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Abstract. The celebrated Squier theorem allows to prove coherence properties of alge-
braic structures, such as MacLane’s coherence theorem for monoidal categories, based on
rewriting techniques. We are interested here in extending the theory and associated tools
simultaneously in two directions. Firstly, we want to take in account situations where
coherence is partial, in the sense that it only applies for a subset of structural morphisms
(for instance, in the case of the coherence theorem for symmetric monoidal categories, we
do not want to strictify the symmetry). Secondly, we are interested in structures where
variables can be duplicated or erased. We develop theorems and rewriting techniques in
order to achieve this, first in the setting of abstract rewriting systems, and then extend
them to term rewriting systems, suitably generalized in order to take coherence in account.
As an illustration of our results, we explain how to recover the coherence theorems for
monoidal and symmetric monoidal categories.

1. Introduction

1.1. Coherence results. Coherence results are fundamental in category theory. They
can be seen both as a way of formally simplifying computations, by ensuring that we can
consider strict algebraic structures without loss of generality, and as a guide for generalizing
computations, by ensuring that we have correctly generalized algebraic structures in higher
dimensions and taken higher-dimensional cells in account. Such results have been obtained
for a wide variety of algebraic structures on categories such as monoidal categories [34],
symmetric monoidal categories [34], braided monoidal categories [19], rig categories [29],
compact closed categories [21], bicategories and pseudofunctors [32], etc. The coherence
results are often quickly summarized as “all diagrams commute”. However, this is quite
misleading: firstly, we only want to consider diagrams made of structural morphisms, and
secondly, we actually usually want to consider only a subset of those diagrams. Moreover,
the commutation of diagrams is not the only way of formulating the coherence results. One
of the aims of this article is to clarify the situation and the relationship between those
various approaches.
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1.2. Coherence from rewriting theory. A field which provides many computational
techniques in order to show that diagrams commutes is rewriting [4, 47]. Namely, when a
rewriting system is terminating and locally confluent (which can be verified algorithmically
by computing its critical branchings), it is confluent and thus has the Church-Rosser property,
which implies that any two zig-zags can be filled by local confluence diagrams. By properly
extending the notion of rewriting system with higher-dimensional cells in order to take
coherence in account (those cells specifying which confluence diagrams commute) one is then
able to show coherence results of the form “all diagrams commute” up to the coherence laws.
This idea of extending rewriting theory in order to take coherence in account dates back
to pioneering work from people such as Power [41], Street [46] and Squier [44]. It has been
generalized in higher dimensions in the context of polygraphs [45, 9, 3], as well as homotopy
type theory [23], and used to recover various coherence theorem [27, 15], which can often be
interpreted as computing (polygraphic) resolutions in suitable settings [3]. However, the
relationship between rewriting and various formulations of coherence was, to our knowledge,
largely unexplored.

1.3. Coherence for monoidal monoidal categories. One of the first and most important
instance of a coherence theorem is the one for monoidal categories, originally due to Mac
Lane. Since it will be used in the following as one of the main illustrations, we begin by
recalling it here, and discuss its various possible formulations.

A monoidal category consists of a category C equipped with a tensor bifunctor and and
unit element respectively noted

⊗ : C × C → C e : 1 → C

together with natural isomorphisms

αx,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z) λx : e⊗ x → x ρx : x⊗ e → x

called associator and left and right unitors, satisfying two well-known axioms stating that
the diagrams

((x⊗ y)⊗ z)⊗ w (x⊗ (y ⊗ z))⊗ w

x⊗ ((y ⊗ z)⊗ w)

(x⊗ y)⊗ (z ⊗ w) x⊗ (y ⊗ (z ⊗ w))

αx⊗y,z,w

αx,y,z⊗w

αx,y⊗z,w

x⊗αy,z,w

αx,y,z⊗w

and

(x⊗ e)⊗ y x⊗ (e⊗ y)

x⊗ y
ρx⊗y

αx,e,y

x⊗ρy

commute for any objects x, y and z of C.
Thanks to these axioms, the way tensor expressions are bracketed does not really matter:

we can always rebracket expressions using the structural morphisms (α, λ and ρ), and any
two ways of rebracketing an expression into the other are equal. In fact, and this is an
important point in this article, there are various ways to formalize this [1]:
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(C1) Every diagram in a free monoidal category made up of α, λ and ρ commutes
[19, Corollary 1.6], [34, Theorem VI.2.1].

(C2) Every diagram in a monoidal category made up of α, λ and ρ commutes
[35, Theorem 3.1], [34, Theorem XI.3.2].

(C3) Every monoidal category is monoidally equivalent to a strict monoidal category
[19, Corollary 1.4], [34, Theorem XI.3.1].

(C4) The forgetful 2-functor from strict monoidal categories to monoidal categories has a
left adjoint and the components of the unit are equivalences.

Condition (C2) implies (C1) as a particular case and the converse implication can also be
shown, so that the two are easily seen to be equivalent. Condition (C4) implies (C3) as a
particular case, and it can be shown that (C3) in turn implies (C2), see [34, Theorem XI.3.2].

1.4. Coherence for symmetric monoidal categories. Although fundamental, taking
the previous example coherence theorem as a guiding example can be misleading as it hides
the fact that the coherence results are in general more subtle: usually, we do not want all
the diagrams made of structural morphisms to commute. In order to illustrate this, let use
consider the following variant of monoidal categories.

A symmetric monoidal category is a monoidal category equipped with a natural trans-
formation

γx,y : x⊗ y → y ⊗ x

called symmetry such that the diagrams

y ⊗ x

x⊗ y x⊗ y

γy,xγx,y

idx⊗y

x⊗ e e⊗ x

x
ρx

γx,e

λx

and

(y ⊗ x)⊗ z y ⊗ (x⊗ z)

(x⊗ y)⊗ z y ⊗ (z ⊗ x)

x⊗ (y ⊗ z) (y ⊗ z)⊗ x

αy,x,z

y⊗γx,zγx,y⊗z

αx,y,z

γx,y⊗z

αy,z,x

commute for every objects x, y and z of C.
Analogous coherence theorems as above hold and can be formulated as follows:

(S1) Every diagram in a (free) symmetric monoidal category made up of α, λ ρ and γ
commutes when the two sides have the same underlying symmetry [19, Corollary 26],
[34, Theorem XI.1.1].

(S2) Every generic diagram in a (free) symmetric monoidal category made up of α, λ, ρ
and γ commutes.

(S3) Every (free) symmetric monoidal category is symmetric monoidally equivalent to a
strict symmetric monoidal category [37, Proposition 4.2], [19, Corollary 26].

(S4) The forgetful 2-functor from strict symmetric monoidal categories to symmetric
monoidal categories has a left adjoint and the components of the unit are equiva-
lences.
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We can see above that the formulations do not anymore require that “all diagrams commute”.
In order to illustrate why it has to be so, observe that the diagram

x⊗ x x⊗ x

γx,x

idx⊗x

(1.1)

does not commute in general in monoidal categories, although its morphisms are structural
ones. For a concrete example, consider the category of sets and functions equipped with
cartesian product as tensor product and x to be any set with at least two distinct elements a
and b. We namely have

γx,x(a, b) = (b, a) ̸= (a, b) = idx⊗x(a, b).

However, note that the two morphisms do not have the same “underlying symmetry” (γx,x
corresponds to a transposition whereas idx⊗x to an identity on a 2-element set). In fact, as
stated in (S1), restricting diagrams where the two morphisms induce the same symmetry is
enough to have them always commute. Another way to ensure that the diagrams should
commute is to require them to be generic as in (S2), by which we roughly mean that all the
objects occurring in the source (or target) object should be distinct: this is not the case
in (1.1) since the source object is x⊗ x, in which x occurs twice. Intuitively, this condition
ensures that the underlying symmetry of the morphisms is uniquely determined and thus
that the diagram commutes as a particular instance of (S1). The same subtlety is implicitly
present in the condition (S3): for a strict symmetric monoidal category, we do not require
that we the symmetric should be strict (only the associator and unitors, such a category is
sometimes also called a permutative category [37]).

1.5. Other forms of coherence. There are still other possible formulations of the coherence
theorem involving what are called unbiased variants of the structures. In the case of monoidal
categories, an unbiased monoidal category is a category equipped with n-ary tensor products
for every natural number n, satisfying suitable axioms [31, Section 3.1]. The following
variant of (C4) can then be shown:

(C4’) The forgetful 2-functor from strict monoidal categories to unbiased monoidal categories
has a left adjoint and the components of the unit are equivalences.

This result is in fact a particular instance of a very general coherence theorem due to
Power [40] (see also [24, 43]), which originates in the following observation: there is a
2-monad T on Cat whose strict algebras are strict monoidal categories and whose pseudo
algebras are unbiased monoidal categories. Given a 2-monad T on a 2-category, under
suitable assumptions (which are satisfied in the case of the monad of monoidal categories), it
can be shown that the inclusion T -StrAlg → T -PsAlg of 2-categories, from the 2-category
of strict T -algebras (and strict morphisms) to the 2-category of pseudo-2-algebras (and
pseudo-morphisms) admits a left 2-adjoint (which can be interpreted as a strictification
2-functor) such that the components of the unit of the adjunction are internal equivalences
in T -pseudo-algebras.

We do not insist much on this general route, as our main concern here is the relationship
with rewriting, which provides ways of handling biased notions of algebras.
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1.6. Contents of the paper. We first investigate (in section 2) an abstract version of this
situation and formally compare the various coherence theorems: we show that quotienting a
theory by a subtheory W gives rise to an equivalent theory if and only if W is coherent (or
rigid), in the sense that all diagrams commute (theorem 14). Moreover, this is the case if
and only if they give rise to equivalent categories of algebras (proposition 19), which can be
thought of as a strengthened version of (C4). We also provide rewriting conditions which
allow showing coherence in practice (proposition 40).

We then extend (in section 3) our results to the 2-dimensional cartesian theories, which
are able to axiomatize (symmetric) monoidal categories. Our work is based on the notion of
Lawvere 2-theory [14, 49, 50]. The rewriting counterpart is based on a coherent extension
of term rewriting systems, following [11, 7, 36]. One of the main novelties here consists in
allowing for coherence with respect to a sub-theory (which is required to handle coherence
for symmetric monoidal categories), building on recent works in order to work in structures
modulo substructures [10, 39, 12]. This article is an extended version of [38], and also
corrects a few mistakes unfortunately present there.

2. Relative coherence and abstract rewriting systems

2.1. Quotient of categories. Suppose fixed a category C together with a set W of isomor-
phisms of C. Although the situation is very generic, and the following explanation is only
vague for now, it can be helpful to think of C as a theory describing a structure a category
can possess and W as the morphisms we are interested in strictifying. For instance, if we
are interested in the coherence theorem for symmetric monoidal categories, we can think of
the objects of C as formal iterated tensor products, the morphisms of C as the structural
morphisms (the composites of α, λ, ρ and γ), and we would typically take W as consisting
of all instances of α, λ and ρ (but not γ). This will be made formal in section 3.

Definition 1. A functor F : C → D is W -strict when it sends every morphism of W to an
identity.

Definition 2. The quotient C/W of C under W is the category equipped with a W -strict
functor C → C/W , such that every W -strict functor F : C → D extends uniquely as a functor

F̃ : C/W → D making the following diagram commute:

C D

C/W

F

F̃

We write W for the subcategory of C generated by W . This subcategory will be assimilated
to the smallest subset of morphisms of C which contains W is closed under composition and
identities. The category W is a groupoid and it can shown that passing from W to W does
not change the quotient.

Lemma 3. The categories C/W and C/W are isomorphic.

