-decreasing, we get: α(upi )j < q + s iff β(vpi )j < q + s. Finally, the
equivalence (12) follows.

Theorem 45. Dihomotopic dipaths induce equivalent traces.

Proof. This results from Proposition 29 which characterizes equivalent traces
through the order of their update and scan actions and from preceding Lemma 44.

3.4.2 From equivalence classes of interleaving traces to dipaths mod-
ulo dihomotopy

In this section, we start by showing the equivalence of the interleaving semantics
modulo equivalence of interleaving traces with the geometric semantics and
dihomotopy of directed paths, in the case when there are no crash failures.

To any interleaving trace T with n processes and (r) rounds, we associate a
dipath αT in Xn(r),F . This dipath accurately reflects the whole computation of
T , e.g. if T ′ extends T , then αT ′ also extends αT . For example, the black path of
(6) is the dipath associated to the trace u0u1s0u0s1s0u1u0s0u0s1s0: the points
along it correspond to actions and the path consists of a linear interpolation
between those. The dipath αT is built by induction on the length of trace T :
when T is of length 0, αT is the constant dipath staying at the origin; when T is
the concatenation of a trace T1 with an action A, we concatenate the dipath αT1

and a dipath β which is defined according to the previous actions in T1 as in
the proof of the following lemma:

Lemma 46. Let T be a well-bracketed trace. There exists a dipath αT in Xn(r),F
such that αT intersects update and scan hyperplanes in the same order as in T .

Proof. We build a (not necessarily inextendible) dipath αT ∈ Xn(r),F by induc-
tion on T , such that for any i ∈ [n], αT (0)i = 0; if the last action in T is the
(p + 1)-th update of process i, then αT (1) ∈ Upi , that is αT (1)i = p + u; if the
last action in T is the (p + 1)-th scan of process i, then αT (1) ∈ Spi , that is
αT (1)i = p+ s. Moreover, if the last action of process is its

• (p+ 1)-th update, then αT (1)i ∈
{
p+ u, p+ u+s

2

}
;

• (p+ 1)-th scan, then αT (1)i ∈ {p+ s, p+ 1} .
The lemma follows indeed, if T = T0u

p
i T1, then αT0u

p
i
∈ Upi and similarly, if

T = T0s
p
i T1, then αT0s

p
i
∈ Spi .

First, when T is of length 0, αT is the constant dipath staying at the origin 0.
Otherwise, let T = T1ai be the concatenation of a trace T1 with action ai (being
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either update ui, scan si or death di of process i). By induction, we have a
dipath αT1

starting at 0 and ending at αT1
(1), associated to T1, that satisfies

Lemma 46. Now, construct a dipath β, which is a line, as pictured on figure
below,

0

j

i

Uj : l + u

l +
u+ s

2

Sj : l + s

l + 1

(k − 1 + s)
Si

k

(k + u)
Ui

end point of αT1
αT1

0

j

i

Uj : l + u

l +
u+ s

2

Sj : l + s

l + 1

k + u

Ui

(k +
u+ s

2
)

(k + s)
Si

end point of β β

(13)

starting at β(0) = αT1(1) and ending at β(1). Assume i is alive in T1.

• If ai is an update, say the (p + 1)-th update of process i, as partly rep-
resented on the left part of (13), by Lemma 46, since the previous action
was a scan or nothing, αT1

(1)i ∈ {0, p− 1 + s, p} and we set β(1)i = p+u.
For any other process j 6= i, if j is alive and its the last action is its say
(q+ 1)-th scan, then αT1(1)j ∈ {q + s, q + 1} and we set β(1)j = q+ 1 (in
red tones), otherwise we set β(1)j = αT1(1)j (in blue tones).

• If ai is a scan, say the (p + 1)-th scan of process i then, as represented
on the right part of (13). since the action of i before was the (p + 1)-th
update, αT1

(1)i ∈
{
p+ u, p+ u+s

2

}
and we set β(1)i = p + s. For any

other process j, if j is alive and its last action is its (q + 1)-th update,
then we have αT1(1)j =

{
q + u, q + u+s

2

}
and we set β(1)j = l + u+s

2 (in
red tones), otherwise we set β(1)j = αT1(1)j (in blue tones).

• If ai is a death, the we set β(1)i = ri − 1 + u+s
2 . For any other alive

process j, if αT1
(1)j = q + u then, we set β(1)j = q + u+s

2 otherwise, we
set β(1)j = αT1

(1)j .

We then define the dipath αT1ai = αT1 ·β. To a maximal interleaving trace T ,
we associate an inextendible dipath α′T by further extending αT : we define α′T
to be αT · γ where γ is the dipath given by (any parameterization of) the line
from γ(0) = αT (1) to γ(1)i = ri − 1 + s for i ∈ F and γ(1)i = ri otherwise,
the point γ(1) being the end of all inextendible dipaths in Xn(r),F . We shall
not distinguish in the sequel α′T from αT since we will only consider maximal
interleaving traces and their inextendible counterparts.

Theorem 47. For any T ≈ T ′ well-bracketed traces, the induced dipaths αT
and αT ′ are dihomotopic. Moreover, the dipath αT , built from a well-bracketed
trace T , induces a trace TαT such that T ≈ TαT .

Proof. Indeed, by construction αT (resp. αT ′) intersects update and scan hy-
perplanes in the same order as T (resp. T ′). Since T ≈ T ′, by Proposition 29,
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αT and αT ′ intersect the update and scan hyperplanes in the same order. By
Lemma 44 they are dihomotopic. For the second point, by construction (see
Paragraph 3.4.1) the order of update and scans in TαT are the same as the
order of intersection of αT with update and scan hyperplanes. So that TαT and
T are equal by construction.

4 Interval orders
In this section we provide a convenient combinatorial representation of execution
traces up to equivalence as interval orders, encoding the relative execution of
rounds. We begin by considering the case where the processes are not dying,
i.e. the traces do not contain actions of the form di. The usefulness of using
partial order to specify concurrent objects has already been observed [16, 9];
here, we make precise the relationship with traces. We will only need basic
facts, recalled here, about this notion which was introduced by Fishburn [15].

4.1 From traces to interval orders
Definition 48. Let (Ix)x∈X be a family of intervals on the real line (R,≤).
This family induces a poset (X,�), where ≺ is defined as

x ≺ y if and only if ∀s ∈ Ix,∀t ∈ Iy, s < t (14)

meaning that every element of the first interval is below the second. Such a poset
is called an interval order and a family of intervals giving rise to it is called an
interval representation of the poset. A colored interval order is given by an
interval order (X,�) and a labeling function ` : X → [n] such that two elements
with the same label are comparable. Then for any i ∈ [n], the restriction of the
interval order to intervals labeled by i is a total order.

We use the standard terminology for posets. In particular, two elements x and
y are independent, what we write x ‖ y, whenever neither x ≺ y nor y ≺ x
holds. A predecessor of an element y is an element x with x ≺ y and such that
there is no element x′ with x ≺ x′ ≺ y. A poset is often depicted by its Hasse
diagram, which is the graph with the elements of the poset as vertices and there
is an edge x → y whenever x is a predecessor of y, as on the left below. We
do complete the Hasse diagrams that we present below by adding some arrows
that come from transitivity of the order, when we feel that is is necessary for
the understanding.

x′ y′oo

x

OO

y

__ OO 0 1oo

0

OO

1

^^ OO
(15)

In the case where we considered a labeled interval order, we picture the labels in-
stead of the elements. For instance, the previous poset labeled by `(x) = `(x′) = 0
and `(y) = `(y′) = 1 will be pictured as on the right above. This can be for-
mally justified by the fact that we consider colored interval orders up to color-
preserving isomorphism: the name of the elements do not really matter, only
their labels do. In fact, the elements of a colored interval order can always be
named canonically as follows, which will be useful in the following (in fact, we
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will generally be implicitly supposing that the colored interval orders that we
manipulate are of this form).

