Categorical coherence from term rewriting systems

Samuel Mimram FSCD conference / 4 July 2023

École polytechnique

The coherence theorem for monoidal categories

A monoidal category $(C, \otimes, e, \alpha, \lambda, \rho)$ comes equipped with $\alpha_{x,y,z} : (x \otimes y) \otimes z \xrightarrow{\sim} x \otimes (y \otimes z) \qquad \lambda_x : e \otimes x \xrightarrow{\sim} x \qquad \rho_x : x \otimes e \xrightarrow{\sim} x$ satisfying axioms.

The coherence theorem for monoidal categories

A monoidal category $(C, \otimes, e, \alpha, \lambda, \rho)$ comes equipped with $\alpha_{x,y,z} : (x \otimes y) \otimes z \xrightarrow{\sim} x \otimes (y \otimes z) \qquad \lambda_x : e \otimes x \xrightarrow{\sim} x \qquad \rho_x : x \otimes e \xrightarrow{\sim} x$ satisfying axioms.

The **coherence theorem** for monoidal categories states that every diagram whose morphisms are composites of α , λ and ρ commutes:

The coherence theorems for monoidal categories

In fact, there are various ways of formulating the coherence theorem:

1. Coherence:

every diagram in a free monoidal category made up of α , λ and ρ commutes.

2. Coherence:

every diagram in a monoidal category made up of α , λ and ρ commutes.

3. Strictification:

every monoidal category is monoidally equivalent to a strict monoidal category.

4. Global strictification:

the forgetful 2-functor from strict monoidal categories to monoidal categories has a left adjoint and the components of the unit are equivalences.

The coherence theorems for symmetric monoidal categories

A monoidal category is symmetric when equipped with

 $\gamma_{\mathbf{x},\mathbf{y}}: \mathbf{x} \otimes \mathbf{y} \to \mathbf{y} \otimes \mathbf{x}$

satisfying axioms.

Similar coherence theorems hold but they are more subtle:

• in 2. we have to restrict to "generic" diagrams, e.g. the following diagram does not commute:

- in 4., for a strict symmetric monoidal category, we suppose that α, λ and ρ are strict but not γ
- (global) strictification is only shown for free categories

A generic framework for coherence

Here, we investigate general coherence theorems where

- coherence holds with respect to part of the structure (e.g. α , λ and ρ but not γ)
- structural morphisms can erase or duplicate variables:

$$\delta_{x,y,z}: x \otimes (y \oplus z) \to (x \otimes y) \oplus (x \otimes z)$$

• we use rewriting theory.

A generic framework for coherence

Here, we investigate general coherence theorems where

- coherence holds with respect to part of the structure (e.g. α , λ and ρ but not γ)
- structural morphisms can erase or duplicate variables:

$$\delta_{x,y,z}: x \otimes (y \oplus z) \to (x \otimes y) \oplus (x \otimes z)$$

• we use rewriting theory.

We begin by studying the situation in an abstract setting.

Part I

Abstract coherence

An abstract setting

Fix a category \mathcal{C} which we think of as describing an **algebraic structure**.

For instance, we have a theory of symmetric monoidal categories:

- the objects of $\ensuremath{\mathcal{C}}$ are formal tensor expressions

 $e \otimes ((x \otimes e) \otimes y)$

- morphisms are composites of α , λ , ρ and γ modulo axioms.

An abstract setting

Fix a category \mathcal{C} which we think of as describing an **algebraic structure**.

We suppose fixed a subgroupoid $\mathcal{W} \subseteq \mathcal{C}$ with the same objects, which we are interested in strictifying.

(for SMC, $\mathcal W$ would be the groupoid of composites of α , λ and ρ , but not γ)

Quotient of categories

The **quotient** C/W is the universal way of making the elements of W identities

Question When is the quotient functor $\mathcal{C} \to \mathcal{C}/\mathcal{W}$ an equivalence of categories?

Quotient of categories

The **quotient** C/W is the universal way of making the elements of W identities

Question When is the quotient functor $\mathcal{C} \to \mathcal{C}/\mathcal{W}$ an equivalence of categories?

Intuitively, when ${\mathcal W}$ does not contain non-trivial information!