Proof. By definition of quotient categories (definition 2), it is enough to show that the
category C/W is a quotient of C by W . It follows easily from the fact that a functor C → D
is W -strict if and only if it is W-strict. Namely, the left-to-right implication follows from
functoriality and the right-to-left implication from the inclusion W ⊆ W.
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Thanks to the above lemma, we will be able to assume, without loss of generality, that we
always quotient categories by a subgroupoid which has the same objects as C.

We will see that quotients are much better behaved when the groupoid we quotient by
satisfies the following property.

Definition 4. A groupoid W is rigid when any two morphisms f, g : x → y which are
parallel (i.e. have the same source, and have the same target) are necessarily equal.

Such a groupoid can be thought of as a “coherent” sub-theory of C. It does not have
non-trivial geometric structure in the sense of proposition 7 below.

We will need to use the following properties of categories.

Definition 5. A category is

– discrete when its only morphisms are identities,
– contractible when it is equivalent to the terminal category,
– connected when there is a morphism between any two objects,
– propositional when rigid and connected.

Lemma 6. A propositional category with an object is contractible.

Proof. Given a propositional category C, the terminal functor C → 1 is full (because C is
connected), faithful (because C is rigid) and surjective (because C has an object).

Proposition 7. Given a groupoid W, the following are equivalent

(i) W is rigid,
(ii) W has identities as only automorphisms,
(iii) W is equivalent to a discrete category,
(iv) W is a coproduct of contractible categories.

Proof. (i) implies (ii). Given a rigid category, any automorphism f : x → x is parallel with
the identity and thus has to be equal to it.
(ii) implies (i). Given two parallel morphisms f, g : x → y, we have g−1 ◦ f = idx and thus
f = g.
(i) implies (iii). Write D for category of connected components of W: this is the discrete
category whose objects are the equivalence classes [x] of objects x of W under the equivalence
relation identifying x and y whenever there is a morphism f : x → y in W. The quotient
functor Q : W → D is full because D is discrete, faithful because W is rigid, and surjective
on objects by construction of D. It is thus an equivalence of categories.
(iii) implies (i). Suppose given an equivalence F : W → D to a discrete category D. Given
two parallel morphisms f, g : x → y, they have the same image Ff = Fg (which is an
identity) because D is discrete, and are thus equal because F is faithful.
(iii) implies (iv). Consider a functor F : W → D which is an equivalence with D discrete.
Given x ∈ D, we write F−1x for the full subcategory of W whose objects are sent to x by F .
Since D is discrete, for any morphism f : x → y in D, we have Fx = Fy, from which follows
that W ∼= ⊔x∈DF

−1x. Since D is discrete, each F−1x is non-empty, connected and rigid and
thus contractible by lemma 6.
(iv) implies (iii). If W ∼= ⊔i∈IWi with Wi contractible, i.e. Wi ≃ 1, then W ≃ ⊔i∈I1 because
equivalences are closed under coproducts and thus W is equivalent to a discrete category

The fact that W ⊆ C is rigid can be thought of here as the fact that coherence condition (C1)
holds for C, relatively to W: any two parallel structural morphisms are equal. Condition
(iii) and (iv) can also be interpreted as stating that W is a set, up to equivalence.
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General notions of quotients (with respect to a subcategory, as opposed to a subgroupoid,
or with respect to a general notion of congruence both on objects and morphisms) have
been developed in [6], and a non-trivial to study and construct. However, when quotienting
by a rigid subgroupoid we have the following simple description.

Proposition 8. Suppose given a rigid subgroupoid W of a category C. We define the
following equivalence relations.

– We write ∼ for the equivalence relation on objects of C such that x ∼ y whenever there is
a morphism f : x → y in W. When it exists, such a morphism is unique by rigidity of W
and noted wx,y : x → y.

– We also write ∼ for the equivalence relation on morphisms of C such that for f : x → y and
f ′ : x′ → y′ we have f ∼ f ′ whenever there exists morphisms v : x → x′ and w : y → y′

in W making the following diagram commute:

x y

x′ y′

v

f

w

f ′

The quotient category C/W is isomorphic to the category where

– an object [x] is an equivalence class of an object x of C under ∼,
– a morphism [f ] : [x] → [y] is the equivalence class of a morphism f : x → y in C under ∼
– given f : x → y and g : y′ → z with [y] = [y′], the composition is [g] ◦ [f ] = [g ◦ wy,y′ ◦ f ]:

x y y′ z
f wy,y′ g

– the identity on an object [x] is [idx].

Proof. We first need to show that the definition makes sense.

– Composition is compatible with the equivalence relation. Given f1 : x1 → y1, f2 : x2 → y2,
g1 : y′1 → z1, g2 : y′2 → z2 such that f1 ∼ f2 and g1 ∼ g2 (and thus x1 ∼ x2, y1 ∼ y2,
y′1 ∼ y′2 and z1 ∼ z2) which are composable (i.e. y1 ∼ y′1 and y2 ∼ y′2), the following
diagram shows that [g1] ◦ [f1] = [g2] ◦ [f2]:

x1 y1 y′1 z1

x2 y2 y′2 z2

wx1,x2

f1

wy1,y2

wy1,y
′
1

wy′1,y
′
2

g1

wz1,z2

f2 wy2,y
′
2

g2

where the squares on the left and right respectively commute because f1 ∼ f2 and g1 ∼ g2
and the one in the middle does by rigidity of W.

– Identities are compatible with the equivalence relations. Given objects x and y of C such
that x ∼ y, the diagram

x x

y y

wx,y

idx

wx,y

idy
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commutes showing that we have idx ∼ idy.

Associativity of composition and the fact that identities are neutral element for composition
follow immediately from the fact that those properties are satisfied in C. Finally, we can
show that the category has the universal property of definition 2. The quotient functor
C → C/W (sending objects and morphisms to their equivalence class) is W-strict for any
morphism w : x → y, we have [w] = [idy]:

x y

y y

w

w

idy

idy

Moreover, a W-strict functor F : C → D induces a unique functor F̃ : C/W → D. Namely,
by W-strictness, two objects (resp. morphisms) which are equivalent have the same image
by F .

When W ⊆ C is not rigid, we can have a similar description of the quotient, but the
description is more complicated. Namely, if we are trying to compose two morphisms [f ]
and [g] in the quotient with f : x → y and g : y′ → z, we might have multiple morphisms
y → y′ in W (say v and w),

x y y′ z
f v

w

g

and, in such a situation, the compositions g ◦ v ◦ f and g ◦ w ◦ f should be identified in the
quotient. This observation suggests that the construction of the quotient category C/W,
when W is not rigid, is better described in two steps: we first formally make W rigid, and
then apply proposition 8.

Definition 9. A functor F : C → D is W-rigid when for any parallel morphisms f, g : x → y
of C we have Ff = Fg.

Definition 10. The W-rigidification C//W of C is the category equipped with a W-rigid
functor C → C//W, such that any W-rigid functor F : C → D extends uniquely as a functor

F̃ : C//W → D making the following diagram commute:

C D

C//W

F

F̃

Lemma 11. The category C//W is the category obtained from C by quotienting morphisms
under the smallest congruence (wrt composition) identifying any two parallel morphisms
of W.

Proposition 12. The quotient C/W is isomorphic to (C//W)/W̃ where W̃ is the set of
equivalence classes of morphisms in W under the equivalence relation of lemma 11.
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Proof. Since any W-strict functors are W-rigid, we have that any W-strict functor extends as
a unique functor F̃ : C//W → D which is W-rigid, and thus as a unique functor C/W̃ → D:

C D

C//W

C/W̃

F

F̃

˜̃F

A consequence of the preceding explicit description of the quotient is the following:

Lemma 13. The quotient functor C → C/W is surjective on objects and full.

Proof. By proposition 12, the quotient functor is the composite of the quotient functors
C → C//W → C/W. The first one is surjective on objects and full by lemma 11 and the
second one is surjective on objects and full by proposition 8.

This entails the following theorem, which is the main result of the section. Its meaning can
be explained by taking the point of view given above: thinking of the category C as describing
a structure, and of W as the part of the structure we want to strictify, the structure is
equivalent to its strict variant if and only if the quotiented structure does not itself bear
non-trivial geometry (in the sense of proposition 7).

Theorem 14. Suppose that W is a subgroupoid of C. The quotient functor [−] : C → C/W
is an equivalence of categories if and only if W is rigid.

Proof. Since the quotient functor is always surjective and full by lemma 13, it remains
to show that it is faithful if and only if W is rigid. Suppose that the quotient functor is
faithful. Given w,w′ : x → y in W, by lemma 11 and proposition 12 we have [w] = [w′]
and thus w = w′ by faithfulness. Suppose that W is rigid. The category C/W then admits
the description given in proposition 8. Given f, g : x → y in C such that [f ] = [g], there is
v : x → x and w : y → y such that w ◦ f = g ◦ v. By rigidity, both v and w are identities
and thus f = g.

Example 15. As a simple example, consider the groupoid C freely generated by the graph

x y
f

g

The subgroupoid generated by W = {g} is rigid, so that C is equivalent to the quotient
category C/W , which is the groupoid generated by the graph

x f

However, the groupoid generated by W = {f, g} is not rigid (since we do not have f = g).
And indeed, in this case, C is not equivalent to the quotient category C/W , which is the
terminal category.

Remark 16. By taking C to be W in theorem 14, we obtain that a category W is rigid if
and only if it is equivalent to the discrete category of its connected components. This thus
provides an alternative proof of condition (iii) of proposition 7.
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2.2. Coherence for algebras. Given two categories C and D, an algebra of C in D is a
functor from C to D. In the following, we will mostly be interested in the case where D = Cat:
if we think of the category C as describing an algebraic structure (e.g. the one of monoidal
categories), an algebra can be thought of as a category actually possessing this structure (an
actual monoidal category). We write Alg(C,D) for the category whose objects are algebras
and morphisms are natural transformations, and Alg(C) = Alg(C,Cat). Note that any
functor

F : C → C′

induces, by precomposition, a functor

Alg(F,D) : Alg(C′,D) → Alg(C,D).

We can characterize situations where two categories give rise to the same algebras as follows.
A variant adapted to 2-representations of 2-categories can be found in [13, Lemma 5.3.1].

Proposition 17. Suppose given a functor F : C → C′ between categories. The functor F is an
equivalence if and only if there is a family of equivalence of categories Alg(C,D) ≃ Alg(C′,D)
which is natural in D.

Proof. Given a 2-category K, one can define a Yoneda functor

YK : Kop → [K,Cat]

c 7→ K(c,−)

where Cat is the 2-category of categories, functors and natural transformations, and [K,Cat]
denotes the 2-category of 2-functors K → Cat, transformations and modifications. In
particular, given 0-cells c ∈ Kop and d ∈ K, we have YKcd = K(c, d). The Yoneda lemma
states that this functor is a local isomorphism (this is a particular case of the Yoneda lemma
for bicategories [18, Corollary 8.3.13]): this means that, for every objects c, d ∈ Kop, we
have an isomorphism of categories

[K,Cat](YKc, YKd) ∼= K(d, c).

In particular, taking K = Cat (and ignoring size issues, see below for a way to properly
handle this), the Yoneda functor sends a category C ∈ Catop to YCatC, i.e. Cat(C,−),
i.e. Alg(C,−). Given category C and C′, by the Yoneda lemma, we thus have an isomorphism
of categories

[Cat,Cat](Alg(C,−),Alg(C′,−)) ∼= Cat(C′, C)
which is compatible with 0-composition in Cat. The categories C and C′ are thus equivalent,
if and only if the categories Alg(C,−) and Alg(C′,−) are equivalent, which is the case if
and only if there is a family of equivalences of categories between Alg(C,D) and Alg(C,D)
natural in D.