Lemma 49. Suppose given a colored interval order (X,�, `) and i ∈ [n]. The
elements x of X such that `(x) = i are totally ordered, with cardinal denoted ri,
and, given such an element x, its index in the chain is called its occurrence
number. We can thus unambiguously denote by xpi an element of X where i is
its label and p its occurrence number and therefore, up to isomorphism, we can
suppose that the elements of X are of this form, i.e. that we have

X = {xpi | i ∈ [n], 0 ≤ p < ri}

Example 50. The elements of the colored interval order (15) can be named as

x10 x11oo

x00

OO

x01

__ OO

Remark 51. A purely combinatorial description of interval orders (without refer-
ring to the real line) can also be given [15]: a partial order (X,�) is an interval
order if and only if it does not contain “2 + 2” as induced suborder, i.e. a subset
{x, y, z, t} of X with x < y and z < t and no more comparisons. Equivalently,
for any x, y, z, t ∈ X, (x ≤ y and z ≤ t) implies (x ≤ t or z ≤ y). And a similar
characterization can of course be given for colored interval orders.

Interval orders are now going to be used to encode execution traces, up
to equivalence, of non-dying processes. The idea is that, for each numbered
execution trace a0 . . . ak with an action aj being either of the form u

pj
ij

or spjij ,
we associate the interval of “global times” (on the corresponding trace) [k, l]
where ak = upi and a

l = spi are corresponding update and scans (in the “bracket”
system they are defining), this interval being labeled by i.

Proposition 52. Execution traces up to equivalence of well-bracketed protocols,
in which no process dies, are in bijection with colored interval orders.

Proof. To every non-dying well-bracketed numbered trace T , we associate the
interval order whose set of elements is

X = {xpi | i ∈ [n], 0 ≤ p < ri} (16)

where ri is the number of rounds of process i in T . It thus contains elements
of the form xpi , with indices such that upi (and thus also spi ) occurs in T . To an
element xpi , we associate the interval [mp

i , n
p
i ], where m

p
i ∈ N (resp. npi ∈ N) is

the index of the occurrence of upi (resp. spi ) in T , thus defining an interval order
as in Definition 48. We label the elements by the function ` : X → [n] such
that `(xpi ) = i. Note that [mp

i , n
p
i ] is a representation of the interval order X

and is such that npi < mq
j iff spi ≤T uqi . So that thanks to Proposition 29, two

equivalent well-bracketed traces will generate the same interval order.
Conversely, suppose given a colored interval order (X,�, `). By Lemma 49,

we can suppose that the elements of X are of the form given in (16). There
is an interval representation of the interval order associating to each element
xpi an interval [mp

i , n
p
i ] ⊆ R. Since X is finite, it is easy to see that we can
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suppose that mp
i 6= mp′

i′ , m
p
i 6= np

′

i′ and n
p
i 6= np

′

i′ whenever i 6= i′ or p 6= p′, that
the mp

i and npi are integers, and that the set M = {mp
i , n

p
i | i ∈ [n], 0 ≤ p < ri}

is an initial segment of N. Therefore, it induces a word a0a1 . . . ak−1, with
k = card(M), such that aj = upi if mp

i = j and aj = spi if npi = j. Note that
xpi < xqj iff npi < mq

i iff spi ≤T uqi . Thus, thanks to Proposition 29, we have that
two representations of the interval order will induce equivalent traces.

Example 53. The numbered trace u00u01s01u11s00s11u10s10 induces an interval order
which is X =

{
x00, x

1
0, x

0
1, x

1
1

}
with the interval representation of xpi given by the

positions of upi and spi in the word:

x00 = [0, 4] x10 = [6, 7] x01 = [1, 2] x11 = [3, 5]

and therefore the corresponding poset is (15). Conversely, the poset (15) admits
the above interval representation, which induces the above trace.

We finally mention a useful technical property, showing that the correspondence
of Proposition 52 between traces up to equivalence and colored interval orders
is compatible with restriction.

Lemma 54. Suppose given an interval order (X,�, `) and a subset Y ⊆ X
which is downward and independent closed: for every x ∈ Y and y ∈ X, y � x
or y ‖ x implies y ∈ Y . Any trace T corresponding to X by Proposition 52 is of
the form T = T ′T ′′ where T ′ is associated to the interval order Y (with order
and labeling inherited from X) by the same proposition.

Proof. Consider the last action of the form spi in T such that xpi ∈ Y . The
trace T is of the form T = T ′T ′′, where the last action of T ′ is spi and T ′′ does
not contain actions of the form aqj with xqj ∈ Y . The trace T ′ cannot contain
an action of the form aqj with xqj ∈ X \ Y : if it contained such an action, then
it would contain uqj occurring before spi , so that xpi � xqj and by downwards
closure of Y we would have xpi ∈ Y which contradicts the hypothesis. Finally,
the trace T ′ is easily shown to correspond to Y by Proposition 52.

Under the equivalence of classes of interleaving traces with dipaths modulo
dihomotopy, (see Section 3.4), we know that we have a correspondence as well
between the dipaths modulo dihomotopies and interval orders, that is easy to
picture. For instance, to any non-faulty inextendible dipath α : [0, 1] → Xn(r),
we associate an interval order �α on the set

Xn
(r) = {xpi | i ∈ [n], p ∈ [ri]}

where xpi is labeled by i and represents the interval xpi = [upi , s
p
i ] where we recall

that uki (resp. ski ) corresponds to the event “α enters an update (resp. scan)
hyperplane”:

upi = inf {t ∈ [0, 1] | α(t)i ∈ Upi } spi = inf {t ∈ [0, 1] | α(t)i ∈ Spi }

For any i ∈ [n], the restriction of this order to the intervals labeled by i is a
total order. Indeed, dipaths α are non decreasing, u < s and α(upi )i = p + u,
α(spi )i = p+ s, hence for all p ∈ [ri], u

p
i < spi and if p 6= 0, sp−1i < upi .
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Let us give simple examples of this in dimension 2 and 3. In dimension 2,
and for one round, consider the three following inextendible dipaths in X2

(1,1):

α0

u0 s0

u1

s1

t0

t1

α1

u0 s0

u1

s1

t0

t1

α2

u0 s0

u1

s1

t0

t1

[u1,s1]≺α0
[u0,s0] [u0,s0]‖α1

[u1,s1] [u1,s1]≺α2
[u0,s0]

(we are not writing the round number as upper index since we are consider-
ing here only one round). Those are representatives of the three dihomotopy
classes of dipaths in this pospace. The dipath α0, on the above left figure,
corresponds to an execution in which process 1 does its update and scan be-
fore process 0 even starts updating. Hence, the interval of local times at which
process 1 updates and scans is less than the interval of local times at which pro-
cess 0 updates and scans: this is reflected by the corresponding interval order
[u1, s1] ≺α0

[u0, s0]. The dipath α2 is symmetric: the corresponding interval
order is [u0, s0] ≺α2

[u1, s1]. The dipath on the middle corresponds to an exe-
cution in which the two processes are running synchronously, updating at the
same time, and scanning at the same time: the corresponding interval order is
[u0, s0] ‖α1

[u1, s1].
In dimension 3, there are more dipaths that one can draw. Consider, for

instance, the synchronous execution of the three processes (i.e. the pospace
X3

(1,1,1)), shown on the right. It corresponds to the interval order where the
intervals [u0, s0], [u1, s1] and [u2, s2] are not comparable. The path figured
corresponds to a synchronous execution:

t0

t1

t2

4.2 The effect of processes dying
The notion of interval order can be generalized in order to extend the corre-
spondence described in Proposition 52. The idea is that we now have two kinds
of intervals: those of the form xpi = [upi , s

p
i ] and those of the form ypi = [upi , di],

respectively called alive and dying intervals. We will distinguish the two by
adding another kind of label to colored interval orders.