A groupoid ${\boldsymbol{\mathcal W}}$ is rigid when either

- (i) any two parallel morphisms f, g: x
 ightarrow y are equal
- (ii) any automorphism $f: x \to x$ is an identity
- (iii) \mathcal{W} is equivalent to $\bigsqcup_X \mathbf{1}$

When ${\mathcal W}$ is rigid the quotient ${\mathcal C}/{\mathcal W}$ has a simple description:

• objects are eq. classes of objects with [x] = [y] when there is $w : x \to y$ in \mathcal{W} ,

When ${\mathcal W}$ is rigid the quotient ${\mathcal C}/{\mathcal W}$ has a simple description:

- objects are eq. classes of objects with [x] = [y] when there is $w : x \to y$ in \mathcal{W} ,
- morphisms are eq. classes of morphisms with [f] = [g] when there is v and w in W such that

When ${\mathcal W}$ is rigid the quotient ${\mathcal C}/{\mathcal W}$ has a simple description:

- objects are eq. classes of objects with [x] = [y] when there is $w : x \to y$ in \mathcal{W} ,
- morphisms are eq. classes of morphisms with [f] = [g] when there is v and w in W such that

- we compose $[f]:[x] \to [y]$ and $[g]:[y] \to [z]$ as

$$x \xrightarrow{f} y$$

$$y \xrightarrow{g} z$$

When ${\mathcal W}$ is rigid the quotient ${\mathcal C}/{\mathcal W}$ has a simple description:

- objects are eq. classes of objects with [x] = [y] when there is $w : x \to y$ in \mathcal{W} ,
- morphisms are eq. classes of morphisms with [f] = [g] when there is v and w in W such that

- we compose $[f]:[x] \to [y]$ and $[g]:[y] \to [z]$ as

$$\begin{array}{ccc} x & \stackrel{f}{\longrightarrow} & y \\ & & \downarrow \in \mathcal{W} \\ & y & \stackrel{g}{\longrightarrow} & z \end{array}$$

When ${\mathcal W}$ is rigid the quotient ${\mathcal C}/{\mathcal W}$ has a simple description:

- objects are eq. classes of objects with [x] = [y] when there is $w : x \to y$ in \mathcal{W} ,
- morphisms are eq. classes of morphisms with [f] = [g] when there is v and w in W such that

- we compose [f]:[x]
ightarrow [y] and [g]:[y]
ightarrow [z] as

$$\begin{array}{ccc} x & \stackrel{f}{\longrightarrow} y \\ & & & \\ & & & \\ & & & \\ & & & \\ & & y \xrightarrow{g} z \end{array}$$

The **rigidification** $C/\!\!/W$ of W in C is obtained from C by identifying any two parallel morphisms in W.

Proposition The quotient can be obtained is two steps: C/W = (C/W)/W

Coherence for quotients

Theorem

The quotient functor $C \to C/W$ is an equivalence of categories if and only if W is rigid.

$\mathcal C$	\mathcal{C}/\mathcal{W}
$x \xrightarrow{f} y$	X ⊋f
$x \xrightarrow{f} y$	x

Coherence for quotients

Theorem

The quotient functor $\mathcal{C} \to \mathcal{C}/\mathcal{W}$ is an equivalence of categories if and only if \mathcal{W} is rigid.

Proof.

The quotient functor $\mathcal{C} \to \mathcal{C}/\!\!/\mathcal{W} \to \mathcal{C}$ is surjective on objects and full. We need to show that it is faithful iff \mathcal{W} is rigid.

- If the quotient functor is faithful, given w, w' : x → y, we have [w] = [w'] and thus w = w'.
- If $\mathcal W$ is rigid, given f,g:x o y such that [f]=[g], we have

$$\begin{array}{cccc} x & \longrightarrow & y \\ & & & f & \downarrow \\ & & & \psi \\ & & & \downarrow & & \psi \\ & & & x & \xrightarrow{g} & y \end{array}$$
By rigidity, $\mathbf{v} = \operatorname{id}_{\mathbf{x}}$ and $\mathbf{w} = \operatorname{id}_{\mathbf{y}}$.

Coherence for algebras

An algebra for C in D is a functor $C \to D$, we write Alg(C, D) for the category of algebras. In particular, we are interested in Alg(C) = Alg(C, Cat).