Alternative proof of proposition 17. We provide here an alternative more pedestrian proof,
which does not require ignoring size issues. Suppose that F is an equivalence of categories,
with pseudo-inverse G : C′ → C, i.e. we have G ◦ F ∼= IdC and F ◦ G ∼= IdC′ . We define
functors

Alg(F,D) : Alg(C′,D) → Alg(C,D) Alg(G,D) : Alg(C,D) → Alg(C′,D)

A 7→ A ◦ F A 7→ A ◦G
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Those induce an equivalence between Alg(C,D) and Alg(C′,D) since, for A ∈ Alg(C,D) and
A′ ∈ Alg(C′,D), we have

Alg(G,D) ◦Alg(F,D) = A′ ◦ F ◦G ≃ A′

Alg(F,D) ◦Alg(G,D) = A ◦G ◦ F ≃ A

Moreover, the family of equivalences Alg(F,D) is natural in D, and similarly for Alg(G,D).
Namely, given H : D → D′ and considering the functor

Alg(C, H) : Alg(C,D) → Alg(C,D′)

A 7→ H ◦A

as well as the variant with C′ instead of C, the diagram

Alg(C′,D) Alg(C′,D′)

Alg(C,D) Alg(C,D′)

Alg(F,D)

Alg(C′,H)

Alg(F,D′)

Alg(C,H)

commutes: an object A ∈ Alg(C′,D) is sent to H ◦A ◦ F by both sides.
Conversely, suppose given an equivalence of categories

ΦD : Alg(C′,D) ↔ Alg(C,D) : ΨD

which is natural in D. We define

F = ΦC′(IdC′) : C → C′ G = ΨC(IdC) : C′ → C

and we have

G ◦ F = G ◦ ΦC′(IdC′) = ΦC′(G ◦ IdC′) = ΦC′(ΨC(IdC)) ∼= IdC′

(the second equality is naturality), and similarly for G ◦ F ∼= IdC .

Remark 18. We would like to underline out a subtle point with respect to naturality in
the above theorem. Given a functor F : C → C′, it is always the case that the induced
functors Alg(F,D) form a family which is natural in D. Suppose moreover that all the
functors Alg(F,D) are equivalences. We do not see any argument to show that the pseudo-
inverse functors form a natural family, which is why we have to additionally impose this
condition.

As a particular application, we have the following proposition, which can be interpreted as
the equivalence of coherence conditions (C1) and a strengthened variant of (C4):

Proposition 19. Fix a category C and a subgroupoid W. Given a category D, we have a
functor

Alg(C/W,D) → Alg(C,D) (2.1)

induced by precomposition with the quotient functor C → C/W. These functors form a family
of equivalences of categories, natural in D, if and only if W is rigid.

Proof. By theorem 14, W is rigid if and only if the quotient functor C → C/W is an
equivalence, and we conclude by proposition 17.
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Remark 20. It can be wondered whether the case where D = Cat is enough, i.e. whether
the quotient functor C → C/W is an equivalence whenever the functor Alg(C/W ) → Alg(C)
it induces is an equivalence. We leave it as an open question, but remark here that it cannot
follow from general results: it is not the case that two categories C and C′ are equivalent
whenever Alg(C) and Alg(C′) are equivalent. It is namely known that two Cauchy equivalent
categories give rise to the same algebras in Cat, see [25], so that the categories

C = x e C′ = x y
f

where e ◦ e = e have the same algebras.

2.3. Coherent abstract rewriting systems. Previous sections illustrate the importance
of the property of being rigid for a groupoid, and we now provide tools to show this in
practice, based on tools originating from rewriting theory. In the same way the theory of
rewriting can be studied “abstractly” [17, 4, 47], i.e. without taking in consideration the
structure of the objects getting rewritten, we first develop the coherence theorems of interest
in this article in an abstract setting. The categorical formalization of the notion of rewriting
system given here is based on the notion of polygraph [45, 9, 3].

Definition 21. An abstract rewriting system, or ars, or 1-polygraph is a diagram

P0 P1

s0

t0

in the category Set.

An ars is simply another name for a directed graph. It consists of a set P0 whose elements
are the objects of interest, a set P1 of rewriting rules and two functions s0 and t0 respectively
associating to a rewriting rule its source and target. We often write

a : x → y

to denote a rewriting rule a with s0(a) = x and t0(a) = y. We write P∗
1 for the set of

rewriting paths in the ars: its elements are (possibly empty) finite sequences a1, . . . , an of
rewriting steps, which are composable in the sense that t0(ai) = s0(ai+1) for 1 ≤ i < n.
Writing xi = t0(ai), such a path can thus be represented as

x0 x1 · · · xn.
a1 a2 an

The source and target of such a rewriting path are respectively s0(a1) and t0(an) (those are
respectively x0 and xn in the above diagram), and n is called the length of the path. We
sometimes write

p : x
∗→ y

to indicate that p is a rewriting path with x as source and y as target. Given two composable

paths p : x
∗→ y and q : y

∗→ z, we write p · q : x
∗→ z for their concatenation.

A morphism f : P → Q of ars is a pair of functions f0 : P0 → Q0 and f1 : P1 → Q1

such that s0 ◦ f1 = f0 ◦ s0 and t0 ◦ f1 = f0 ◦ t0:

P0 P1

Q0 Q1

f0

s0

t0
f1

s0

t0
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We write Pol1 for the resulting category or ars and their morphisms. There is a forgetful
functor Cat → Pol1, sending a category C to the ars whose objects are those of C and
whose rewriting steps are the morphisms of C.

Lemma 22. The forgetful functor Cat → Pol1 admits a left adjoint −∗ : Pol1 → Cat. It
sends an ars to the category with P0 as objects and P∗

1 as morphisms, where composition is
given by concatenation of paths and identities are the empty paths

Proof. This fact is easily checked directly, but an abstract argument for the existence of
the left adjoint in such situations is the following: the categories Cat and Pol1 are models
of projectives sketches and the forgetful functor Cat → Pol1 is induced by a functor of
sketches (the “inclusion” of the sketch of ars into the sketch of categories) and, as such, it
admits a left adjoint [5, Theorem 4.1].

As a variant of the preceding situation, we can consider the forgetful functor Gpd → Pol1,
from the category of groupoids. It also admits a left adjoint −∼ : Pol1 → Gpd, which can
be described as follows. Given an ars P, we write P± for the ars

P0 P1 ⊔ P1

s0

t0

with the same objects as P and with P1 ⊔ P1 as rewriting rules: concretely, a rewriting
rule aϵ in P±

1 is a pair consisting of a rewriting rule a ∈ P1 and ϵ ∈ {−,+}. The source and
target maps are given by

s0(a
+) = s0(a) t0(a

+) = t0(a) s0(a
−) = t0(a) t0(a

−) = s0(a)

We can think of a+ as corresponding to a and a− as corresponding to a taken “backward”. A
rewriting zig-zag is a path aϵ11 , . . . , aϵnn in P±. The intuition is that a zig-zag is a “non-directed”
rewriting path, consisting of rewriting steps, some of which are taken backward. We write

p : x
∼→ y

to indicate that p is a zig-zag from x to y. Two zig-zags are congruent when they are related
by the smallest congruence ∼ such that, for every rewriting rule a : x → y, we have

a+a− ∼ idx a−a+ ∼ idy (2.2)

We write P∼
1 for the set of zig-zags up to congruence.

Lemma 23. The category P∼ with P0 as objects, P∼
1 as morphisms, where composition is

given by concatenation of paths up to congruence, is the free groupoid on P.

We have a canonical morphism i1 : P1 → P∼
1 , sending a rewriting step a to a+. Writing

s∼0 , t
∼
0 : P∼

1 → P0 for the source and target maps, it induces a morphism of ars by taking
the identity on objects:

P0 P1

P0 P∼
1

id

s0

t0
i1

s∼0

t∼0

Writing i : P → P∼ for this morphism of ars, the universal property of P states that any
morphism of ars F : P → C where C is a groupoid extends uniquely as a functor F̃ : P∼ → C
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making the following diagram commute:

P C

P∼

i

F

F̃

In the following, in order to avoid working with equivalence classes when working with
elements of P∼

1 , we will instead only consider zig-zags aϵ11 , . . . , aϵnn which are reduced, in the
sense that they satisfy the following property: for every index i with 1 ≤ i < n, we have
that ai = ai+1 implies ϵi = ϵi+1. This is justified by the following result.

Lemma 24. The equivalence class under ∼ of a zig-zag contains a unique reduced zig-zag.

Proof. Consider the string rewriting system on words over P±
1 with rules a+a− ⇒ id and

a−a+ ⇒ id for a ∈ P1, corresponding to (2.2). It is length-reducing and thus terminating.
Its critical branchings (whose sources are a−a+a− and a+a−a+) are confluent, it is thus
confluent. We deduce that any equivalence class contains a unique normal form, and those
are precisely reduced zig-zags.

Given a path p : x
∗→ y, we write p+ : x

∼→ y (resp. p− : y
∼→ x) for the zig-zag obtained by

adding a “+” (resp. “−”) exponent to every step of a rewriting path. In particular, the first
operation induces a canonical inclusion i∗1 : P

∗
1 → P∼

1 , defined by i∗1(p) = p+, witnessing for
the fact that rewriting paths are particular zig-zags. We will sometimes leave its use implicit
in the following. Note that lemma 24 implies that i∗1 is injective.

We think here as an ars abstractly describing some algebraic structures. It is thus
natural to extend this notion in order to take in account the coherence laws that these
structures should posses. This can be done as follows.

Definition 25. An extended abstract rewriting system, or 2-ars, or 2-polygraph, P consists
of an ars as above, together with a set P2 and two functions s1, t1 : P2 → P∼

1 , such that

s∼0 ◦ s1 = s∼0 ◦ t1 t∼0 ◦ s1 = t∼0 ◦ t1
This data can be summarized as a diagram

P1 P2

P0 P∼
1

s0

t0 i1
s1

t1s∼0

t∼0

In a 2-ars, the elements of P2 are coherence relations and the functions s1 and t1 respectively
describe their source and target, which are rewriting zig-zags. We sometimes write

A : p ⇒ q

to indicate that A ∈ P2 is a coherence relation which admits p (resp. q) as source (resp. target),
which can be thought of as a 2-cell

x y

p

q

A⇓

where x (resp. y) is the common source (resp. target) of p and q.
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Definition 26. The groupoid presented by a 2-ars P, denoted by P, is the groupoid obtained
from the free groupoid generated by the underlying ars by quotienting morphisms under
the smallest congruence identifying the source and the target of any element of P2.

More explicitly, the groupoid P thus has P0 as set of objects, the set P∼
1 of rewriting zig-zags

as morphisms, quotiented by the smallest equivalence relation
∗⇔ such that

p · q · r ∗⇔ p · q′ · r
for every rewriting zig-zags p and r and coherence relation A : q ⇒ q′, which are suitably
composable:

x′ x y y′
p

q

q′

r
A (2.3)

We write ⇔ for the smallest symmetric relation identifying path p · q · r and p · q′ · r when

there is a coherence relation A : q ⇒ q′ as pictured above, so that
∗⇔ is the reflexive transitive

closure of ⇔. Given a rewriting zig-zag p ∈ P∼
1 , we write p for the corresponding morphism

in P, i.e. its equivalence class under
∗⇔. Given a zig-zag p : x → y in P∼, we write p : x → y

for its equivalence class.

Remark 27. A more categorical approach to the equivalences between zig-zags can be
developed as follows, see [3] for details. A 2-groupoid is a 2-category whose 1- and 2-cells
are invertible. A 2-ars freely generates a 2-groupoid, whose underlying 1-groupoid is the
one freely generated by the underlying 1-ars of P, and containing the coherence relations as

2-cells. Given zig-zags p, q : x → y, we then have p
∗⇔ q if and only if there is a 2-cell p ⇒ q

in the free 2-groupoid: the 2-cells can thus be thought of as witnesses for the equivalences of
zig-zags. We do not further detail this approach here, since it is not required, but it would
be for instance needed if we were interested in higher coherence laws.