Definition 55. A colored interval order with death (X,�, `, δ) consists of a
colored interval order (X,�, `), in the sense of Definition 48, together with a
function δ : X → {♥, †} indicating for each element x if it is alive (δ(x) = ♥) or
dying (δ(x) = †), such that a dying element is maximal among those with the
same label.

In the following we simply call those colored interval orders and specify when
we consider “non-dying” ones.

Proposition 56. Execution traces up to equivalence for well-bracketed protocols
are in bijection with colored interval orders.
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Proof. The proof is similar to the one of Proposition 52 except that a pair upi , s
p
i

(resp. upi , di) in an execution trace corresponds to an alive (resp. dying) element
of the interval order.

Remark 57. Note that we really need to consider traces up to equivalence (as
opposed to strong equivalence) for this correspondence to hold: otherwise, we
would have to distinguish between u0s0d0 and u0d0, which there is no easy way
to encode in interval orders.

5 Views of interval orders
We study here the views, as introduced in Definition 42, generated by an interval
order. For simplicity, we only handle the case of non-dying interval orders here.

Definition 58. Given an element x of a poset, we write 9 x for the set of
elements which are not strictly greater than x, i.e. those which are lower than x
or independent from x.

5.1 Interval orders and their views
By the correspondence given by Proposition 52, the i-view of an interval order
can be defined as for traces:

Definition 59. Given a colored interval order X, its i-view VXWi is defined as
the i-view of T , in the sense of Definition 42, where T is the trace corresponding
to X by Proposition 52.

It will be convenient, more generally, to consider the view associated to any
element xpi of a colored interval order X: we write Vxpi W for the local view of the
i-th process after executing all the actions which the scan spi can see, i.e. such
that the update occurs before this scan. Formally, by Proposition 52, the col-
ored interval suborder 9 x

p
i (obtained by restricting X to 9 x

p
i ) corresponds to

a trace T (up to equivalence) and we define Vxpi W = li where (l,m) = JT Kπ^ .
Notice that if we write T ′ for a trace corresponding to X (by Proposition 52),
the trace T is a prefix of T ′ up to equivalence, by Lemma 54. Moreover, we
recover Definition 59 as a particular case: we have VXWi = Vxpi W, where x

p
i

is the maximal element of X labeled by i. We now show that we can recon-
struct a colored interval order from its views, starting by giving an inductive
characterization of the views.

Proposition 60. Suppose given i ∈ [n] and write xpi for the maximal element
labeled by i of a colored interval order X (by convention p = −1 when there is
no such element). Then the i-view VXWi = Vxpi W can be computed by induction
on the (well-founded) poset X by

Vxpi W =
〈
Vxp−1i W, l0l1 . . . ln−1

〉
where, by convention, Vx−1i W = i, and lj = Vxq−1j W with xqj the maximal element
of 9 x

p
i with label j, where by convention, lj = ⊥ when no such element exists.

30



Proof. By induction on the size of X and p. If p = −1 then the process i
does not perform any action and its local memory Jx−1i K is the initial one,
i.e. Jx−1i K = i by definition of the standard input. Otherwise, since xpi is max-
imal, the trace corresponding to 9 x

p
i is, up to equivalence, of the form Tsi.

Writing (l,m) = JT Kπ^ , we have

JTsiKπ^ = (l[i← 〈li,m〉],m)

and therefore
Vxpi W = 〈li,m〉

Above, li is the local memory which was last modified by the action sp−1i in T .
Given an element xqj in X with xqj > xp−1i , the action uqi occurs after x

p−1
i in T ,

and therefore li is the local memory of the i-th process after the execution of the
prefix of T corresponding to 9 x

p−1
i (this is a prefix by Lemma 54). By induction

hypothesis, we thus have li = Vxp−1i W. We can proceed by a similar reasoning
to determine mj . Writing xqj for the maximal element of 9 x

p
i with label j, the

contents of mj is the one which was written by uqj . Since the view protocol is
full-disclosure, this value corresponds to the local memory of j-th process after
the execution of sq−1j (the preceding scan). Therefore, mj = Vxq−1j W.

Example 61. Consider the interval orderX pictured in (15) again (with elements
named as in Example 50). Its 0-view can be computed as follows:

• Vx01W =
〈
Vx−11 W,Vx−10 WVx−11 W

〉
= 〈1, 01〉

• Vx00W =
〈
Vx−10 W,Vx−10 WVx01W

〉
= 〈0, 0 〈1, 01〉〉

• Vx10W =
〈
Vx00W,

〈
Vx00WVx01W

〉〉
= 〈〈0, 0 〈1, 01〉〉 , 〈0, 0 〈1, 01〉〉 〈1, 01〉〉

This result is precisely the one we have obtained in Example 40 by simulating
the trace u0u1s1u1s0s1u0s0 which corresponds to the interval order 9 x10 = X,
see Example 50 and 53.

A number of interesting remarks can be made on the inductive definition of the
view provided by the previous proposition. The views from previous rounds
can be extracted by iteratively considering the first component of the view.
Formally, the previous view can be recovered as follows.

Definition 62. Given a view l of the form l =
〈
l′, l′0l

′
1 . . . l

′
n−1
〉
, the previous

view is pr(l) = l′.

Lemma 63. Given xpi in a colored interval order X, we have

pr(Vxpi W) = Vxp−1i W

Moreover, the number of rounds executed by an action can be recovered as the
number of times the previous view is defined. Formally,

Definition 64. Given a view l, we define is occurrence number on(l) by induc-
tion by

on(l) =


1 + on(l′) if l =

〈
l′, l′0l

′
1 . . . l

′
n−1
〉

−1 if l ∈ [n]

−∞ if l = ⊥
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Lemma 65. Given xpi in a colored interval order X, we have

on(Vxpi W) = p

This suggests introducing a relation ^ which expresses when a process can be
“seen” by another one, i.e. xqj ^x

p
i (which is read the q-th round of process j is

seen by the p-th round of process i) means that the (q+ 1)th update of process
j occurs before the pth scan of process i, so that process i see the observations
of process j. Suppose given an colored interval order (X,�) and xpi ∈ X (by
convention, we always consider that x−1i is an element of X for i ∈ [n]). Given
the view Vxpi W, we write xqj ^x

p
i when Vxpi W is of the form

Vxpi W = 〈l, l0l1 . . . ln−1〉 (17)

with −∞ < q ≤ on(lj). By the preceding remarks, it is easy to show that

Lemma 66. We have xqj ^x
p
i if and only if xq+1

j 6� xpi , i.e. either x
q+1
j � xpi

or xq+1
j ‖ xpi in X.

Proof. Indeed, xqj ^x
p
i means by definition that uq+1

j happens before spi which
is equivalent to spi does not happen before uq+1

j which means by definition that
xq+1
j 6� xpi .