Coherence for algebras

An algebra for C in D is a functor $C \to D$, we write Alg(C, D) for the category of algebras. In particular, we are interested in Alg(C) = Alg(C, Cat).

Theorem

A functor $F : C \to C'$ is an equivalence iff $Alg(F, D) : Alg(C, D) \to Alg(C', D)$ is an equivalence natural in D.

Proof.

Given a $\mathbf{2}$ -category \mathcal{K} , the Yoneda functor

$$egin{aligned} & \mathcal{K} : \mathcal{K}^{\mathrm{op}} o [\mathcal{K},\mathsf{Cat}] \ & \mathcal{C} \mapsto \mathcal{K}(\mathsf{C},-) \end{aligned}$$

is a local isomorphism. In particular, with $\mathcal{K} = \mathbf{Cat}$, we have $Y_{\mathbf{Cat}}\mathcal{C} = \mathsf{Alg}(\mathcal{C}, -)$. \Box

Coherence for algebras

An algebra for C in D is a functor $C \to D$, we write Alg(C, D) for the category of algebras. In particular, we are interested in Alg(C) = Alg(C, Cat).

Theorem

A functor $F : C \to C'$ is an equivalence iff $Alg(F, D) : Alg(C, D) \to Alg(C', D)$ is an equivalence natural in D.

Proof.

Given a $\mathbf{2}$ -category \mathcal{K} , the Yoneda functor

$$egin{aligned} & \mathcal{K} : \mathcal{K}^{\mathrm{op}} o [\mathcal{K},\mathsf{Cat}] \ & \mathcal{C} \mapsto \mathcal{K}(\mathsf{C},-) \end{aligned}$$

is a local isomorphism. In particular, with $\mathcal{K} = Cat$, we have $Y_{Cat}\mathcal{C} = Alg(\mathcal{C}, -)$. \Box

Corollary The canonical functor $Alg(\mathcal{C}/\mathcal{W}) \to Alg(\mathcal{C})$ is an equivalence iff \mathcal{W} is rigid. **Question** How do we show rigidity in practice?

In the following, we are interested in the case where \mathcal{C} is a groupoid.

An **abstract rewriting system P** is a graph

An **abstract rewriting system P** is a graph

It generates a groupoid with P_1^{\sim} as set of morphisms.

An extended abstract rewriting system P is a graph

together with a set of **2**-cells

An extended abstract rewriting system P is a graph

together with a set of **2**-cells

It presents a groupoid $\overline{P} = P^{\sim} / \sim$.

14

Abstract rewriting systems: Tietze equivalences

In a situation such as

with

- if A can be derived from other elements P2, we can remove it,
- if we remove $f \in P_1$ and $A \in P_2$ the presented groupoid is the same.

Suppose given an extended ARS **P** together with $W \subseteq P_1$. We say that **P** is **W-convergent** when it has

• termination: there is no infinite sequence of morphisms in W

$$\mathbf{x}_{\mathbf{0}} \xrightarrow{f_{\mathbf{0}}} \mathbf{x}_{\mathbf{1}} \xrightarrow{f_{\mathbf{1}}} \mathbf{x}_{\mathbf{2}} \xrightarrow{f_{\mathbf{2}}} \cdots$$

• local confluence:

By adapting standard rewriting techniques,

```
Lemma ("Newman")
If P is W-convergent then it is W-confluent:
```


By adapting standard rewriting techniques,

Lemma ("Newman") If P is W-convergent then it is W-confluent:

Lemma ("Church-Rosser") If **P** is **W**-convergent then for any two parallel **W**-morphisms in \overline{P} are equal.

Proof.

Theorem If P is W-convergent then the groupoid generated by W in \overline{P} is rigid. **Theorem** If **P** is **W**-convergent then the groupoid generated by **W** in \overline{P} is rigid.

Writing $N(\overline{P})$ for the full subcategory of \overline{P} whose objects are normal forms (are not the source of a morphism in W),

Theorem If (\mathbf{P}, \mathbf{W}) is W-convergent then $\overline{\mathbf{P}}/\mathbf{W} \cong \mathbf{N}(\overline{\mathbf{P}})$.