There are many 2-ars presenting a given groupoid. In particular, one can always
perform the following transformations on 2-ars, while preserving the presented groupoid.
Those are analogous to the transformations that one can perform on group presentations
(while preserving the presented group) first studied by Tietze [48, 33].

Definition 28. The Tietze transformations are the following possible transformations on a
2-ars P:

(T1) given a zig-zag p : x
∼→ y, add a new rewriting rule a : x → y in P1 together with a

new coherence relation A : a ⇒ p in P2,

(T2) given zig-zags p, q : x
∼→ y such that p

∗⇔ q, add a new coherence relation A : p ⇒ q
in P2.

The Tietze equivalence is the smallest equivalence relation on 2-ars identifying P and Q
whenever Q can be obtained from P by a Tietze transformation (T1) or (T2).

It is easy to see that the Tietze transformations are “correct”, in the sense that they preserve
the presented groupoid. With more work [3, Chapter 5], it is even possible to show that
those transformations are “complete”, in the sense that any two 2-ars presenting the same
groupoid are Tietze equivalent. We only state the first direction here since this is the only
one we will need here:

Proposition 29. Any two Tietze equivalent 2-ars present isomorphic groupoids.
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From the transformations of definition 28, it is possible to derive other transformations,
which thus also preserve the presented groupoid.

Lemma 30. Suppose given a 2-ars P containing a rewriting rule a : x → y and a relation
A : p ⇒ q such that a occurs exactly once in the source p, i.e. p = p1 · a · p2, and does not
occur in the target

x′ y′

x y

a
p2p1

q

A

Then P is Tietze equivalent to the 2-ars where

– we have removed the rewriting rule a,
– we have removed the coherence relation A,
– we have replaced every occurrence of a in the source or target of a coherence relation
by p−1 · q · p−2 .

Rewriting properties. Suppose fixed a 2-ars P. For simplicity, we suppose that for every
coherence relation A : p ⇒ q in P2, we have that p and q are rewriting paths (as opposed to
zig-zags). We also suppose fixed a set W ⊆ P1. We can think of W as inducing a rewriting
subsystem W of P, with P0 as objects, W as rewriting steps and

W2 = {A ∈ P2 | s1(A) ∈ W ∗ and t1(A) ∈ W ∗}
as coherence relations, and formulate the various traditional rewriting concepts with respect
to it. In such a situation, consider the presented groupoid C = P. The set W of rewriting
rules, induces a set of morphisms of C, namely {w | w ∈ W} that we still write W , which
generates a subgroupoid W of C. Our aim here is to provide rewriting tools in order to show
that W is rigid, so that C is equivalent to the quotient C/W by theorem 14, and moreover
provide a concrete description of the quotient category.

Definition 31. The 2-ars P is W -terminating if there is no infinite sequence a1, a2, . . . of
elements of W such that every finite prefix is a rewriting path, i.e. belongs to W ∗.

Definition 32. An element x ∈ P0 is a W -normal form when there is no rewriting step
in W with x as source. We say that P is weakly W -normalizing when for every x ∈ P0 there

exists a normal form x̂ and a rewriting path x
∗→ x̂. In this case, we write nx : x

∗→ x̂ for an
arbitrary choice of such a path, which is however supposed to be the identity when x is a
normal form.

Lemma 33. If P is W -terminating then it is weakly W -normalizing.

Proof. Consider a maximal rewriting path a1, a2, . . . in W ∗ starting from x. Because P is W -
terminating, this path is necessarily finite, and its target is a normal form by maximality.

Definition 34. A W -branching is a pair of rewriting paths

p1 : x
∗→ y1 q2 : x

∗→ y2

in W ∗ which are coinitial, i.e. have the same source x which is called the source of the
branching. A W -branching is local when both p1 and p2 are rewriting steps. A W -branching
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as above is confluent when there is a pair of cofinal (with the same target) rewriting paths

q1 : y1
∗→ z and q2 : y2

∗→ z in W ∗ such that p1 · q1
∗⇔ p2 · q2:

x

y1 y2

z

p1 p2

q1

∗

q2

Note that, in the above definitions, not only we require that we can close a span of rewriting
steps by a cospan of rewriting paths (as in the traditional definition of confluence), but also
that the confluence square can be filled coherence relations.

Definition 35. The ars P is locally W -confluent when W -branching is confluent. It is

W -confluent when for every p1 : x
∗→ y1 and p2 : x

∗→ y2 in W ∗, there exist q1 : y1
∗→ z and

q2 : y2
∗→ z in W ∗ such that p1 · q1

∗⇔ p2 · q2. We say that P is W -convergent when it is both
W -terminating and W -confluent.

The celebrated Newman’s lemma (also sometimes called the diamond lemma) along
with its traditional proof easily generalizes to our setting:

Proposition 36. If P is W -terminating and locally W -confluent then it is W -confluent.

Proof. The relation on objects defined by x ≥ y whenever there exists a rewriting path

p : x
∗→ y in W ∗ is a well-founded partial order because P is W -terminating. We say that P

is W -confluent at x when every W -branching with source x confluent. We are going to show
that P is locally W -confluent at x for every object x, by well-founded induction on x. In
the base case, x is a W -normal form and the result is immediate. Otherwise, consider a
W -branching consisting of paths a1 · p1 and a2 · p2 for some rewriting steps a1 and a2 and
rewriting paths p1 and p2 (we suppose that the paths are non-empty, otherwise the result is
immediate). The following diagram shows the W -confluence at x:

x

y1 y2

y y′′ y′

z

z′

a1 a2

p1
lc

p2

∗

ih ih

∗
∗

Above, the diagram lc is W -confluent by local confluence, and the two diagrams ih are by
induction hypothesis.

Definition 37. The 2-ars P is W -coherent if for any parallel zig-zags p, q : x
∼→ y in W∼,

we have p
∗⇔ q.

The following is immediate:

Lemma 38. A 2-ars P is W -coherent precisely when W is a rigid subgroupoid of P.

The traditional Church-Rosser property [47, Theorem 1.2.2] generalizes as follows in our
setting:
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Proposition 39. If P is weakly W -normalizing and W -confluent then for any zig-zag

p : x
∼→ y in W∼, we have x̂ = ŷ and p · ny

∗⇔ nx, i.e. the diagram

x y

x̂ ŷ

nx

p

ny

commutes in P.

Proof. By confluence, given a rewriting path p : x
∗→ y in W ∗, we have x̂ = ŷ and p ·ny

∗⇔ nx,

and thus p+ · ny
∗⇔ nx and nx · p−

∗⇔ ny, i.e. the following diagrams commute in P:

x y

x̂ ŷ

nx

p+

ny

x y

x̂ ŷ

nx

p−

ny

Any zig-zag p : x
∼→ y in W∼ decomposes as p = p−1 q

+
1 p

−
2 p

+
2 . . . p−n p

+
n for some n ∈ N and

paths pi and qi in W ∗. We thus have p · ny
∗⇔ nx, since all the squares of the following

diagram commute in W by the preceding remark:

x y1 x2 · · · xn yn y

x̂ x̂ x̂ · · · x̂ x̂ x̂

nx

p−1

ny1

q+1

nx2 nxn

p−n

nyn

q−n

ny

which allows us to conclude.

This implies the following “abstract” variant of Squier’s homotopical theorem [44, 26, 16]:

Proposition 40. If P is weakly W -normalizing and is W -confluent then it is W -coherent.

Proof. Given two parallel zig-zags p, q : x
∼→ y in W∼, we have p

∗⇔ q, since the following
diagram commutes in P:

x

y y

ŷ

y

p

nx

q

idy

ny

idy

ny

n−
y

Namely, we have x̂ = ŷ by confluence, the two triangles above commute by proposition 39,
and the two triangles below do because n−

y is an inverse for ny.

Example 41. As a variant of example 15, consider the 2-ars P with P0 = {x, y}, P1 =

{a, b : x → y} and P2 = ∅, i.e. x y
a

b
. With W = {a}, we have that P is W -terminating

and locally W -confluent, thus W -confluent by proposition 36, and thus W -coherent by
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lemma 33 and proposition 40. With W = {a, b}, we have seen in example 15 that the
groupoid W is not rigid and, indeed, P is not W -confluent because a ̸= b (because P2 = ∅).

Definition 42. We write N(P) for the category of normal forms of P, defined as the full
subcategory of P whose objects are those in W -normal form.

Lemma 43. If P is weakly W -normalizing, the inclusion functor N(P) → P is an equivalence
of categories.

Proof. An object x of P admits a normal form x̂, by lemma 33. Writing nx : x
∗→ x̂ for

a normalization path, we have an isomorphism nx : x → x̂ in P. The inclusion functor is
thus full and faithful (by definition), and every object of P is isomorphic to an object in the
image, it is thus an equivalence of categories.

When P is W -convergent, the equivalence given in the above lemma is precisely the one with
the quotient category:

Proposition 44. If P is W -convergent, the quotient category is isomorphic to the category
of normal forms: P/W ∼= N(P).

Proof. Since P is W -convergent, by proposition 40 and lemma 38, the groupoid generated
by W is rigid and we thus have the description of the quotient P/W given by proposition 8.
We have a canonical functor N(P) → P/W , obtained as the composite of the inclusion
functor N(P) → P with the quotient functor P → P/W . An object of P/W is an equivalence
class [x] of objects which, by convergence, contains a unique normal form, namely x̂. The
functor is bijective on objects. By weak normalization (lemma 33), any morphism f : x → y

is equivalent to one with both normal source and target, namely f̂ = ny ◦ f ◦ n−
x : x̂ → ŷ,

hence the functor is full. Suppose given two morphisms f, g : x̂ → ŷ in N(P) with the
same image [f ] = [g]: by definition of the equivalence on morphisms, there exist morphisms
v : x̂ → x̂ and w : ŷ → ŷ in W∼ making the diagram

x̂ ŷ

x̂ ŷ

v

f

w

g

commute. By the Church-Rosser property (proposition 40), we have v = nx̂ ◦ n−
x̂ and thus

v = idx (since nx̂ = idx̂ by hypothesis), and similarly w = idy. Hence f = g and the
functor is faithful. The functor is thus an isomorphism as being full, faithful and bijective
on objects.

We would now like to provide an explicit description of N(P), by a 2-ars. A good
candidate is the following 2-ars P \W obtained by “restricting P to normal forms”. More
precisely,

– (P \W )0: the objects of P \W are the those of P in W -normal form,
– (P \W )1: the rewriting rules of P \W are those of P whose source and target are both
in (P \W )0 (in particular, it does not contain any element of W , thus the notation),

– (P \W )2: the coherence relations are those of P2 whose source and target both belong
to (P \W )∼1 .
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It is not the case in general that this 2-ars presents N(P), but we provide here conditions
which ensure that it holds, see also [10, 39] for alternative conditions. For simplicity, we
suppose here that the source and target of every rewriting step in P2 is a path (as opposed
to a zig-zag).

Proposition 45. Suppose that

(1) P is W -convergent,
(2) every rule a : x → y in P1 whose source x is W -normal also has a W -normal target y,

(3) for every coinitial rule a : x → y in P1 and path w : x
∗→ x′ in W ∗, there are paths

p : x′
∗→ y′ in P∗

1 and w′ : y
∗→ y′ ∈ W ∗ such that a · w′ ∗⇔ w · p:

x y

x′ y′

w ∗

a

∗ w′

∗
p

∗

(4) for every coherence relation A : p ⇒ q : x
∗→ y, and for every path w : x

∗→ x′, the paths

p′, q′ : x′
∗→ y′ in P∗

1 and w′ : y
∗→ y′ in W ∗ such that p · w′ ∗⇔ w · p′ and q · w′ ∗⇔ w · q′

induced by (3) satisfy p′
∗⇔ q′:

x y

x′ y′

w ∗

p

q
∗ w′

p′

q′

A

∗

Then N(P) is isomorphic to P \W .