Remark 67. The careful reader will have noticed the shift of 1 in exponents q
in previous lemma. This is necessary for the construction of the view complex
below to work and can be explained as follows. When we have xq+1

j 6� xpi , this
means that in a corresponding execution the action uq+1

j occurs before spi and
therefore, the process i will know the contents of the value obtained during the
preceding scan sqj of process j. In the same vein, an element of the form x−1i
stands for the initial value of the process i and is necessary to determine whether
another process sees it or not.
We have seen in Proposition 9 that the relations defining equivalence of traces
are correct: two equivalent traces lead to the same local memory state. The
above considerations allow us to show a completeness result: two traces which
are indistinguishable, in the sense that they lead to the same local memory
state in every protocol, are equivalent (in the sense of Definition 8). We begin
by showing the result considering the view protocol only.

Proposition 68. Two non-dying well-bracketed traces T and T ′ are equivalent
if and only if we have l = l′ where (l,m) = JT Kπ^ and (l′,m′) = JT ′Kπ^ .

Proof. The left-to-right implication is given by Proposition 9, we show the re-
ciprocal. We write X and X ′ for the colored interval orders respectively corre-
sponding to T and T ′. By Remark 27, we know that X and X ′ are isomorphic
as sets and moreover the labels coincide. We thus have to show that the (in-
terval) order relations coincide. From the view li, we can reconstruct the views
of all the xpi ∈ X: li is precisely the view Vxpi W with p maximal and others
can be recovered from li by Lemma 63. We can thus compute the relations
−^xpi for every xpi ∈ X (the resulting relation will be detailed in Definition 70
and called the view order). By Lemma 66 and the following discussion, this
uniquely determines the order on X. Since, by hypothesis, we have l = l′, we
deduce that the orders on X and X ′ are the same, i.e. the traces T and T ′ are
equivalent.

32



By Proposition 41, two traces are indistinguishable if and only if they lead
to the same memory state in the view protocol, so that previous proposition
immediately implies:

Theorem 69. Two non-dying well-bracketed traces T and T ′ are equivalent
if and only if, for every protocol π, we have l = l′ where (l,m) = JT Kπ and
(l′,m′) = JT ′Kπ.

5.2 View orders
The preceding developments show that the information contained in the views
is precisely the order ^ they induce on elements xpi . We have seen in (17) that
a view induces a relation, and we now introduce a relation which is the union
of all such relations for all the possible views of actions in an interval order:
the views of the maximal elements can be obtained as the final local memory
in the execution of the interval order with the view protocol, and the views of
non-maximal elements can be deduced by iteratively constructing the previous
views (Definition 62) as explained in Lemma 63.

Definition 70. Suppose given a colored interval order X. We write xpii for
the maximal element of X labeled by i. We also write l for the local memory
obtained by executing a trace corresponding to X (by Proposition 52). The
associated view order VXW is the set

X− = X ∪
{
x−1i

∣∣ i ∈ [n]
}

equipped with the relation ^ such that xqj ^x
p
i whenever

prpi−p(li) =
〈
l′, l′0l

′
1 . . . l

′
n−1
〉

with q ≤ on(l′j) (above, prpi−p denotes the function pr of Definition 62 iterated
pi − p times).

By Proposition 68, the operation V−W which to a colored interval order asso-
ciates its view order is injective.
Example 71. The view order associated to (15) is

x10 x11

x00

OO

x01oo

OO

x−10

OO <<

x−11

OO

(we do not figure edges which can obtained by transitivity, i.e. picture the Hasse
diagram of the relation).
In an execution trace T if up+1

i occurs before sqj and uq+1
j occurs before srk,

we know that up+1
i occurs before srk, because we always have that sqj occurs

before uq+1
j , see Lemma 28:

. . . up+1
i . . . sqj . . . u

q+1
j . . . srk . . .

Using this reasoning, and Proposition 68, one deduce the following properties
of the relation ^:
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Proposition 72. Given a colored interval order X, the relation ^ of VXW is
always irreflexive, transitive and acyclic.

Proof. Irreflexivity corresponds to the fact that in an execution trace up+1
i never

occurs before spi . Transitivity can be shown using the above reasoning. Acyclic-
ity follows by absurd from transitivity and irreflexivity.

The most interesting feature of view orders is that one can formulate a
definition of views directly on them. Suppose given a colored interval order
(X,�). Writing X− = X ∪

{
x−1i

∣∣ i ∈ [n]
}
, consider the view order (X−,^)

associated to it as in Definition 70. This set is implicitly labeled by `(x−1i ) = i.
Given a subset Y ⊆ X−, we write ↓Y for the downward closure of Y : it contains
Y , the x−1j for j ∈ [n], and the elements xpj such that xpj ^x

p
i for some xpi ∈ Y .

This set can be equipped with the restriction of the relation ^.

Definition 73. The i-view of the view order (X−,^) is the view order (↓ {xpi } ,^),
which will be denoted VX−Wi, where x

p
i is the greatest element labeled by i.

Example 74. The 0-view (on left) and 1-view (on right) associated to the view
order of Example 71 are respectively

x10

x00

OO

x01oo

x−10

OO <<

x−11

OO

x11

x01

OO

x−10

<<

x−11

OO

(again, we do not figure transitive edges).

This definition is consistent with the one of Definition 59, thus justifying the
use of the same notation, in the following sense. Given the interval order X,
consider its i-view VXWi. We can add to it elements of the form x−1i , for i ∈ [n],
and equip it with the relation ^ as defined in Definition 70. The view order we
obtain in this way is then precisely VX−Wi. Moreover, the “traditional” view
VXWi can be reconstructed from (VX−Wi,^) as the view 〈〈xpi 〉〉, definition follows,
by induction. We define 〈〈x−1i 〉〉 = i and

〈〈xpi 〉〉 =
〈
〈〈xp−1i 〉〉, 〈〈xp00 〉〉〈〈xp11 〉〉 . . . 〈〈x

pn−1

n−1 〉〉
〉

where xpjj is the predecessor of xpi labeled by j, by convention 〈〈xpjj 〉〉 = ⊥ when
no such predecessor exists. It is routine to check that the two transformations
are mutually inverse to each other. To sum it up, the view order is simply a
convenient way to represent views. However, there is an advantage to this new
notation: one can consider the “view of several processes at once”.

Definition 75. Given a set I ⊆ [n] of process indices, the I-view of a view order
(X−,^) is the view order (↓ {xpii | i ∈ I} ,^), which will be denoted VX−WI ,
where xpii is the greatest element labeled by i ∈ I.

Given a view order X− and two elements xpi and xqj , with i 6= j and p, q ≥ 0,
which are maximal with their label, the views VX−Wi = ↓ {xpi } and VX−Wj = ↓

{
xqj
}

are distinct since otherwise we would have both xqj ^x
p
i and x

p
i ^x

q
j , which would
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contradict the acyclicity of ^. Moreover, ↓
{
xpi , x

q
j

}
= ↓ {xpi } ∪ ↓

{
xqj
}

since
x ∈ ↓

{
xpi , x

q
j

}
is equivalent to x^xpi or x^xqj . This observation generalizes

into:

Lemma 76. With the above notations, given a set I ⊆ [n], we have that

VX−WI =
⋃
i∈I

VX−Wi

and the relation on VX−WI is also the union of the relations VX−Wi.

This will turn out to be very useful in next section, in order to provide an
alternative definition to the protocol complex.