Summary

Given (P, W), we have shown that the following definitions of **coherence** of **P** wrt W are equivalent:

- (i) Every parallel zig-zags with edges in W are equal (i.e. the subgroupoid of \overline{P} generated by W is rigid).
- (ii) The quotient map $\overline{P} \to \overline{P}/W$ is an equivalence of categories.
- (iii) The inclusion $Alg(\overline{P}/W) \rightarrow Alg(\overline{P})$ is an equivalence of categories.
- (iv) The canonical morphism $N(P) \rightarrow \overline{P}$ is an equivalence.

Part II

Coherence from term rewriting systems

In order to obtain result about actual categorical structures, we need to go from ARS to term rewriting systems!

Term rewriting systems

A term rewriting system P consists of

- P₁: operations with arities
- P₂: equations between generated terms

Example The TRS Mon for monoids is

$$\left\langle \begin{array}{c|c} m: \mathbf{2} \\ e: \mathbf{0} \end{array} \middle| \begin{array}{c} \alpha: m(m(x, y), z) = m(x, m(y, z)) \\ \lambda: m(e, x) = x \\ \rho: m(x, e) = x \end{array} \right\rangle$$

Term rewriting systems

An extended term rewriting system P consists of

- P_1 : operations with arities
- P2: 2-generators between generated terms
- P3: equations between 2-generators

Example

The 2-TRS Mon for monoids is

Term rewriting systems

An extended term rewriting system P consists of

- P_1 : operations with arities
- P2: 2-generators between generated terms
- P₃: equations between 2-generators

Example

The 2-TRS Mon for monoids is

$$\left\langle \begin{array}{c|c} m: \mathbf{2} \\ e: \mathbf{0} \\ p: \\ m(x, e) \Rightarrow \mathbf{x} \end{array} \right| \left| \begin{array}{c} m(x, y), z) \Rightarrow m(x, m(y, z)) \\ \downarrow \\ \mathbf{A} \\ \mathbf$$

NB: fixing m and n, P induces an abstract rewriting systems on terms $m \rightarrow n$.

A Lawvere theory \mathcal{T} is a cartesian category objects are integers with cartesian product given by addition.

such that

A **2-Lawvere theory** T is a cartesian 2-category with invertible 2-cells such that objects are integers with cartesian product given by addition.

A **2-Lawvere theory** T is a cartesian 2-category with invertible 2-cells such that objects are integers with cartesian product given by addition.

Any 2-TRS **P** induces a 2-LT $\overline{\mathbf{P}}$ with

- morphisms $\langle t_1, \ldots, t_n \rangle : m \to n$ are *n*-tuples of terms with *m* variables
- 2-cells are generated by 2-generators, quotiented by equations

A **2-Lawvere theory** T is a cartesian 2-category with invertible 2-cells such that objects are integers with cartesian product given by addition.

Any 2-TRS **P** induces a 2-LT $\overline{\mathbf{P}}$ with

- morphisms $\langle t_1, \ldots, t_n \rangle : m \to n$ are *n*-tuples of terms with *m* variables
- 2-cells are generated by 2-generators, quotiented by equations

An algebra for \mathcal{T} is a product-preserving 2-functor $\mathcal{T} \rightarrow \mathbf{Cat}$.

Example An algebra for Mon is a monoidal category.

With Mon being

$$\left\langle \begin{array}{c|c} m: \mathbf{2} \\ e: \mathbf{0} \\ p: \\ m(x, e) = x \end{array} \right| \left\langle \begin{array}{c} \alpha: m(m(x, y), z) = m(x, m(y, z)) \\ \lambda: \\ m(e, x) = x \\ p: \\ m(x, e) = x \end{array} \right| \left\langle \begin{array}{c} \longrightarrow \\ A \\ \longrightarrow \\ \longrightarrow \\ A \\ \longrightarrow \\ \end{array} \right\rangle \left\langle \begin{array}{c} \bigcup \\ \downarrow \\ \downarrow \\ \longrightarrow \\ \end{array} \right\rangle$$