Proof. We write Q = P \W . Since Q is, by definition, a sub-2-ars of P there is a canonical
functor Q → P. Moreover, since the objects of P are, by definition, in W -normal form, this
functor corestricts as a functor F : Q → N(P) which is the identity on objects.

First, note that condition (2) implies that for any path p of the form

x0 x1 · · · xn
a1 a2 an

with x0 in W -normal form, we have that all the xi are in W -normal form and thus p belongs

to Q∗
1. Similarly, every coherence relation A : p ⇒ q : x

∗→ y with x in W -normal form
belongs to Q2.

We claim that for every zig-zag p : x
∼→ y in P∼

1 there is zig-zag q ∈ Q∼
1 such that

p
∗⇔ nx · q · n−

y . We have that p is of the form p = w0 · a1 · w1 · a2 · w2 · . . . · an · wn where
the ai are rules in P1 which are not in W (possibly taken backward) and the wi are in W∼.
For instance, consider the case n = 1 and a path p of the form p = v · a · w with a ∈ Q1

and v, w ∈ W∼ (the case where a is reversed is similar, and the general case follows by
induction):

x x′ y′ y

x̂ y′′ ŷ

nx

v

nx′

a

w′
ny′

w

ny

q
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By hypothesis (1) and proposition 39, we have v
∗⇔ nx · n−

x′ and w
∗⇔ ny′ · n−

y . By

hypothesis (3), there exist paths q : x̂
∗→ y′′ in P∗

1 and w′ : y′
∗→ y′′ in W ∗ such that

a · w′ ∗⇔ nx′ · q. By hypothesis (2) and the remark at the beginning of this proof, we have

that q ∈ Q∗
1 and y′′ is a normal form. By (1), we thus have y′′ = ŷ and w′ ∗⇔ ny′ , and we

conclude. As a particular case of the property we have just shown, for any zig-zag p : x
∼→ y

whose source and target are in W -normal form, we have that that p is equivalent to a zig-zag
q : x

∼→ y (since in this case both nx and ny are identities). The functor F : Q → N(P) is
thus full.

In the following, given a path p : x → y in P∗
1, we write p : x̂ → ŷ in Q∗

1 for a path

such that p = nx · p · n−
y . Such a path always exists by the previous reasoning and can

be constructed in a functorial way (i.e. p1 · p2 = p
1
· p

2
). Now, suppose given two zig-zags

p, p′ : x
∼→ y in P∼

1 such that p
∗⇔ p′. The relation p

∗⇔ p′ means that there is a sequence
p1, . . . , pn of zig-zags in P∼

1 such that p1 = p, pn = p′ and each pi is related to pi+1 by taking
a relation in context, as in (2.3):

p = p1 ⇔ p2 ⇔ . . . ⇔ pn = p′

More formally, for 1 ≤ i < n, there is a decomposition

pi = qi · ri · si pi+1 = qi · r′i · si

such that there is a relation A : ri ⇒ r′i or A : r′i ⇒ ri (another approach would consist in
reasoning by induction on the 2-cells of the freely generated 2-groupoid of remark 27). By

hypothesis (4), there is a relation ri
∗⇔ r′i, and thus p

i

∗⇔ p
i+1

by functoriality. By recurrence

on n, we thus have p
∗⇔ p′. From this, we deduce that that the functor F is also faithful.

In practice, condition (1) can be shown using traditional rewriting techniques (e.g. proposi-
tion 36) and condition (2) is easily checked by direct inspection of the rewriting rules. We
provide below sufficient conditions in order to show the two remaining conditions:

Proposition 46. We have the following.

(3) Suppose that for every coinitial rules a : x → y in P1 and w : x → x′ in W , there are

paths p : x′
∗→ y′ in P∗

1 and w′ : y
∗→ y′ in W ∗ such that w is of length at most one and

a · w′ ∗⇔ w · p:

x y

x′ y′

w

a

w′

∗
p

or

x y

x′ y′

w

a

∗
p

(2.4)

The condition (3) of proposition 45 is satisfied.

(4) Suppose that condition (3) is satisfied and for every coherence relation A : p ⇒ q : x
∗→ y

in P2 and rule w : x → x′ in W , the paths p′, q′ : x′
∗→ y′ in P∗

1 and w′ : y
∗→ y′ in W ∗

of length at most one such that p ·w′ ∗⇔ w · p′ and q ·w′ ∗⇔ w · q′ induced by (3) are such
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that p′
∗⇔ q′:

x y

x′ y′

w ∗

p

q
w′

p′

q′

A

∗

or

x y

x′ y

w

p

q

p′

q′

A

∗

(2.5)

Then condition (4) of proposition 45 is satisfied.

Proof. Both properties are easily shown by recurrence on the length of w.

We can finally summarize the results obtained in this section as follows. Given a 2-ars P
and a set W ⊆ P1, we have the following possible reasonable definitions of the fact that P is
coherent wrt W :

(1) Every parallel zig-zags with edges in W are equal
(i.e. the subgroupoid of P generated by W is rigid).

(2) The quotient map P → P/W is an equivalence of categories.
(3) The canonical morphism N(P) → P is an equivalence.
(4) The inclusion Alg(P/W,D) → Alg(P,D) is a natural equivalence of categories.

Theorem 47. If P is W -convergent then all the above coherence properties hold.

Proof. (1) is given by proposition 40, (2) is given by (1) and theorem 14, (3) is given by
proposition 44, and (4) is given by (1) and proposition 19.

3. Relative coherence and term rewriting systems

In order to use the previous developments in concrete situations, such as (symmetric)
monoidal categories, we need to consider a more structured notion of theory. For this reason,
we consider here Lawvere 2-theories, as well as the adapted notion of rewriting, which is a
coherent extension of the traditional notion of term rewriting systems.

3.1. Lawvere 2-theories. We begin by recalling the traditional notion due to Lawvere [30]:

Definition 48. A Lawvere theory T is a cartesian category, with N as set of objects, and
cartesian product given on objects by addition. A morphism between Lawvere theories is a
product-preserving functor and we write Law1 for the category of Lawvere theories.

For simplicity, we restrict here to unsorted theories, but the developments performed here
could easily adapted to the multi-sorted case. In such a theory, we usually restrict our
attention to morphisms with 1 as codomain, since T (n,m) ∼= T (n, 1)m by cartesianness.

A (2, 1)-category is a 2-category in which every 2-cell is invertible (i.e. a category enriched
in groupoids). The following generalization of Lawvere theory was introduced in various
places, see [14, 49, 50] (as well as [42] for the enriched point of view):

Definition 49. A Lawvere 2-theory T is a cartesian (2, 1)-category with N as objects, and
cartesian product given on objects by addition. A morphism F : T → U between 2-theories
is a 2-functor which preserves products. We write Law2 for the resulting category (which can
be extended to a 3-category by respectively taking natural transformations and modifications
as 2- and 3-cells).
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We can reuse the properties developed in section 2 by working “hom-wise” as follows.
Suppose fixed a 2-theory T together with a subset W of the 2-cells. We write W for the
sub-2-theory of T , with the same 0- and 1-cells, and whose 2-cells contain W (we often
assimilate this 2-theory to its set of 2-cells). A morphism F : T → U of Lawvere 2-theories
is W -strict when it sends every 2-cell in W to an identity.

Definition 50. The quotient 2-theory T /W is the theory equipped with aW -strict morphism
T → T /W such that every W -strict morphism F : T → U extends uniquely as a morphism
T /W → U :

T U

T /W

F

F̃

We have T /W ∼= T /W, so that we can always assume that we are quotienting by a sub-2-
theory. On hom-categories, the quotient corresponds to the one introduced in section 2.1:

Lemma 51. For every m,n ∈ N, we have

(T /W)(m,n) = T (m,n)/W(m,n).

We say that a morphism
F : T → U

is a local equivalence when for every objects m,n ∈ T , the induced functor

Fm,n : T (m,n) → U(m,n)

between hom-categories is an equivalence.

Definition 52. A theory W is 2-rigid when any two parallel 2-cells are equal.

Lemma 53. A theory W is 2-rigid if and only if the category W(m,n) is rigid for every
0-cells m and n.

By direct application of theorem 14, we have

Theorem 54. The quotient 2-functor T → T /W is a local equivalence iff W is 2-rigid.

3.2. Extended rewriting systems. We briefly recall here the categorical setting for term
rewriting systems. A more detailed presentation can be found in [11, 7, 36, 3].

Definition 55. A signature consists of a set S1 of symbols together with a function
s0 : S1 → N associating to each symbol an arity and we write a : n → 1 for a symbol a of
arity n. A morphism of signatures is a function between the corresponding sets of symbols
which preserves arity, and we write Pol×1 for the corresponding category.

There is a forgetful functor Law1 → Pol×1 , sending a theory T on the set
⊔

n∈N T (n, 1) with

first projection as arity. This functor admits a left adjoint −∗ : Pol×1 → Law1, which we
now describe. Given a signature S1, and n ∈ N, S∗1(n, 1) is the set of terms of arity n: those
are formed using operations, with variables in {xn1 , xn2 , . . . , xnn}. Note that the superscript
for variables is necessary to unambiguously recover the type of a variable, i.e. xni : n → 1,
but for simplicity we will often omit it in the following. More explicitly, the family of sets
S∗1(n, 1) is the smallest one such that
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– for 1 ≤ i ≤ n, we have
xni ∈ S∗1(n, 1)

– given m,n ∈ N, a symbol a : n → 1 and terms t1, . . . , tn ∈ S∗1(m, 1), we have

a(t1, . . . , tm) ∈ S∗1(m, 1)

More generally, a morphism f in S∗1(n,m) is an m-uple

f = ⟨t1, . . . , tm⟩
of terms ti with variables in {xn1 , . . . , xnn}, which can be thought of as a formal substitution.
Given such a substitution f and a term t, we write

t[f ] or t[t1/x1, . . . , tn/xn]

for the term obtained from t by formally replacing each variable xni by ti. This operation is
thus defined inductively by

xni [f ] = ti a(u1, . . . , uk)[f ] = a(u1[f ], . . . , uk[f ])

The composition of two morphisms ⟨t1, . . . , tm⟩ : S∗1(n,m) and ⟨u1, . . . , uk⟩ : S1(m, k) is given
by parallel substitution:

⟨u1, . . . , uk⟩ ◦ ⟨t1, . . . , tm⟩ = ⟨u1[t1/x1, . . . , tn/xn], . . . , uk[t1/x1, . . . , tm/xm]⟩
and the identity in S∗1(n, n) is ⟨xn1 , . . . , xnn⟩. The resulting category S∗1 is easily checked to be
a Lawvere theory, which satisfies the following universal property:

Lemma 56. The Lawvere theory S∗1 is the free Lawvere theory on the signature S1.

By abuse of notation, we sometimes write

S∗1 =
⊔

m,n∈N
S∗1(m,n)

for the set of all substitutions and s∗0, t
∗
0 : S∗1 → N for the source and target maps, and

i1 : S1 → S∗1 for the map sending an operation a : n → 1 to the substitution consisting of
one term ⟨a(xn1 , . . . , xnn)⟩, so that we have s∗0 ◦ i1 = s0 and t∗0 ◦ i1 = 1.