5.3 View orders and traces
We have seen in Section 4.1 that colored interval orders are in bijection with
traces, which are well-bracketed, up to equivalence (Proposition 52). A natu-
ral question is then to which traces correspond i-view orders? We show here
that those correspond to traces, up to equivalence, satisfying a variant of the
well-bracketing condition (Definition 19), where only the “brackets” of the i-
th process is closed. We omit most proofs since those are easy adaptations of
those presented in Sections 1.2.3 and 4.1 to the variant of the well-bracketing
condition.

The previous definitions on traces take all the processes in account. We first
generalize those in order to account for the fact that we are now interested in
the views of a specific set of processes I ⊆ [n].

Definition 77. In a trace T , an action is I-relevant if it is

• uj when it occurs before an action si with i ∈ I,

• sj when there is an action uj afterward which is I-relevant,

• si or di with i ∈ I.

The I-restriction of T is the trace obtained from T by keeping only I-relevant
actions, and is denoted dT eI .

Definition 78. A trace T is I-well-bracketed when

• proji(T ) ∈ (uisi)
∗(ε+ uidi) for i ∈ I,

• proji(T ) ∈ ε+ ((uisi)
∗ui) for i ∈ [n] \ I, and

• all the actions of T are I-relevant.

In particular a well-bracketed trace is the same as an [n]-well-bracketed one.
In the following, we simply write i-well-bracketed instead of {i}-well-bracketed.
The characterization of Lemma 21 can easily be adapted:

Lemma 79. A trace T ∈ A∗ is I-well-bracketed if and only if

1. updated(T ) is well-defined,

2. updated(T ) = [n] \ I,
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3. T is strongly properly dying, and

4. all the actions of T are I-relevant.

Notice that the last scan of a process j, with j 6∈ I, is never I-relevant. More
generally, one can show:

Lemma 80. The I-restriction of a trace is I-well-bracketed.

Similarly, the notion of equivalence can be adapted in order to distinguish when
two traces lead to the same result when we observe only the local memory cells
of processes in I.

Definition 81. Two traces T and T ′ are I-equivalent, what we write T ≈I T ′
when their I-restrictions are equivalent, i.e. dT eI ≈ dT e′I .

Example 82. For instance, with I = {1}, the following traces are I-equivalent
but not equivalent:

u0u1s0s1 u0s0u1s1

Namely, they only differ by the relative orderings of u1 and s0, which has no
influence on the view of 1, which is 〈1, 01〉 in both cases.

We have seen in Theorem 69 that two traces are equivalent if and only if they
give rise to the same views in every protocol. This can be generalized without
difficulty in order to show a variant “relative to the set I of processes”:

Proposition 83. Two non-dying well-bracketed traces T and T ′ are I-equivalent
if and only if for every protocol π and every i ∈ I, we have li = l′i, where
(l,m) = JT Kπ and (l′,m′) = JT ′Kπ.

From now on, we only consider non-dying traces for simplicity. With the pre-
vious definitions at hand, the correspondence described in Proposition 52 can
be adapted in order to show the following. The formulation is a bit contrived
because we do not have (at least for now) a characterization of the i-view orders,
i.e. of those which come from traces or colored interval orders.

Proposition 84. Suppose given a colored interval order X corresponding to a
trace T by Proposition 52. Then there is a bijection between

(i) the I-restrictions of T up to equivalence,

(ii) view orders of the form ↓ {xpii | i ∈ I} (the downward closure is taken in
the view order X− associated to X) where xpii is the maximal element
labeled by i ∈ I.

Moreover, this bijection does not depend on T (or X).

By the fact that the bijection “does not depend on T ”, we mean that given two
(possibly non-equivalent) traces T ′ and T ′′ having a common I-restriction T the
view orders by the above bijection will be the same (and similarly for the other
side of the bijection). The proof is very similar to the one of Proposition 52.
Instead of going over it once again, we illustrate it on an example.
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Example 85. Consider the 0-view X− depicted on the left in Example 74.
The 0-well-bracketed trace corresponding to it is an interleaving of the traces
u00s

0
0u

1
0s

1
0 and u01s01u11 (notice that the last one is not well-bracketed in the tra-

ditional sense, but the presence of u11 is encoded in the 0-view). We have that

• the relations xpi ^x
p+1
i imply that up+1

i occurs before sp+1
i (which we

already knew anyway),

• the relation x01 ^x00 implies that u11 occurs before s00,

• the relation x−11 ^x00 implies that u01 occurs before s00,

• the relation x−10 ^x01 implies that u00 occurs before s01,

• the absence of the relation x00 ^x01 implies that we do not have u10 before
s01 (i.e. we have u10 after s01),

The relative order of the actions is thus

s10

u10

OO

u11

��
s00

OO

s01

__ OO

u00

OO ??

u01

__ OO

and we see that the only possible execution trace is u00u01s01u11s00u10s10, up to
permuting consecutive updates or consecutive scans, i.e. up to equivalence.

Remark 86. Again, not every set with a transitive order relation is a view. For
instance, if we applied the construction of the previous example to the set on
the left

x10 x11

x−10

OO

x−11

OO s0
""
s1

||
u0

OO

u1

OO

we obtain the constraints on the right for a trace, which obviously cannot be
satisfied since they are cyclic.

Example 87. To illustrate the other side of the bijection, consider the 0-well-
bracketed trace u00s00u10u01s01u11s10. We have that

• since u11 occurs before s10 we have x01 ^x10,

• since u10 occurs before s01 we have x00 ^x01

(other relations are redundant or obvious). Therefore the associated 0-view
order is

x10

x00

OO

// x01

bb

x−10

OO

x−11

OO
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5.4 View orders and interval orders
We would like to also very briefly explain how the views can be encoded di-
rectly in interval orders. A first idea is that given an interval order (X,�) and
i ∈ [n], writing xpi for the maximal element labeled by i, the i-view should be
the restriction of X to elements which are not above (i.e. below or independent
from) xpi . This is however not the case. For instance, consider the two following
colored interval orders

x00 x01 x00 // x01

taking the “1-view” as described above, i.e. restricting to elements not above x01
leaves the interval orders unchanged, and thus distinct. However, their views (in
the sense of Definition 59) are the same: they are both 〈1, 01〉. The discrepancy
comes from the fact that interval orders encode well-bracketed traces (by oppo-
sition to 1-well-bracketed traces). Namely, the two interval orders respectively
correspond to the traces

u0u1s0s1 u0s0u1s1

whereas, by Section 5.3, the view correspond to the 1-well-bracketed trace
u0u1s1 (this observation is essentially the same as the one in Example 82).
Another way to state this is that the interval order encodes the relative posi-
tions of u1 and s0, whereas this is irrelevant since s0 does not play a role in the
view. This suggests introducing the following definition.

Definition 88. Given I ⊆ [n], a colored I-interval order is an interval order
such that, for i ∈ [n] \ I, a maximal element labeled by i is maximal (among
all elements, even those with different labels). The I-restriction of a colored
interval order (X,�) is the interval order, on the same elements, obtained by
removing dependencies from any element xpi , with i ∈ [n] \ I, which is maximal
among elements labeled by i.

Remark 89. The fact that the I-restriction of an interval order is still an interval
order is not immediate, but can be shown using the characterization mentioned
in Remark 51.

Finally, views can be defined as follows.

Definition 90. Suppose given a colored interval order (X,�) and I ⊆ [n].
For i ∈ I, we write xpii for the greatest element of X which is labeled by i. The
I-view VXWI of X is the interval order obtained by

1. restricting X to elements which are below or independent from an ele-
ment xpii with i ∈ I,

2. taking the I-restriction of the resulting interval order.

