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École polytechnique



The coherence theorem for monoidal categories

A monoidal category (C,⊗, e, α, λ, ρ) comes equipped with

αx,y,z : (x ⊗ y)⊗ z ∼→ x ⊗ (y ⊗ z) λx : e⊗ x ∼→ x ρx : x ⊗ e ∼→ x

satisfying axioms.

((x ⊗ y)⊗ z)⊗ w (x ⊗ (y ⊗ z))⊗ w x ⊗ ((y ⊗ z)⊗ w)

(x ⊗ y)⊗ (z⊗ w) x ⊗ (y ⊗ (z⊗ w))

(x ⊗ e)⊗ y x ⊗ (e⊗ y)

x ⊗ y
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The coherence theorems for monoidal categories

In fact, there are various ways of formulating the coherence theorem:

1. Coherence:
every diagram in a free monoidal category made up of α, λ and ρ commutes.

2. Coherence:
every diagram in a monoidal category made up of α, λ and ρ commutes.

3. Strictification:
every monoidal category is monoidally equivalent to a strict monoidal
category.

4. Global strictification:
the forgetful 2-functor from strict monoidal categories to monoidal
categories has a left adjoint and the components of the unit are
equivalences.

2



The coherence theorems for symmetric monoidal categories

A monoidal category is symmetric when equipped with

γx,y : x ⊗ y → y ⊗ x

satisfying axioms.

Similar coherence theorems hold but they are more subtle:

• in 2. we have to restrict to “generic” diagrams, e.g. the following diagram does
not commute:

x ⊗ x x ⊗ x

γx,x

idx⊗x

• in 4., for a strict symmetric monoidal category, we suppose that α, λ and ρ are
strict but not γ

• (global) strictification is only shown for free categories
3



A generic framework for coherence

Here, we investigate general coherence theorems where

• coherence holds with respect to part of the structure
(e.g. α, λ and ρ but not γ)

• structural morphisms can erase or duplicate variables:

δx,y,z : x ⊗ (y ⊕ z) → (x ⊗ y)⊕ (x ⊗ z)

• we use rewriting theory.

We begin by studying the situation in an abstract setting.
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Part I

Abstract coherence
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An abstract setting

Fix a category C which we think of as describing an algebraic structure.

For instance, we have a theory of symmetric monoidal categories:
• the objects of C are formal tensor expressions

e⊗ ((x ⊗ e)⊗ y)

• morphisms are composites of α, λ, ρ and γ modulo axioms.
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An abstract setting

Fix a category C which we think of as describing an algebraic structure.

We suppose fixed a subgroupoid W ⊆ C with the same objects,
which we are interested in strictifying.

(for SMC, W would be the groupoid of composites of α, λ and ρ, but not γ)

CW
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Quotient of categories

The quotient C/W is the universal way of making the elements of W identities

C D

C/W

F

F̃

Question
When is the quotient functor C → C/W an equivalence of categories?

Intuitively, when W does not contain non-trivial information!
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Rigid groupoids

A groupoid W is rigid when either

(i) any two parallel morphisms f ,g : x → y are equal
(ii) any automorphism f : x → x is an identity

(iii) W is equivalent to
⊔
X 1
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Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects are eq. classes of objects with [x] = [y] when there is w : x → y in W ,

• morphisms are eq. classes of morphisms with [f ] = [g] when there is v and w
in W such that

x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y z

f

∈WW∋ ∈W
g

9



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects are eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms are eq. classes of morphisms with [f ] = [g] when there is v and w

in W such that
x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y z

f

∈WW∋ ∈W
g

9



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects are eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms are eq. classes of morphisms with [f ] = [g] when there is v and w

in W such that
x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y z

f

∈WW∋ ∈W
g

9



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects are eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms are eq. classes of morphisms with [f ] = [g] when there is v and w

in W such that
x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y z

f

∈WW∋ ∈W
g

9



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects are eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms are eq. classes of morphisms with [f ] = [g] when there is v and w

in W such that
x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y z

f

∈WW∋ ∈W
g

9



Rigidification

The rigidification C//W of W in C is obtained from C by identifying any two
parallel morphisms in W .

Proposition
The quotient can be obtained is two steps: C/W = (C//W)/W
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Coherence for quotients

Theorem
The quotient functor C → C/W is an equivalence of categories
if and only if W is rigid.

C C/W

x y
f

g
x f

x y
f

g
x
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Coherence for quotients

Theorem
The quotient functor C → C/W is an equivalence of categories
if and only if W is rigid.