Definition 57. A term rewriting system, or trs, S consists of a signature S1 together with
a set S2 of rewriting rules and functions s1, t1 : S2 → S∗1 which indicate the source and target
of each rewriting rule, and are supposed to satisfy

s∗0 ◦ s1 = s∗0 ◦ t1 t∗0 ◦ s1 = t∗0 ◦ t1 = 1

This data can be summarized in the following diagram:

S1 S2

N S∗1

a i1
s1

t1s∗0

t∗0

We sometimes write
ρ : t ⇒ u

for a rule ρ with t as source and u as target. The relations satisfied by trs ensure that
both t and u have the same arity.

We now need to introduce some notions in order to be able to define rewriting in such a
setting. A context C of arity n is a term with variables in {x1, . . . , xn,□} where the variable
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□ is a particular variable, the hole, occurring exactly once. Here, we define the number |t|i
of occurrences of a variable xi (and similarly for □) in a term t by induction by

|xi|i = 1 |a(t1, . . . , tn)|i =
n∑

k=1

|tk|i

We write S□n for the set of contexts of arity n. Given a context C and a term t, both of same
arity n, we write C[t] for the term obtained from C by replacing □ by t. The composition
of contexts C and D is given by substitution

D ◦ C = D[C]

This composition is associative and admits the identity context □ as neutral element.
A bicontext from n to k, is a pair (C, f) consisting of a context C of arity n and a
substitution f ∈ S∗1(n, k). This data can be thought of as the specification of a function on
terms

S∗1(n, 1) → S∗1(k, 1)

⟨t⟩ 7→ C[⟨t⟩ ◦ f ]
In the following, for simplicity, we will omit the brackets and simply write t instead of ⟨t⟩
in such an expression, so that the image of the function can also be denoted C[t[f ]]. This
function will be referred as the action of a bicontext on terms. The composition of bicontexts
(C, f) and (D, g) of suitable types is given by (D ◦ C, f ◦ g). The action is compatible with
this composition, in the sense that we have

D[C[− ◦ f ] ◦ g] = (D ◦ C[f ])[− ◦ (f ◦ g)]
A rewriting step of arity n

C[ρ ◦ f ] : C[t ◦ f ] ⇒ C[u ◦ f ]
is a triple consisting of

– a rewriting rule ρ : t ⇒ u, with t and u of arity k,
– a context C of arity n,
– a substitution f : n → k in S∗1.

A rewriting step can thus be thought of as a rewriting rule in a bicontext. Its source is the

term C[t ◦ f ] and its target is the term C[u ◦ f ]. We write S
[]
2 for the set of rewriting steps.

A rewriting path π is a composable sequence

C1[t1 ◦ f1] C1[u1 ◦ f1] = C2[t2 ◦ f2] · · · Cn[un ◦ fn]
C1[ρ1◦f1] C2[ρ2◦f2] Cn[ρn◦fn]

of rewriting steps. We write S∗2 for the set of rewriting paths and adopt the previous notation,
e.g. we write π · π′ for the concatenation of two composable rewriting paths π and π′. As
in section 2.3, we can also define a notion of rewriting zig-zag which is similar to rewriting
paths excepting that some rewriting steps may be taken backwards, and write S∼1 for the
corresponding set.

Given a signature S1, there is a forgetful functor from the category of Lawvere 2-theories
with S∗1 as underlying Lawvere theory to the category rewriting systems with S1 as signature
(with the expected notion of morphism).

Lemma 58. Given a trs S, the Lawvere 2-theory S∼ with S∗1 as 1-cells and S∼2 as 2-cells is
free on S.
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The action of bicontexts on terms extend to rewriting steps as follows. Given a rewriting
step

C[ρ ◦ f ] : C[t ◦ f ] ⇒ C[u ◦ f ]

a context D and a substitution g of suitable types, we define D[C[ρ ◦ f ] ◦ g] to be the
rewriting step

(D ◦ C[g])[ρ ◦ (f ◦ g)] : (D ◦ C[g])[t ◦ (f ◦ g)] ⇒ (D ◦ C[g])[u ◦ (f ◦ g)]

Moreover, we extend this action to rewriting paths and zig-zags by functoriality, i.e.

C[(p · q) ◦ f ] = C[p ◦ f ] · C[q ◦ f ]

Definition 59. An extended term rewriting system, or 2-trs, consists of a term rewriting
system as above, together with a set S3 of coherence relations and functions s2, t2 : S3 → S∼2 ,
indicating their source and target, satisfying

s∼1 ◦ s2 = s∼1 ◦ t2 t∼1 ◦ s2 = t∼1 ◦ t2

Diagrammatically,

S1 S2 S3

N S∗1 S∼2

a i1
s1

t1
i2

s2

t2s∗0

t∗0

s∼1

t∼1

Given a 2-trs as above, we sometimes write

A : π ⇛ π′

to indicate that A is a coherence relation in S3 with π as source and π′ as target. Given two

rewriting paths π and π′, we write π
∗
⇚⇛ π′ when they are related by the smallest congruence

identifying the source and target of any coherence relation.

Definition 60. The Lawvere 2-theory presented by a 2-trs S is the (2, 1)-category noted S,

with N as 0-cells, S∗1 as 1-cells and, as 2-cells the quotient of S∼2 under the congruence
∗
⇚⇛.

Example 61. The extended rewriting system Mon for monoids has symbols and rules

Mon1 = {m : 2 → 1, e : 0 → 1}

Mon2 =

 α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))
λ : m(e, x1) ⇒ x1
ρ : m(x1, e) ⇒ x1


There are coherence relations A, B, C, D and E, respectively corresponding to a confluence
for the five critical branchings of the rewriting system (as defined in section 3.2), whose
0-sources are

m(m(m(x1, x2), x3), x4) m(m(e, x1), x2) m(m(x1, e), x2) m(m(x1, x2), e) m(e, e)
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Those coherence relations can be pictured as follows:

m(m(m(x1, x2), x3), x4) m(m(x1,m(x2, x3)), x4)

m(x1,m(m(x2, x3), x4))

m(m(x1, x2),m(x3, x4)) m(x1,m(x2,m(x3, x4)))

α

α

α

A

α

α

m(m(e, x1), x2) m(e,m(x1, x2))

m(x1, x2)

λ

α

B
⇛

λ

m(m(x1, e), x2) m(x1,m(e, x2))

m(x1, x2)

ρ

α

C
⇛

λ

m(m(x1, x2), e) m(x1,m(x2, e))

m(x1, x2)

ρ

α

D
⇛

ρ

m(e, e)

te

λ ρ
E
⇛

For concision, for each arrow, we did not indicate the proper rewriting step, but only the
rewriting rule of the rewriting step (hopefully, the reader will easily be able to reconstruct
it). For instance, the coherence relation C has type

C : m(ρ(x1), x2) ⇒ α(x1, e, x2) ·m(x1, λ(x2))

We mention here that the notion of Tietze transformation can be defined for 2-trs in a
similar way as for 2-ars (definition 28):

Definition 62. The Tietze transformations are the following possible transformations on a
2-ars P:

(T1) given a zig-zag π : t
∼→ u, add a new rewriting rule α : t → u in P2 together with a

new coherence relation A : α ⇛ π in P3,

(T2) given zig-zags π, ρ : t
∼→ u such that π

∗
⇚⇛ ρ, add a new coherence relation A : π ⇛ ρ

in P3.

The Tietze equivalence is the smallest equivalence relation on 2-ars identifying P and Q
whenever Q can be obtained from P by a Tietze transformation (T1) or (T2).

Proposition 63. Any two Tietze equivalent 2-trs present isomorphic groupoids.

Suppose fixed a 2-trs S together with W ⊆ S2. The 2-trs S induces an 2-ars in each
hom-set: this point of view will allow reusing the work done on 2-ars on section 2.

Definition 64. Given a 2-trs S and n ∈ N, we write S(n, 1) for the 2-ars whose

– objects are the n-ary terms:
S(n, 1)0 = S∗1(n, 1)

– morphisms are the n-ary rewriting steps:

S(n, 1)1 = S
[]
2(n, 1)

where S
[]
2(n, 1) is the set of rewriting steps

C[ρ ◦ f ] : C[t ◦ f ] ⇒ C[u ◦ f ]
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with both C[t ◦ f ] and C[u ◦ f ] of arity n,
– coherence relations are triples (C,A, f), written C[A ◦ f ], for some context C, coherence
relation A ∈ S3 and substitution f , of suitable type, of the form

C[A ◦ f ] : C[π ◦ f ] ⇛ C[π′ ◦ f ] : C[t ◦ f ] ⇒ C[u ◦ f ]
such that both C[t ◦ f ] and C[u ◦ f ] of arity n.

Similarly, a set W induces a set W (m, 1) ⊆ S(m, 1)1, where W (m, 1) is the set of W -rewriting
steps, i.e. rewriting steps of the form C[α ◦ f ] with α ∈ W . We say that a 2-trs S is W -
terminating / locally W -confluent / W -confluent / W -coherent when each S(m,n) is with
respect to W (m,n). We say that S is confluent when it is W -confluent for W = S2 (and
similarly for other properties). More explicitly,

Definition 65. A W -branching (α1, α2) is a pair of rewriting steps α1 : t ⇒ u1 and

α2 : t ⇒ u2 in W [] with the same source:

u1 t u2
α1 α2

Such a W -branching is W -confluent when there are cofinal rewriting paths π1 : u1 ⇒ v and
π2 : u2 ⇒ v in W ∗ such that α1 · π1 = α2 · π2, which is depicted on the left

t

u1 u2

v

α1 α2

π1 π2

C[t ◦ f ]

C[u1 ◦ f ] C[u2 ◦ f ]

C[v ◦ f ]

C[α1◦f ] C[α2◦f ]

C[π1◦f ] C[π2◦f ]

By extension of proposition 36, we have

Proposition 66. If S is W -terminating and locally W -confluent then it is W -confluent.

In practice, termination can be shown as follows [4, Section 5.2].

Definition 67. A reduction order ≥ is a well-founded preorder on terms in S∗1 which is
compatible with context extension: given terms t, u ∈ S∗1, t > u implies C[t ◦ f ] > C[u ◦ f ]
for every context C and substitution f ∈ S∗1 (whose types are such that the expressions
make sense).

Proposition 68. A 2-trs S equipped with a reduction order such that t > u for any rule
α : t ⇒ u in W is W -terminating.

Proof. For any rewriting step C[ρ ◦ f ] : C[t ◦ f ] ⇒ C[u ◦ f ] we have C[t ◦ f ] > C[u ◦ f ] and
we conclude by well-foundedness.

Moreover, in order to construct a reduction order one can use the following “interpretation
method” [4, Section 5.3].

Proposition 69. Suppose given a well-founded poset (X,≤) and an interpretation

JaK : Xn → X

of each symbol a ∈ S1 of arity n as a function which is strictly decreasing in each argument.
This induces an interpretation JtK : Xn → X of every term t of arbitrary arity n defined by
induction by

Jxni K = πn
i Ja(t1, . . . , tn)K = JaK ◦ ⟨Jt1K, . . . , JtnK⟩
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where πn
i : Xn → X is the projection on the i-th coordinate. We define an order on functions

f, g : Xn → X by

f ≻ g iff f(x1, . . . , xn) ≻ g(x1, . . . , xn) for every x1, . . . , xn ∈ X

and we still write ⪰ for the order on terms such that t ⪰ u whenever JtK ⪰ JuK. This order
is always a reduction order.

Note that given a reduction order ⪰ defined as above, by proposition 68, if we have t ≻ u
for every rule α : t ⇒ u the 2-trs is W -terminating.

Example 70. Consider the 2-trs Mon of example 61. We consider the set X = N \ 0 and
interpret the symbols as

Jm(x1, x2)K = 2x1 + x2 JeK = 1

All the rules are decreasing since we have

Jm(m(x1, x2), x3)K = 4x1 + 2x2 + x3 > 2x1 + 2x2 + x3 = Jm(x1,m(x2, x3))K
Jm(e, x1)K = 2 + x1 > x1 = Jx1K

Jm(x1, e)K = 2x1 + 1 > x1 = Jx1K

and the rewriting system is terminating.