It can be shown that this construction coincide with the previous ones, in a
way which is compatible with the various isomorphisms established. We do
not detail it further here, because it does not play an important role and is
less convenient to manipulate than the description in terms of view order. For
instance, reconstructing the I-view from the i-views is less direct than for view
orders, as described in Lemma 76.
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6 Protocol complexes, derived from the concur-
rent semantics

In this section, we are going to define the protocol complex [26] associated
to a protocol, in equivalent ways. First, in Section 6.1, we define it from the
operational semantics of Section 1.1.1. Equivalently, based on the results of Sec-
tion 5, this can be defined using interval orders, or the geometric semantics: this
is made formal using the notion of view order of Section 5 in the form of a view
complex, in Section 6.2, and also, equivalently, in the form of a interval order
complex, and a trace complex. They are shown all equivalent to the (standard)
protocol complex in Proposition 99. Finally, in Section 6.3, we will particularize
this construction to the simpler case of the immediate snapshot protocol and
the protocol complex constructed through chromatic subdivisions [29].

6.1 The protocol complex
The protocol complex [28] is a simplicial complex which has been designed to
represent the possible reachable states, at some given round, of the generic
protocol in normal form, i.e. it is going to encode all possible histories of com-
munication between processes, and as we will prove later on, all interleaving
traces up to equivalence (or equivalently the dipaths up to dihomotopy), by
maximal simplices:

Definition 91. Given numbers (ri)i∈[n] of rounds, the protocol complex for
atomic snapshot protocols is the abstract simplicial complex constructed from
the generic protocol in normal form, and whose

• vertices are pairs (i, li) where i ∈ [n] represents the name of a process and
li its local memory in a reachable state,

• maximal simplices are {(0, l0), . . . , (n, ln)} where 〈i, li〉 is the local view by
process i at the end of the execution with r rounds represented by this
simplex.

Example 92. The local views in each vertex are determined by the operational
semantics of Section 1, as in the following example, using the same notations as
in Example 40:

0 1
⊥ ⊥

u0−→ 0 1
0 ⊥

u1−→ 0 1
0 1

s1−→ 0 〈1, 01〉
0 1

s0−→ 〈0, 01〉 〈1, 01〉
0 1

leading to the local views

l0 = 〈0, 01〉 l1 = 〈1, 01〉

Similarly, the trace u0s0u1s1 leads to the local views

l0 = 〈0, 0⊥〉 l1 = 〈1, 01〉

and there is a third potential outcome of the computation, symmetric to this
last case, in which process 1 updates and scans before process 0 does. Putting
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this together, according to Definition 91, we get the protocol complex for one
round and two processes [28]:

0, 0⊥ 1, 01 0, 01 1,⊥1

For concision, we do not figure the external brackets, i.e. write 0, 0⊥ instead of
〈0, 0⊥〉. The identifier of the process whose local view is written is the number
before the comma, e.g. the state 0, 0⊥ above is the local view of processor 0.

We can now link protocol complexes with interval orders, i.e. traces up to
equivalence or dipaths up to dihomotopy: a colored interval order represents
indeed an execution (Proposition 52), and a maximal simplex in the protocol
complex. Furthermore, we can deduce the local view of the i-th process by
using the i-view of this interval order (by Definition 59, or equivalently using
the i-view of the view order of Definition 73). These local views will identify
the interval orders seen as maximal simplices of the protocol complex as convex
hulls of the n + 1 local views, hence will encode the full simplicial complex
structure.

We encode here local views restricting to the full information generic protocol
in normal form with initial local state li = i for i ∈ [n], i.e. with standard
input, see Definition 34 (this only changes the naming of local states, and not
the structure of the protocol complex). This can be generalized to more general
input complexes, as hinted in Section 6.4.

By Theorem 69, we know that two non-dying well-bracketed traces are equiv-
alent if and only if they are non distinguished by the full information generic
protocol in normal form, which is initial in the category of protocols by Propo-
sition 41. Hence local views of process i, on a trace T , corresponds to the i-view
of the interval order corresponding to T (Section 5).

These observations lead to the equivalent descriptions of the protocol com-
plex using interval orders, views and traces in Section 6.2. Before formally
defining them, let us give a few examples first.
Example 93. Consider again the one round, two processes case. We have repre-
sented below the protocol complex already depicted in Example 92, and deco-
rated its maximal simplices, i.e. edges, with the corresponding dipaths modulo
dihomotopy above, and the corresponding interval order, below:

0, 0⊥
0≺1

1, 01
0 1

0, 01
0�1

1,⊥1

The local view (at the leftmost part of the figure above) of process 0 which is
0, 0⊥ comes from the 0-view VXW0 of the interval order X = 0≺1, subscript of
the leftmost edge in the graph above: an interleaving trace corresponding to
9 x00 = 0, under Proposition 52 (and the remark at the end of Section 4) is u0s0
leading to local state 〈0, 0⊥〉 on process 0. Similarly, 1, 01 corresponds to the
local state for process 1, which is both the 1-view of VXW1 which corresponds
to the local view of the interval order 9 x01 = 0≺1 (corresponding to a trace
u0s0u1s1, as in the trace superscript of the edge on the left of the graph
above) and to the 0-view VY W0, i.e. the local view of 9 x00 = 0 1, where Y = 0 1

(corresponding to a trace u0u1s0s1 for instance, as in the trace superscript
of the middle edge of the graph above). Note that VXW1 = VY W0 but 9 x01 in X
is not the same interval order as 9 x00 in Y , as remarked already in Section 5.4.
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Example 94. An example of interval order complex with the traces correspond-
ing to the execution for 2 processes, 2 rounds is depicted at Figure 1. Note that
this is not the classical iterated subdivision in three parts at each round, i.e. a 9
edges complex, that is depicted for atomic snapshot protocols [26]. This is be-
cause we are considering more executions than the classical iterated immediate
snapshot protocols [26]: we allow round 2 of process 0 to begin while process 1

is still in round 1 for instance. Consider the interval order X =
0

��

// 1

0

OO @@

// 1

OO labeling

the upper left edge of the protocol complex in Figure 1, where an arrow x // y

means x ≺ y. As shown in the same figure, it corresponds to the execution

precisely where process 0 is executing its 2 rounds before process 1 even starts its
first round. The local view of process 0 at its round 2 corresponds to the interval

order
0

0

OO An interleaving trace corresponding to this is e.g. u0s0u0s0, which, by

the semantics of Section 1, leads to the local state 〈0, 〈0, 0⊥〉⊥〉 of process 0
(which is the 0-view of X, VXWi) of Proposition 60), written in condensed form
as the upper left local state 0, ((0_)_) in Figure 1.
Example 95. In Figure 2, we show the interval order complex for 3 processes and
1 round. Note again that we do not have exactly the same picture as in [26]: to
the 13 triangles of [26], we have to add the 6 extra blue triangles that make the
complex not faithfully representable as a planar shape and which correspond to
non immediate snapshot executions. For instance, the upper left blue triangle
is labeled with the interval order where 0 is not comparable to both 1 and 2,
and 2 is less than 1. An interleaving trace (up to equivalence) corresponding to
this interval order is given on the same figure: u0u2s2u1s1s0.

6.2 Alternative descriptions of the protocol complex
Alternative descriptions of the protocol complex can be handled, using the re-
sults of Section 5 in three equivalent ways : through views (and the view com-
plex, Definition 96), through interval orders (and the interval order complex,
Definition 97) and through traces modulo equivalence, Definition 98.