Proof.
The quotient functor C → C//W → C is surjective on objects and full.
We need to show that it is faithful iff W is rigid.
• If the quotient functor is faithful, given w,w′ : x → y, we have [w] = [w′] and

thus w = w′.
• If W is rigid, given f ,g : x → y such that [f ] = [g], we have

x y

x y

W∋v
f

w∈W
g

By rigidity, v = idx and w = idy . 11



Coherence for algebras

An algebra for C in D is a functor C → D, we write Alg(C,D) for the category of
algebras. In particular, we are interested in Alg(C) = Alg(C,Cat).

Theorem
A functor F : C → C′ is an equivalence iff Alg(F,D) : Alg(C,D) → Alg(C′,D) is an
equivalence natural in D.

Proof.
Given a 2-category K, the Yoneda functor

YK : Kop → [K,Cat]
C 7→ K(C,−)

is a local isomorphism. In particular, with K = Cat, we have YCatC = Alg(C,−).

Conjecture (?)
The canonical functor Alg(C/W) → Alg(C) is an equivalence iff W is rigid.
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Question
How do we show rigidity in practice?

In the following, we are interested in the case where C is a groupoid.
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Abstract rewriting systems

An abstract rewriting system P is a graph

P1

P2

P0

P∼
1

s0

t0

s1

t1

P = x y z
f

g

h

x y x y z
f g f h−

It presents a groupoid P = P∼/ ∼.

14



Abstract rewriting systems

An abstract rewriting system P is a graph

P1

P2

P0 P∼
1

s0

t0

s1

t1

It generates a groupoid with P∼
1 as set of morphisms.

P = x y z
f

g

h

x y x y z
f g f h−

It presents a groupoid P = P∼/ ∼.

14



Abstract rewriting systems

An extended abstract rewriting system P is a graph

P1 P2

P0 P∼
1

s0

t0

s1

t1

together with a set of 2-cells

x

y A⇒ y

z

f g
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14



Abstract rewriting systems

An extended abstract rewriting system P is a graph

P1 P2

P0 P∼
1

s0

t0

s1

t1

together with a set of 2-cells

x

y A⇒ y

z

f g

h− h−

It presents a groupoid P = P∼/ ∼. 14



Abstract rewriting systems: Tietze equivalences

In a situation such as
P1 P2

P0 P∼
1

s0

t0

s1

t1

with
x

y A⇒ y

z

f g

h− h−

• if A can be derived from other elements P2, we can remove it,
• if we remove f ∈ P1 and A ∈ P2 the presented groupoid is the same. 15



Abstract rewriting systems

Suppose given an extended ars P together with W ⊆ P1.

We say that P is W-convergent when it has

• termination: there is no infinite sequence of morphisms in W

x0 x1 x2 · · ·f0 f1 f2

• local confluence:
x

y1 ∈ P∼
2 y2

z

W∋ ∈W

W∋∗ ∗∈W
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Abstract rewriting systems

By adapting standard rewriting techniques,

Lemma (“Newman”)
If P is W-convergent then it is W-confluent:

x

y1 ∈ P∼
2 y2

z

W∋ ∈W

W∋∗ ∗∈W

Lemma (“Church-Rosser”)
If P is W-convergent then for any two parallel W-morphisms in P are equal.

Proof.

x y1 x2 · · · xn yn y

x̂ x̂ x̂ · · · x̂ x̂ x̂

nx

p−1

ny1

q+1

nx2 nxn

p−n

nyn

q−n

ny
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Abstract rewriting systems

Theorem
If P is W-convergent then the groupoid generated by W in P is rigid.

Writing N(P) for the full subcategory of P whose objects are normal forms (are
not the source of a morphism in W),

Theorem
If (P,W) is W-convergent then P/W ∼= N(P).
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A concrete description of normal forms

We have the intuition that the groupoid N(P) is presented by the extended ars
P \W obtained by “restricting P to normal forms”:

• (P \W)0: the objects of P \W are the those of P in W-normal form,
• (P \W)1: the rewriting rules of P \W are those of P whose source and target

are both in (P \W)0 (in particular, it does not contain any element of W, thus
the notation),

• (P \W)2: the coherence relations are those of P2 whose source and target
both belong to (P \W)∼1 .
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A concrete description of normal forms
Theorem
Suppose that

1. P is W-convergent,
2. every rule a : x → y in P1 with x is W-normal also has a W-normal target y,
3. for every coinitial rule a : x → y in P1 and path w : x ∗→ x′ in W∗, there are

paths p : x′ ∗→ y′ in P∗
1 and w′ : y ∗→ y′ ∈ W∗ such that a · w′ ∗⇔ w · p:

x y

x′ y′
w ∗

a

∗ w′

∗
p

∗

4. for every coherence relation ...

Then P is isomorphic to P \W. 20



Summary

Given (P,W), we have shown that the following definitions of coherence of P
wrt W are equivalent:

(i) Every parallel zig-zags with edges in W are equal
(i.e. the subgroupoid of P generated by W is rigid).