A functor $F: \overline{Mon} \to \mathbf{Cat}$ consists of

• a category C = F1

With Mon being

A functor $F: \overline{Mon} \to \mathbf{Cat}$ consists of

- a category C = F1
- thus $\mathit{Fn} = \mathcal{C}^n$

With Mon being

A functor $F: \overline{Mon} \to \mathbf{Cat}$ consists of

- a category $\mathcal{C} = F1$
- thus $\mathit{Fn} = \mathcal{C}^n$
- two functors

$$\otimes = Fm : \mathcal{C}^2 \to \mathcal{C} \qquad \qquad I = Fe : \mathbf{1} \to \mathcal{C}$$

With Mon being

$$\left\langle \begin{array}{c|c} m: \mathbf{2} \\ e: \mathbf{0} \\ p: \\ n(x, e) \Rightarrow x \end{array} \right| \xrightarrow{\alpha: m(m(x, y), z) \Rightarrow m(x, m(y, z))} \left| \xrightarrow{A} \\ \downarrow \\ \mathbf{A} \\ \mathbf{A} \\ \downarrow \\ \mathbf{A} \\$$

A functor $F : \overline{Mon} \to \mathbf{Cat}$ consists of

- a category $\mathcal{C} = F1$
- thus $\mathit{Fn} = \mathcal{C}^n$
- two functors

$$\otimes = Fm : \mathcal{C}^2 \to \mathcal{C} \qquad \qquad I = Fe : \mathbf{1} \to \mathcal{C}$$

• satisfying the axioms of monoidal categories

Fix a 2-TRS **P** with a subset $W \subseteq P_2$ of 2-generators generating a (2, 1)-category W.

Fix a 2-TRS **P** with a subset $W \subseteq P_2$ of 2-generators generating a (2, 1)-category \mathcal{W} . \mathcal{W} is 2-rigid when any parallel 2-cells are equal.

Fix a 2-TRS **P** with a subset $W \subseteq P_2$ of 2-generators generating a (2, 1)-category W.

 ${\mathcal W}$ is \bf 2-rigid when any parallel 2-cells are equal.

Theorem The quotient **2**-functor $\overline{P} \to \overline{P}/W$ is a local equivalence iff $\mathcal W$ is 2-rigid.

Fix a 2-TRS **P** with a subset $W \subseteq P_2$ of 2-generators generating a (2, 1)-category W.

 ${\mathcal W}$ is \bf 2-rigid when any parallel 2-cells are equal.

Theorem The quotient 2-functor $\overline{P} \to \overline{P}/W$ is a local equivalence iff $\mathcal W$ is 2-rigid.

Theorem If P is W-convergent then W is 2-rigid.

Fix a 2-TRS **P** with a subset $W \subseteq P_2$ of 2-generators generating a (2, 1)-category W.

 ${\mathcal W}$ is \bf 2-rigid when any parallel 2-cells are equal.

Theorem The quotient 2-functor $\overline{P} \to \overline{P}/W$ is a local equivalence iff $\mathcal W$ is 2-rigid.

Theorem If **P** is **W**-convergent then *W* is 2-rigid.

Example The theory Mon is W-convergent with W = all 2-cells.

$$\left\langle \begin{array}{c|c} m: \mathbf{2} \\ e: \mathbf{0} \\ \end{array} \right| \left\langle \begin{array}{c|c} \alpha: m(m(x, y), z) \Rightarrow m(x, m(y, z)) \\ \lambda: & m(e, x) \Rightarrow x \\ \rho: & m(x, e) \Rightarrow x \end{array} \right| \left\langle \begin{array}{c|c} \longrightarrow & \longrightarrow \\ A \\ \longrightarrow & \downarrow \end{array} \right\rangle \left\langle \begin{array}{c|c} U \\ \downarrow \\ \longrightarrow & \downarrow \end{array} \right\rangle$$

Confluence of Mon

Note that there are 5 critical branchings:

but 3 are derivable...

Algebras

Given a 2-LW \mathcal{T} , we write Alg(\mathcal{T}) for the 2-category of algebras of \mathcal{T} .

Theorem

A morphism $F : T \to T'$ of theories is a biequivalence if and only if the functor Alg $(F) : Alg(T') \to Alg(T)$ induced by precomposition is a biequivalence.

Algebras

Given a 2-LW \mathcal{T} , we write Alg(\mathcal{T}) for the 2-category of algebras of \mathcal{T} .