Definition 96. The view complex for atomic snapshot protocols on n+ 1 pro-
cesses and (r) rounds is the abstract simplicial complex constructed as follows:

• maximal simplices are {(0,VX−W0), . . . , (n, VX−Wn)} where X is a colored
interval order on the set Xn

(r) and VX−Wi (Definition 73) is the i-view on
the view order generated by X (Definition 70)

• the boundaries of these maximal simplices are their subsets: the iterated
boundary {(i1,VX−Wi1), . . . , (ik,VX−Wik)} of {(0,VX−W0), . . . , (n, VX−Wn)}
can be identified with the (I, VX−WI), where I = {i1, . . . , ik} (Definition
75).

Definition 97. The interval order complex for atomic snapshot protocols on
n+ 1 processes and (r) rounds is the abstract simplicial complex constructed as
follows:

• maximal simplices are {(0,VXW0), . . . , (n,VXWn)} where X is a colored
interval order on the set Xn

(r) and VXWi is the i-view of X (Definition 90),
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Figure 1: The protocol complex, decorated with corresponding traces and in-
terval orders, of 2 processes, 2 rounds.
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Figure 2: The protocol complex decorated with interval orders and correspond-
ing traces, of 3 processes and 1 round.

• the boundaries of these maximal simplices are their subsets: the iterated
boundary {(i1,VXWi1), . . . , (ik,VXWik)} of {(0,VXW0), . . . , (n, VXWn)} can
be identified with (I, VXWI), where I = {i1, . . . , ik} (see Definition 90).

Definition 98. The trace complex for atomic snapshot protocols on n+ 1 pro-
cesses and (r) rounds is the abstract simplicial complex constructed as follows:

• maximal simplices are {(0, T0), . . . , (n, Tn)} where T is a maximal trace of
the view protocol for n + 1 processes and (r) rounds (Definition 39) and
Ti is the {i}-restriction of T up to equivalence (Proposition 84),

• the boundaries of these maximal simplices are their subsets: the iter-
ated boundary {(i1, Ti1), . . . , (ik, Tik)} of {(0, T0), . . . , (n, Tn)} can be iden-
tified with the pair composed of I and the I-restriction of T , where
I = {i1, . . . , ik} (Proposition 84).

Note that this trace complex could have been equivalently defined from the
dipaths modulo dihomotopy thanks to the equivalence between the trace se-
mantics and the geometric semantics, see Section 3.4.

Proposition 99. The view complex, the interval order complex and the trace
complex are isomorphic to the protocol complex of Definition 91.

Proof. We know by Section 5 that VX−Wi corresponds to the view of VXWi by
Proposition 60 and Section 5.2. Hence VX−Wi can be identified with the local
memory state li of processor i for the execution corresponding to the interval
order X. The maximal simplices of the protocol complex of Definition 91 and of
the view complex of Definition 96 are then the same. Similarly for the boundary
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operations. Similarly for the interval order complex, by Section 5.4, the i-views
defined directly on interval orders are isomorphic to the ones defined on views.
Now for the trace complex, this stems from the equivalence (Proposition 84)
between {i}-restrictions of a trace T modulo equivalence with i-views of the
corresponding view order.

Example 100. Consider the protocol complex for 2 processes and 2 rounds of
Figure 1, and the 1-simplex corresponding to the interval order X below (left).
Its local views are shown on the right hand side of the following table:

X =
0 1oo

0 //

@@OO

1

^^ OO
VXW0 =

0 1

0 //

@@OO

1

^^ OO
VXW1 =

1

0 1

OO

Let us explain the calculation of VXW1: we first eliminate the maximal 0 in X
since it is greater than the maximal 1, giving

1

0

@@

// 1

OO

Now, we take its 1-restriction which eliminates the arrow from 0 to the upper
1, but also the arrow from 0 to the lower 1 (because, otherwise, by transitivity,
0 would still be lower than the upper 1!).

Consider now the 1-simplex encoded by the interval order Y below (left).
Its local views are shown on the right hand side of the following table :

Y =
0 1

0 //

@@OO

1

^^ OO
VY W0 =

0 1

0 //

@@OO

1

^^ OO
VY W1 =

0 1

0 //

@@OO

1

^^ OO

As we see from the above, VXW0 = VY W0, linking the 2 1-simplices together in
Figure 1. Indeed, the view of processor 0 for both X and Y is encoded, by the
view protocol, by 0, ((0_)(01)) as shown on the same figure.

Now consider Z as below, and its views:

Z =
0 1oo

0

OO

1

^^ OO
VZW0 =

0 1

0

OO

1

^^ OO
VZW1 =

1

0 1

OO

and T and its views:

T =
0 1oo

0

@@OO

1

^^ OO
VTW0 =

0 1

0

@@OO

1

^^ OO
VTW1 =

1

0 1

OO

We have indeed VTW1 = VZW1 = VXW1 glueing together these 3 1-simplices as
show in the upper right of Figure 1.
Example 101. Consider the protocol complex for 3 processes and 1 round of
Figure 2, and consider the 2-simplex, corresponding to the interval order X
below (left). The local views of each processor is indicated on the right:

X =
0 1

2

^^ @@
VXW0 =

0 1

2

OO
VXW1 =

0 1

2

OO
VXW2 = 2
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As a matter of fact, restricting X to the elements below or independent from
i = 0, 1 still givesX, but then, taking the 0-restriction (respectively 1-restriction)
implies forgetting about the dependency between 2 and 0 (respectively between
2 and 1). Finally, restricting X to the elements below or independent of 2 gives
just the singleton 2.

Now, the view VXW{0,1} is obtained from X by {0, 1}-restriction, for which
we obtain:

VXW{0,1} = 0 1 2

This is clearly the same as the {0, 1}-view of the central 2-simplex encoded by
the interval order

Y = 0 1 2

hence X and Y share a common face.
Finally, the {0, 2}-view of X is just the {0, 2}-restriction of X, which is

0 1

2

OO
(18)

Note that the {0, 2}-view of
2 // 1 // 0

is the {0, 2}-restriction of itself, which is (18) again, showing that X and Z
share a common face indeed.

6.3 The particular case of 1-round immediate snapshot
protocols

We recall that an (iterated, for multi-round protocols) immediate snapshot pro-
tocol [26] is a protocol where the snapshot of a given process comes “right after”
its update, meaning that the allowed traces (within one round), up to equiv-
alence, should be, of the form ui1 . . . uiksi1 . . . sik . Of course, there is some
difference with the protocol complex of Definition 91, in that the latter ac-
counts for non necessarily layered by rounds, nor “immediate” protocols. It is
the aim of this section to make the connection between the subcomplex gen-
erated by some interval orders only, describing iterated immediate snapshot
protocol executions, and the equivalent two definitions of standard chromatic
subdivision [29, 23] that describe combinatorially the protocol complex in that
case.

The standard chromatic subdivision χ(∆[n]) of the standard colored simpli-
cial complex ∆[n] is defined as follows (see [23], where an equivalence with the
Definition in [29] is also shown):

Definition 102. The standard chromatic subdivision χ(∆[n]) of ∆[n] is the
colored simplicial complex whose vertices are pairs (V, i) with V ⊆ [n] and
i ∈ V and simplices are sets of the form σ = {(V0, i0), . . . , (Vd, id)} with d ≥ −1
(σ = ∅ when d = −1) which are

1. well-colored: for every k, l ∈ [d], ik = il implies k = l,

2. ordered: for every k, l ∈ [d], Vk ⊆ Vl or Vl ⊆ Vk,

3. transitive: for every k, l ∈ [d], il ∈ Vk implies Vl ⊆ Vk.