(ii) The quotient map P → P/W is an equivalence of categories.

(iii) The inclusion Alg(P/W,−) → Alg(P,−) is an equivalence of categories.

(iv) The canonical morphism N(P) → P is an equivalence.
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Part II

Coherence from term rewriting systems

22



From ARS to TRS

In order to obtain result about actual categorical structures,
we need to go from ars to term rewriting systems!
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Term rewriting systems

A term rewriting system P consists of

• P1: operations with arities
• P2: equations between generated terms

• P3: equations between 2-generators

Example
The

2-

trs Mon for monoids is〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) = m(x,m(y, z))
λ : m(e, x) = x
ρ : m(x, e) = x

〉

NB: fixing m and n, P induces an abstract rewriting systems on terms m→ n.
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Lawvere theories

A

2-

Lawvere theory T is a cartesian

2-

category

with invertible 2-cells

such that
objects are integers with cartesian product given by addition.

Any 2-trs P induces a 2-LT P with

• morphisms ⟨t1, . . . , tn⟩ : m→ n are n-tuples of terms with m variables
• 2-cells are generated by 2-generators, quotiented by equations

An algebra for T is a product-preserving 2-functor T → Cat.

Example
An algebra for Mon is a monoidal category.
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Algebras for Mon

With Mon being〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) = m(x,m(y, z))
λ : m(e, x) = x
ρ : m(x, e) = x

∣∣∣∣∣∣∣ A U
〉

A functor F : Mon → Cat consists of

• a category C = F1

• thus Fn = Cn
• two functors

⊗ = Fm : C2 → C I = Fe : 1 → C

• satisfying the axioms of monoidal categories
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Quotienting by rigid subgroupoids

Fix a 2-trs P with a subset W ⊆ P2 of 2-generators generating a (2, 1)-category W .

W is 2-rigid when any parallel 2-cells are equal.

Theorem
The quotient 2-functor P → P/W is a local equivalence iff W is 2-rigid.

Theorem
If P is W-convergent then W is 2-rigid.

Example
The theory Mon is W-convergent with W = all 2-cells.

〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) = m(x,m(y, z))
λ : m(e, x) = x
ρ : m(x, e) = x

∣∣∣∣∣∣∣ A U
〉
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Confluence of Mon

Note that there are 5 critical branchings:

m(m(m(x1, x2), x3), x4) m(m(x1,m(x2, x3)), x4)

m(x1,m(m(x2, x3), x4))

m(m(x1, x2),m(x3, x4)) m(x1,m(x2,m(x3, x4)))

α

α

A⇒

α

α

α

m(m(e, x1), x2) m(e,m(x1, x2))

m(x1, x2)

λ

α

B⇒ λ

m(m(x1, e), x2) m(x1,m(e, x2))

m(x1, x2)

ρ

α

C⇒ λ

m(m(x1, x2), e) m(x1,m(x2, e))

m(x1, x2)

ρ

α

D⇒ ρ

m(e, e)

te

λ ρE⇒

but 3 are derivable...
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The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• if we take W generated by α, λ, ρ, we are convergent:
every symmetric monoidal category is equivalent to a strict one

• but we can do more!
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• it can be completed as a locally confluent presentation
by adding a generator δ and a bunch of coherence relations
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• it is not terminating otherwise we could show “full coherence” including

x ⊗ x x ⊗ x

γx,x

idx⊗x
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• restricting to affine terms (without repeated variables is not enough):

m(x1, x2) m(x2, x1) m(x1, x2)
γ(x1,x2) γ(x2,x1)

• but we don’t need both m(x1, x2) ⇒ m(x2, x1) and m(x2, x1) ⇒ m(x1, x2)!
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• if we only keep morphisms “sorting variables”, we are almost terminating
excepting for situations such as m(e, e) ⇒ m(e, e) which can be removed:

m(e, e) m(e, e)

e
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δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

Theorem
In a symmetric monoidal category, every diagram whose source is a tensor
product of distinct objects commutes.
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Part III

Conclusion
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Rigidity!

A quotient of (2-)category by a subgroupoid W is coherent when W is rigid.

This is the case when W is generated by a convergent rewriting system.

This also explains situations such as coherence for rig categories:

δx,y,z : x ⊗ (y ⊕ z) → (x ⊗ y)⊕ (x ⊗ z)
δ′x,y,z : (x ⊕ y)⊗ z→ (x ⊗ z)⊕ (y ⊗ z)

(a+ b)(c+ d)

a(c+ d) + b(c+ d) (a+ b)c+ (a+ b)d

ac+ ad+ bc+ bd ac+ bc+ ad+ bd∼ 31



Thanks!

Questions?
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