We now briefly recall the notion of critical branching, see [36] for a more detailed
presentation. We say that a branching (α1, α2) is smaller than a branching (β1, β2) when
the second can be obtained from the first by “extending the context”, i.e. when there exists
a context C and a morphism f of suitable types such that βi = C[αi ◦ f ] for i = 1, 2. In this
case, the confluence of the first branching implies the confluence of the second one (see the
diagram on the right above). The notion of context can be generalized to define the notion
of a binary context C, with two holes, each of which occurs exactly once: we write C[t, u]
for the context where the holes have respectively been substituted with terms t and u. A
branching is orthogonal when it consists of two rewriting steps at disjoint positions, i.e. when
it is of the form

C[u1 ◦ f1, t2 ◦ f2] C[t1 ◦ f1, t2 ◦ f2] C[t1 ◦ f1, u2 ◦ f2]
C[α1◦f1,t2◦f2] C[t1◦f1,α2◦f2]

for some binary context C, rewriting rules αi : ti ⇒ ui in S2 and morphisms fi in S∗1 of
suitable types. A branching is critical when it is not orthogonal and minimal (wrt the above
order). A trs with a finite number of rewriting rules always have a finite number of critical
branchings and those can be computed efficiently [4].

Lemma 71. A 2-trs S is locally W -confluent when all its critical W -branchings are
W -confluent.

Proof. Suppose that all critical W -branchings are confluent. A non-overlapping W -branching
is easily shown to be W -confluent. A non-minimal W -branching is greater than a minimal
one, which is W -confluent by hypothesis, and is thus itself also W -confluent.

We write W3 ⊆ S3 for the set of coherence relations A : π ⇒ ρ such that both π and ρ belong
to W∼. As a useful particular case, we have the following variant of the Squier theorem:

Lemma 72. If 2-trs S has a coherence relation in W3 corresponding to a choice of confluence
for every critical W -branching then it is locally W -confluent.
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Example 73. The 2-trs Mon of example 61. By definition, every critical branching is
confluent and Mon is thus locally confluent. From example 70 and proposition 66, we deduce
that it is confluent.

As a direct consequence of proposition 40, we have

Lemma 74. If S is W -terminating and locally W -confluent then it is W -coherent.

From examples 70 and 73, we deduce that the 2-trs Mon is coherent, thus showing the
coherence property (C1) for monoidal categories.

Suppose given a W -convergent 2-trs S. By lemma 74, S is W -coherent, by theorem 54,
the quotient functor S → S/W is a local equivalence, and by proposition 44, S/W is obtained
from P by restricting to 1-cells in normal form. Moreover, in good situations, we can provide
a description of the quotient category S/W by applying proposition 45 hom-wise.

3.3. Algebras for Lawvere 2-theories. The notion of algebra for 2-theories was extensively
studied by Yanofsky [49, 50], we refer to his work for details.

Definition 75. An algebra for a Lawvere 2-theory T is a 2-functor C : T → Cat which
preserves products. By abuse of notation, we often write C instead of C1 and suppose that
products are strictly preserved, so that Cn = Cn.

A pseudo-natural transformation F : C ⇒ D between algebras C and D consists in a
functor F : C → D together with a family ϕf : Df ◦Fn ⇒ F ◦Cf of natural transformations
indexed by 1-cells f : n → 1 in T ,

Cn C

Dn D

Fn

Cf

F

Df

ϕf

which is compatible with products, composition and 2-cells of T .
A modification µ : F ⇛ G : C ⇒ D between two pseudo-natural transformations is

a natural transformation µ : F ⇛ G which is compatible with 2-cells of T . We write
Alg(T ) for the 2-category of algebras of a 2-theory T , pseudo-natural transformations and
modifications.

Example 76. Consider the 2-trs Mon of example 61. The 2-category Alg(Mon) of algebras of
the presented 2-theory is isomorphic to the category MonCat of monoidal categories, strong
monoidal functors and monoidal natural transformations. It might be surprising that Mon
has five coherence relations whereas the traditional definition of monoidal categories only
features two axioms (which correspond to the coherence relations A and C). There is no
contradiction here: the commutation of the two axioms can be shown to imply the one of
the three other [22, 15].

We conjecture that one can generalize the classical proof that any monoidal category is
monoidally equivalent to a strict one [34, Theorem XI.3.1] to show the following general (C3)
coherence theorem, as well as its (C4) generalization:

Conjecture 77. When W is 2-rigid, every T -algebra is equivalent to a T /W algebra.
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Conjecture 78. When W is 2-rigid, the 2-functor Alg(T /W) → Alg(T ) induced by pre-
composition with the quotient functor T → T /W has a left adjoint such that the components
of the unit are equivalences.

This is left for future works, since it would require introducing some more categorical
material, and our aim in this article is to focus on the rewriting techniques. Note that, apart
from informal explanations, we could not find a proof of Conjectures 77 and 78 for symmetric
or braided monoidal categories in the literature, e.g. in [35, 19, 34] (in [19, Theorem 2.5] the
result is only shown for free braided monoidal categories).

3.4. Symmetric monoidal categories. A symmetric monoidal category is a monoidal
category equipped with a natural isomorphism γx,y : x ⊗ y → y ⊗ x, called symmetry,
satisfying three classical axioms recalled in section 1.4. A symmetric monoidal category is
strict when the structural isomorphisms α, λ and ρ are identities (but we do not require γ
to be an identity). We write SMonCat (resp. SMonCatstr) for the category of symmetric
monoidal categories (resp. strict ones). Using the same method as above, we can show
the coherence theorems for symmetric monoidal categories [19]. This example illustrates
the interest of the previous developments since we are quotienting by a (2, 1)-category W
which is not the whole category (contrarily to the case of monoidal categories presented
above). Similar results using rewriting in polygraphs where obtained earlier [27, 2, 15]. They
require heavier computations since manipulations of variables (duplication, erasure and
commutation) need to be implemented as explicit rules in this context.

We write SMon for the 2-trs obtained from Mon (see example 61) by adding a rewriting
rule

γ : m(x1, x2) ⇒ m(x2, x1)

corresponding to symmetry, together with a coherence relation

F : γ(x1, x2) · γ(x2, x1) ⇛ idm(x1,x2)

which can be pictured as

m(x1, x2) m(x2, x1)

m(x1, x2) m(x1, x2)

γ

F
⇛

γ

as well as the relations

m(m(x1, x2), x3) m(m(x2, x1), x3) m(x2,m(x1, x3))

m(x1,m(x2, x3)) m(m(x2, x3), x1) m(x2,m(x3, x1))

α

γ

G
⇛

α

γ

γ α

m(e, x1) m(x1, e)

x1
λ

γ

I
⇛

ρ

It is immediate to see that the algebras of SMon are precisely symmetric monoidal categories:

Proposition 79. The category Alg(SMon) is isomorphic to the category SMonCat.

The 2-trs SMon is not locally confluent. We now introduce a variant of it which has
this property. We write SMon′ for the 2-trs obtained from SMon by adding a rewriting rule

δ : m(x1,m(x2, x3)) → m(x2,m(x1, x3))
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removing the coherence relation G and adding coherence relations

m(x1,m(x2, x3)) m(x2,m(x1, x3))

m(x1,m(x2, x3)) m(x1,m(x2, x3))

F ′

⇛

δ

δ

m(m(x1, x2), x3) m(m(x2, x1), x3)

m(x1,m(x2, x3)) m(x2,m(x1, x3))

α G′

⇛

γ

α

δ

m(m(x1, x2), x3) m(x3,m(x1, x2))

m(x1,m(x2, x3)) m(x1,m(x3, x2)) m(x3,m(x1, x2))

α

γ

H
⇛

γ δ

m(x1, e) m(e, x1)

x1

ρ

γ

J
⇛

λ

m(m(x1, x2),m(x3, x4)) m(x3,m(m(x1, x2), x4))

m(x1,m(x2,m(x3, x4))) m(x1,m(x3,m(x2, x4))) m(x3,m(x1,m(x2, x4)))

K
⇛α

δ

α

δ δ

m(x1,m(m(x2, x3), x4)) m(m(x2, x3), (x1, x4))

m(x1,m(x2,m(x3, x4))) m(x2,m(x1,m(x3, x4))) m(x2,m(x3,m(x1, x4)))

L
⇛α

δ

α

δ δ

m(x1,m(x2, x3)) m(x2,m(x1, x3))

m(m(x2, x3), x1) m(x2,m(x3, x1))

M
⇛

γ

δ

γ

α

m(x1,m(x2, x3)) m(x2,m(x1, x3)) m(x2,m(x3, x1))

m(x1,m(x3, x2)) m(x3,m(x1, x2)) m(x3,m(x2, x1))

N
⇛

γ

δ δ

δ

δ γ

m(x1,m(x2,m(x3, x4))) m(x2,m(x1,m(x3, x4))) m(x2,m(x3,m(x1, x4)))

m(x1,m(x3,m(x2, x4))) m(x3,m(x1,m(x2, x4))) m(x3,m(x2,m(x1, x4)))

O
⇛δ

δ δ

δ

δ δ

m(e,m(x1, x2)) m(x1,m(e, x2))

m(x1, x2)

λ

δ

P
⇛ λ

m(x1,m(e, x2)) m(e,m(x1, x2))

m(x1, x2)

λ

δ

Q
⇛ λ

m(x1,m(x2, e)) m(x2,m(x1, e))

m(x1, x2)

ρ

δ

R
⇛ ρ

Proposition 80. The 2-trs SMon and SMon′ present isomorphic categories.
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Proof. By proposition 63, it is enough to show that both 2-trs are Tietze equivalent. The
commutation of H and I is immediate in presence of the other axioms, we can thus add
them using Tietze transformations of type (T2). Namely, the commutation of H by using F
and G twice:

m(m(x1, x2), x3) m(x3,m(x1, x2))

m(m(x1, x3), x2) m(m(x3, x1), x2)

m(x1,m(x2, x3)) m(x1,m(x3, x2)) m(m(x3, x2), x1) m(x3,m(x2, x1))

G

α

γ

γ

γ

α γ

γ
α

G

γ γ α

F

F

and the commutation of J can be obtained from F and I:

m(x1, e) m(e, x1)

x1

ρ

γ

I
⇚

γ

λ

F

Next, by a Tietze transformation of type (T1), we can add the rule δ together with its
definition

δ(x1, x2, x3) = α(x1, x2, x3) ◦m(γ(x1, x2), x3) ◦ α(x1, x2, x3)−1

which is formally given by the relation G′. From this definition, one easily shows that the
coherence relations K to R are derivable and can thus be added by Tietze transformation of
type (T2). Finally, the coherence relation G is then superfluous, since it can be derived as

m(m(x1, x2), x3) m(m(x2, x1), x3) m(x2,m(x1, x3))

m(x1,m(x2, x3)) m(m(x2, x3), x1) m(x2,m(x3, x1))

α

γ

G′

⇛

α

M
⇛

γ

γ

δ

α

and can thus be removed by a Tietze transformation of type (T2).

Lemma 81. The 2-trs SMon′ is locally confluent.

Proof. By lemma 71, it is enough to show that all the critical branchings are confluent,
which holds by definition of SMon′: the critical branchings involving α, λ and ρ are handled
in example 61, and those involving γ or δ and another rewriting rule in the above definition
of SMon′.

Since our aim is to study the relationship between symmetric monoidal categories and
their strict version, it is natural to consider the set of rewriting rules

W = {α, λ, ρ}
i.e. all the rules excepting γ. Namely,

Lemma 82. The category Alg(SMon/W ) is isomorphic to the category SMonCatstr of
strict monoidal categories.
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Lemma 83. The 2-trs SMon is W -coherent.