45



This complex is colored via the second projection: `(V, i) = i.

Proposition 103. Layered immediate snapshot executions (for any number of
rounds) correspond to the colored interval orders such that: J ≺ K and I is not
comparable with J implies I ≺ K. The subcomplex of the protocol complex of
Definition 91 on one round that contains only such immediate snapshot execu-
tions is isomorphic to the standard chromatic subdivision of Definition 102.

Proof. For the first part, suppose that we have an interval order �, representing
a maximal simplex in the protocol complex of Definition 91, such that J ≺ K
and I is not comparable with J and K. I, J and K correspond to some intervals
of update and scan local times on some process, [ulii , s

li
i ], [u

lj
j , s

lj
j ] and [ulkk , s

lk
k ]

respectively. Suppose that I is not comparable with K, this means that the
interleaving path . . . ulii . . . u

lj
j . . . s

lj
j . . . u

lk
k . . . s

lk
k . . . s

li
i . . . is in the equivalence

class represented by the interval order we are considering. This is clearly not
layered nor immediate snapshot, therefore being a layered immediate snapshot
execution implies the condition on � of Proposition 103.

Conversely, we suppose that for I not comparable to J and J ≺ K, then
I ≺ K. We prove now that all execution paths are layered and immediate
snapshot ones. Suppose we have an interleaving path (up to equivalence) of the
form: Tuljj Us

lj
j V u

lk
k Wslkk X where T , U , V , W and X are interleaving paths.

This is a layered immediate snapshot execution except if there are update and
scans ulii , s

li
i such that ulii appears in U and slii appears inW . But ulii appearing

in U implies I = [ulii , s
li
i ] is not comparable with J and hence, by hypothesis, I

must be less that K, implying that slii appears in U or V .
Now, we prove the second statement. Consider a simplex:

σ = {(V0, i0), . . . , (Vd, id)}

with d ≥ 0 (the case d = −1 is trivial) in the standard chromatic subdivision of
Definition 102. We associate to σ the following interval order: we construct a
partial order �σ on {(V0, i0), . . . , (Vd, id)} such that Vk ≺σ Vl if Vk ( Vl and the
color of (Vl, il) is il, we just need to prove that this partial order is an interval
order, and that the condition of Proposition 103 holds. Let us now consider, in
our partial order �σ, four elements (Vx, ix), (Vy, iy), (Vz, iz) and (Vt, it), and
suppose furthermore that

(Vx, ix) ≺σ (Vy, iy) (Vz, iz) ≺σ (Vt, it)

Then, as σ is “ordered” (see Definition 102), necessarily, either Vx ⊆ Vz or
Vz ⊆ Vx. Suppose we are in the first situation. We also have that Vz ⊆ Vt
and Vz 6= Vt by definition of �. Hence Vx ≺σ Vt. We conclude that, as a
partial order, �σ is (2+2)-free, property which characterizes interval orders [15].
Now consider again σ in the standard chromatic subdivision, and its associated
interval order �σ. Take (Vy, iy) ≺σ (Vz, iz) and (Vx, ix) which is not comparable
with (Vy, iy). Hence, by definition of the (strict) order ≺σ, Vx = Vy or Vx 6⊆ Vy.
In the first case, (Vx, ix) ≺σ (Vz, iz), trivially, and in the second case, by property
2 (“ordered”) of Definition 102, Vy ( Vx which implies (Vy, iy) ≺σ (Vx, ix). This
is impossible since (Vx, ix) and (Vy, iy) are supposed incomparable. Finally, note
that well-coloredness of σ implies that the labeling we define is indeed a labeling
function of an interval order.
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Conversely, suppose we have a 1-round colored interval order (X,�) on d+1
elements which satisfies the property from Proposition 103. We consider the
interval orders V ki , restriction ofX to Vki = {(j, l) | (i, k)‖(j, l) or (j, l) ≺ (i, k)}.
We construct a (colored) d-simplex in the standard chromatic subdivision of
Definition 102 by defining k-simplices (for all k ≤ n) σX = ((|V kii |, i))i∈[k]
(where |V | is the set of elements of the interval order V ). Indeed we check
easily that this is well-colored. Suppose we have (|Vk|, ik) and (|Vl|, il) such
that il ∈ |Vk|. As Vk and Vl are restrictions of the same interval order to the
set of elements less than or incomparable to ik, respectively il, and that by
definition of Vl, il ∈ Vl, we have |Vl| ⊆ |Vk|. A similar argument shows that
property 2 of Definition 102 holds as well.

6.4 Input, output, protocol complexes and the solvability
of tasks

Given a task Θ as in Section 2.1, i.e. a relation Θ ⊆ In × On between input
and output values, we note first that dom Θ can be seen as a presimplicial set
such that the dimension of l ∈ dom Θ is the number of entries different from ⊥,
and the i-th face is given by ∂j(l) where j is the index of the i-th entry different
from ⊥. It can also be seen as a simplicial complex with [n] × (I \ {⊥}) as
vertices, and simplices are of the form {(i, x) ∈ [n]× V | li = x 6= ⊥}, for any
l ∈ dom Θ. This simplicial complex is called the input complex ; the output
complex is defined similarly from codom Θ.

We have seen how to construct the protocol complex from a unique global
state, i.e. one maximal dimensional simplex. From the input complex, we can
construct the corresponding protocol complex, by gluing together the protocol
complexes obtained from each separate initial simplices, according to the same
gluing scheme as for the input complex. We do not detail this here since this
is completely standard (see [26]). Now, a (pre-)simplicial map from it to the
output complex will necessary exist as a (necessary and sufficient) condition
for solvability of the task Θ in (r) rounds. Most of this is out of the scope of
this paper, which is concerned with the semantics of scan-update protocols and
the construction and characterization of the protocol complex, and we refer the
interested reader to [26].

Still, we expect that the existence of such a (pre-)simplicial map will stem
from the initiality of the view protocol : we believe that the decision map should
be obtained using the universal morphism derived from the initial character of
the view protocol. This paves the way towards proving computability results
directly from the semantics, and without constructing explicitly the protocol
complex. This is left for future work.

7 Conclusion and future work
We have revealed strong connections between directed algebraic topology, with
its applications to semantics and validation of concurrent systems, and the pro-
tocol complex approach to fault-tolerant distributed systems. This has been
exemplified on the simple iterated immediate snapshot model, but also on the
more complicated (non immediate) iterated snapshot model. This, combined

47



with the results of [30, 23], entirely classifies geometrically the computability
of wait-free iterated immediate snapshot protocols, directly from the seman-
tics of the update and scan primitives. We classified combinatorially, en route,
the potential schedules of executions (equivalently, the potential local views of
processes) as an interesting and well-known combinatorial structure: interval
orders.

This is a first step towards a more ambitious program. Fault-tolerant dis-
tributed models, whose protocol complex are more complex to guess combinato-
rially, may be handled by going through the very same steps we went through,
starting with the geometric semantics of the communication primitives, and clas-
sifying dipaths modulo dihomotopy. We shall apply this to atomic read/write
protocols with extra synchronization primitives such as test&set, compare&swap
and others. In the long run, we would like to derive impossibility results directly
by observing some obstructions in the semantics, in the form of suitable directed
algebraic topological invariants.
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