Theorem

A morphism $F : T \to T'$ of theories is a biequivalence if and only if the functor Alg(F) : Alg(T') \to Alg(T) induced by precomposition is a biequivalence.

Given \mathcal{W} **2**-rigid if we could show that the functor

 $\mathcal{T} \to \mathcal{T}/\mathcal{W}$

is a biequivalence, we would deduce that

 $\mathsf{Alg}(\mathcal{T}) \to \mathsf{Alg}(\mathcal{T}/\mathcal{W})$

is a biequivalence... but this is not the case!

Local equivalences vs biequivalences

With \mathcal{W} = all 2-cells, the functor

 $Mon \to Mon/\mathcal{W}$

is a local equivalence (an equivalence on homs), there is a natural operation

 $Mon/\mathcal{W} \to Mon$

but this is only a pseudofunctor:

A conjecture

Conjecture When \mathcal{W} is 2-rigid, the canonical 2-functor $Alg(\mathcal{T}/\mathcal{W}) \rightarrow Alg(\mathcal{T})$ has a left adjoint such that the components of the unit are equivalences.

The theory of commutative monoids is

 $\left\langle \begin{array}{c|c} m:2 \\ e:0 \\ \gamma: \\ \gamma: \\ m(x_1,x_2) \Rightarrow m(x_1,m(x_2,x_3)) \\ \gamma: \\ m(x_1,e) \Rightarrow x \\ \gamma: \\ m(x_1,x_2) \Rightarrow m(x_2,x_1) \end{array} \right\rangle \xrightarrow{m(x_2,x_3)} m(x_1,x_2) \xrightarrow{m(x_2,x_3)} m(x_1,x_2) \xrightarrow{\gamma} \dots \right\rangle$

- if we take \mathcal{W} generated by α, λ, ρ , we are convergent: every symmetric monoidal category is equivalent to a strict one
- but we can do more!

- it is locally confluent (critical branchings can be closed)
- it is not terminating otherwise we could show "full coherence" including

• restricting to affine terms (without repeated variables is not enough):

$$m(x_1, x_2) \xrightarrow{\gamma(x_1, x_2)} m(x_2, x_1) \xrightarrow{\gamma(x_2, x_1)} m(x_1, x_2)$$

• but we don't need both $m(x_1,x_2) \Rightarrow m(x_2,x_1)$ and $m(x_2,x_1) \Rightarrow m(x_1,x_2)$

• if we only keep morphisms "sorting variables", we are almost terminating excepting for situations such as $m(e, e) \Rightarrow m(e, e)$ which can be removed:

The theory of commutative monoids is $\left\langle \begin{array}{c|c} m: 2 \\ e: 0 \end{array} \middle| \begin{array}{c} \alpha: m(m(x_1, x_2), x_3) \Rightarrow m(x_1, m(x_2, x_3)) \\ \lambda: & m(e, x_1) \Rightarrow x \\ \rho: & m(x_1, e) \Rightarrow x \\ \gamma: & m(x_1, x_2) \Rightarrow m(x_2, x_1) \end{array} \right| \begin{array}{c} m(x_2, x_1) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m(x_1, x_2) \\ m(x_1, x_2) \end{array} \right\rangle \left\langle \begin{array}{c} m(x_1, x_2) \\ m$

Theorem

In a symmetric monoidal category, every diagram whose source is a tensor product of distinct objects commutes.

Part III

Conclusion

Rigidity!

A quotient of (2-)category by a subgroupoid \mathcal{W} is **coherent** when \mathcal{W} is **rigid**.

This is the case when $\mathcal W$ is generated by a **convergent rewriting system**.

This also explains situations such as coherence for rig categories:

$$\delta_{x,y,z} : x \otimes (y \oplus z) \to (x \otimes y) \oplus (x \otimes z)$$

$$\delta'_{x,y,z} : (x \oplus y) \otimes z \to (x \otimes z) \oplus (y \otimes z)$$

$$(a+b)(c+d)$$

$$a(c+d) + b(c+d)$$

$$\downarrow$$

$$ac + ad + bc + bd \longrightarrow ac + bc + ad + bd$$

Thanks!

Questions?