Proof. Since W consists in α, λ and ρ only, this can be deduced as in the case of monoids: the
2-trs is W -terminating by example 70 and W -locally confluent by definition (example 61),
it is thus W -coherent by lemma 74.

Provided that conjecture 77 holds, we could deduce that any symmetric monoidal
category is monoidally equivalent to a strict one. Note that the above reasoning only
depends on the convergence of the subsystem induced by W , i.e. on the fact that every
diagram made of α, λ and ρ commutes, but it does not require anything on diagrams
containing γ’s. In particular, if we removed the compatibility relations G, H, I and J , the
strictification theorem would still hold. The resulting notion of strict symmetric monoidal
category would however be worrying since, for instance, in absence of I, the morphism

γe,x1 : m(e, x1) → m(x1, e)

would induce, in the quotient, a non-trivial automorphism

γe,x1 : x1 → x1

of each object x1. We prove below (theorem 91) a variant of the coherence theorem is
“stronger” in the sense that it requires these axioms to hold and implies that the identity is
the only automorphism of x1.

Every affine diagram commutes. We have seen that for the theory of monoidal categories
“every diagram commutes”, in the sense that Mon is a 2-rigid (2, 1)-category. For symmetric
monoidal categories, we do not expect this to hold since we have two rewriting paths

γx1,x1 : m(x1, x1) ⇒ m(x1, x1) idm(x1,x1) : m(x1, x1) ⇒ m(x1, x1)

which are both from m(x1, x1) to itself, and are not equal in general as explained in the
introduction. It can however be shown that it holds for a subclass of 2-cells whose source
and target are affine terms:

Definition 84. A term t is affine if no variable occurs twice, i.e. |t|i ≤ 1 for every index i.

We now explain this, thus recovering a well-known property [35, Theorem 4.1] using rewriting
techniques. In order to use those, it will be convenient to work with the 2-trs SMon′ which is
locally confluent instead of SMon. The 2-trs SMon′ is not terminating (even when restricted
to affine terms) because of the rules γ and δ which witnesses for the commutativity of the
operation m: for instance, we have the loop

m(x1, x2) m(x2, x1) m(x1, x2)
γ(x1,x2) γ(x2,x1)

(3.1)

In order to circumvent this problem, we are going to formally “remove” the second morphism
above and only keep instances of γ (resp. δ) which tend to make variables in decreasing
order. Namely, by the coherence relation F , i.e.

m(x2, x1)

m(x1, x2) m(x1, x2)

F

γ(x2,x1)γ(x1,x2)

we have γ(x2, x1) = γ(x1, x2)
− so that γ(x2, x1) is superfluous and we can remove it, by

using Tietze transformations, without changing the presented (2, 1)-category. Note that this
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operation is clearly not stable under substitution (for instance consider the substitution
[x2, x1] which exchanges the two variable names), so that this cannot actually be performed
at the level of (2, 1)-categories, but it can if we work within the hom-groupoids, which will
be enough for our purposes. If we remove all the rewriting steps involving γ which tend to
put variables in increasing order as explained above, we still have some loops such as

m(e, x1) m(x1, e) m(e, x1)
γ(e,x1) γ(x1,e)

Intuitively, this is because the above rewriting path involves terms containing a unit e,
whereas our previous criterion relies on the order of variables. Fortunately, we can first
remove all units by applying the rules λ and ρ, and then apply the above argument.

Fix an arity n ∈ N, consider the 2-ars P = SMon′(n, 1) as defined in definition 64. We
write P′ for the 2-ars obtained from P by

– removing from P1 the terms where the unit e occurs excepting e itself,
– removing from P2 the rewriting steps whose source or target terms contain e (in particular,
we remove all rewriting steps involving λ or ρ),

– removing from P3 the coherence relations where a removed step occurs in the source or
the target.

Lemma 85. The groupoid P
′
it presents is equivalent to P.

Proof. We write W ⊆ P1 for the set of rewriting steps involving λ or ρ. By lemma 81, the
2-ars P′ is locally W -confluent, and thus, by lemma 43, P is equivalent to N(P), the full
subcategory on W -normal forms. In turn, by proposition 45 (see below for details), the
category N(P) is isomorphic to the groupoid presented P \W and we conclude by observing
that the 2-ars P′ is precisely P \W (terms in normal form are precisely those where e does
not occur, with the exception of e itself).

Let us explain why the conditions of proposition 45 are satisfied.

(1) We have seen above that P is W -convergent.
(2) It is immediate to check that no rewriting rule can produce a term containing e from a

term which does not have this property.
(3) From proposition 46, in order to show this condition, we have to check that every

diagram of the form

t u

t′

ω

α

can be closed as in (2.4) for arbitrary rewriting steps α ∈ P1 and ω ∈ W . It is enough to
show this when they form a critical branching. There are five of them, which correspond
to the coherence relations B, C, D, I and J , from which we conclude.

(4) From proposition 46, in order to show this condition, we have to check that every
diagram of the form

t u

t′

ω

α

β

X

can be closed as in (2.5) for ω in W . Again, it is enough to show this in situations
which are not orthogonal and minimal, in a similar sense as for critical branchings, see
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section 3.2, which we call a “critical branching between a rewriting rule and a coherence
relation”. For instance, one such critical branching between λ and A can be closed as
follows:

m(m(m(e, x2), x3), x4) m(m(e,m(x2, x3)), x4) m(e,m(m(x2, x3), x4))

m(m(e, x2),m(x3, x4)) m(e,m(x2,m(x3, x4)))

m(m(x2, x3), x4) m(m(x2, x3), x4) m(m(x2, x3), x4)

m(x2,m(x3, x4)) m(x2,m(x3, x4))

α

α α

α

α

α α

A

where the vertical dotted arrows are rewriting steps involving λ (this is the only critical
branching between λ and A and there are three critical branchings between ρ and A).

Lemma 86. The 2-ars P′ is locally confluent.

Proof. We can deduce local confluence of P′ from the one of P: given a local branching
with t as source, it is confluent in P by lemma 81 and thus in P′. Namely, since t lies in P′,
the whole diagram does by property (2) shown in the proof of lemma 85 above.

Given a term t, we write ∥t∥ the list of variables occurring in it, from left to right,
e.g. ∥m(m(x2, e), x1)∥ = x2x1. We order variables by xi ⪰ xj whenever i ≤ j and ex-
tend it to lists of variables by lexicographic ordering. Given terms t and u, we write t ⪰ u
when ∥t∥ is greater than u according to the preceding order.

Lemma 87. The preorder ⪰ is well-founded on affine terms with fixed arity.

Proof. Any infinite decreasing sequence t1 ≻ t2 ≻ . . . of terms, would induce an infinite
decreasing sequence ∥t∥1 ≻ ∥t∥2 ≻ . . . of lists of variables, but there is only a finite number
of those since we consider affine terms (so that there are no repetitions of variables) of fixed
arity (so that there is a finite number of variables).

A rewriting step ρ : t ⇒ u in P′
1 is decreasing when t ≻ u. We write P′′ for the 2-ars

obtained from P by

– removing from P′
1 all the rewriting steps of the form

C[γ(t1, t2)] : C[m(t1, t2)] ⇒ C[m(t2, t1)]

which are not decreasing,
– replacing in the source or target of a relation in P′

2 all the non-decreasing steps C[γ(t1, t2)]
by C[γ(t2, t1)

−].

Lemma 88. The 2-ars P′ and P′′ present isomorphic groupoids.

Proof. This is a direct application of lemma 30, because P′
3 contains the coherence rules

C[m(t2, t1) ◦ f ]

C[m(t1, t2) ◦ f ] C[m(t1, t2) ◦ f ]

C[γ(t2,t1)◦f ]C[γ(t1,t2)◦f ]

C[F◦f ]
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which allow us to conclude.

Lemma 89. The 2-ars P′′ is terminating on affine terms and locally confluent.

Proof. By “terminating on affine terms”, we mean here that there is no infinite sequence of
rewriting steps t0 → t1 → . . . where the t0 is affine. Note that the property of being affine,
as well as the variables occurring in terms, are preserved by rewriting steps, so that all the
ti are also necessarily affine in this situation. In order to show termination, we can take the
lexicographic product of the orders ⪰ of lemma 87 and the one of example 70. This order is
well-founded as a lexicographic product of well-founded orders. The rewriting steps involving
γ are strictly decreasing wrt ⪰ (by definition of P′′). The rewriting steps involving α are
left invariant by ⪰ but are strictly decreasing wrt the second order. We deduce that P′′ is
terminating.

We have seen in lemma 86 that P′ is locally confluent. We thus have that P′′ is also
locally confluent because the confluence diagrams involving γ (namely G, H, I and J) only
require decreasing instances of rewriting rules involving γ.

As a direct consequence, we have:

Lemma 90. Given two rewriting paths p, q : t
∗→ u in P′′ such that t is affine, we have that

u is also affine an t
∗⇔ u.

Proof. By lemma 89, the restriction of P′′ to affine terms is terminating and locally confluent,
thus confluent by proposition 36 and thus coherent by proposition 40.

From the properties shown in section 2.3, we deduce that P′′ is coherent and we can thus
conclude to the following coherence theorem:

Theorem 91. In a symmetric monoidal category, every diagram whose 0-source is a tensor
product of distinct objects, and whose morphisms are composites and tensor products of
structural morphisms, commutes.

Proof. Fix a symmetric monoidal category C. By proposition 79, it can be seen as a product
preserving functor SMon → Cat. A coherence diagram in C thus corresponds to a pair of

rewriting paths p, q : t
∗⇒ u in SMon∗2 for some terms t and u of a given arity n. Thus of

paths p, q : t
∗→ u in S∗1 with S = SMon(n, 1). Writing P = SMon′(n, 1), we have

S(p, q) ∼= P(p, q) by proposition 80

∼= P
′
(p, q) by lemma 85,

∼= P
′′
(p, q) by lemma 88,

∼= 1 by lemma 90,

from which we conclude.

4. Future works

We believe that the developed framework applies to a wide variety of algebraic structures,
which will be explored in subsequent work. In fact, the full generality of the framework
was not needed for (symmetric) monoidal categories, since the rules of the corresponding
theory never need to duplicate or erase variables (and, in fact, those can be handled by
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traditional polygraphs [27, 15]). This is however, needed for the case of rig categories [29],
which feature two monoidal structures ⊕ and ⊗, and natural isomorphisms such as δx,y,z :
x⊗ (y⊕ z) → (x⊗ y)⊕ (x⊗ z) (note that x occurs twice in the target), generalizing the laws
for rings. Those were a motivating example for this work, and we will develop elsewhere a
proof of coherence of those structures based on our rewriting framework, as well as related
approaches on the subject [8, Appendix G].

Also, the importance of the notion of polygraph can be explained by the fact that they
are the cofibrant objects in a model structure on ω-categories [28, 3]. It would be interesting
to develop a similar point of view for higher term rewriting systems: a first step in this
direction is the model structure developed in [50].
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[9] Albert Burroni. Higher-dimensional word problems with applications to equational logic. Theoretical

computer science, 115(1):43–62, 1993.
[10] Florence Clerc and Samuel Mimram. Presenting a category modulo a rewriting system. In 26th Inter-

national Conference on Rewriting Techniques and Applications (RTA 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

[11] Jonathan Asher Cohen. Coherence for rewriting 2-theories. PhD thesis, Australian National University,
2008. arXiv:0904.0125.

[12] Benjamin Dupont and Philippe Malbos. Coherent confluence modulo relations and double groupoids.
Journal of Pure and Applied Algebra, 226(10):107037, 2022. arXiv:1810.08184.
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