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Abstract

The standard chromatic subdivision of the standard simplex is a com-
binatorial algebraic construction, which was introduced in theoretical dis-
tributed computing, motivated by the study of the view complex of layered
immediate snapshot protocols. A most important property of this con-
struction is the fact that the iterated subdivision of the standard simplex
is contractible, implying impossibility results in fault-tolerant distributed
computing. Here, we prove this result in a purely combinatorial way, by
showing that it is collapsible, studying along the way fundamental combi-
natorial structures present in the category of colored simplicial complexes.

1 Introduction
Fault-tolerant distributed computing is concerned with determining algorithms,
when possible, solving so-called decision tasks on a given distributed architec-
ture, in the presence of faults. Distributed architectures can be message-passing
distributed machines, where a set of processors compute in their local memory,
synchronize and communicate by sending and receiving messages over a net-
work. They can also be shared-memory concurrent machines, where processors
compute and communicate through shared locations, where reads and writes are
supposed to be “atomic”, which means that they are run in mutual exclusion.
Here, we are considering the latter model, which has an equivalent presentation
where processors are executing the following steps: scanning the entire shared
memory (and copying it in their local memory), computing in its local memory,
and then updating its “own value”, i.e. writing the outcome of its computation
in a specific location in global memory, assigned to him only. There are two
main types of fault models that are generally considered in the literature: crash
failures, where any of the processors may die unexpectedly during computation
while scanning or updating their value, and byzantine failures where any of the
processors can carry on computation without dying, but instead update unpre-
dictable values in global memory. In what follows, we study a mathematical
model of the sets of reachable configurations of shared-memory protocols, in
the presence of crash failures only.

The seminal result in this field was established by Fisher, Lynch and Pat-
terson in 1985 [8]. They proved that there exists a simple task that cannot be
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solved in a message-passing (or equivalently a shared memory) system with at
most one potential crash. In particular, there is no way in such a distributed
system to solve the very fundamental consensus problem: each processor starts
with an initial value in local memory (typically an integer), and should end up
with a common value, which is one of the initial values.

This created a very active research area, see for instance [18, 12]. Later
on, Biran, Moran and Zaks developed a characterization of the decision tasks
that can be solved by a (simple) message-passing system in the presence of one
failure [2]. The argument uses a “similarity chain”, which could be seen as a con-
nectedness result of a representation of the space of all reachable states, that we
call here the view complex [16] or the (full information) protocol complex [14].
Of course, this argument turned out to be difficult to extend to models with
more failures, as higher-connectedness properties of the view complex matter
in these cases. This technical difficulty was first tackled, using homological
calculations, by Herlihy and Shavit [13] (and independently [3, 21]): there are
simple decision tasks, such as consensus once again, that cannot be solved in
the wait-free asynchronous model, i.e. shared-memory distributed protocols on
n processors, with up to n − 1 crash failures. Then, the full characterization
of wait-free asynchronous decision tasks with atomic read and writes on regis-
ters was described by Herlihy and Shavit [14]. This relies on the central notion
of chromatic (or colored) simplicial complexes, and subdivisions of those. All
results above are deduced from the contractibility of the so-called “standard”
chromatic subdivision, which was completely formalized in [16] and corresponds
to the view complex of distributed algorithms solving layered immediate snap-
shot protocols. Until recently, this so-called standard chromatic subdivision was
not actually shown to be a subdivision. Here, we prove this result in a purely
combinatorial way, by showing that it is collapsible, a fact that was also inde-
pendently shown by Kozlov [17]. In doing so, we elaborate generic tools to make
such proofs, and extend the result to the iterated subdivision, as arising in more
general iterated protocols.

Contents of the paper and main contributions. In Section 2, we begin
by defining a category of simplicial complexes (Section 2.1), from which we de-
rive a category of colored simplicial complexes as a slice category (Section 2.2).
We study combinatorial structures in those categories, most importantly by in-
troducing a colored join operation, similar to the one defined in [4]. We also
recall the classical notion of collapse from simple homotopy theory (Section 2.3).
In Section 3, we abstractly define the standard chromatic subdivision of a col-
ored simplicial complex by extending a folklore definition of the barycentric
subdivision (Section 3.1), then study the collapsibility of the basic subdivision
of the standard simplex, which can be seen as a “toy version” of the standard
chromatic subdivision (Section 3.2), and finally extend these constructions in or-
der to show that the standard chromatic subdivision is collapsible (Section 3.4),
which requires to understand in details the interaction between joins and sim-
ple homotopy (Section 3.3). This is the first major contribution of this paper,
that determines collapsibility sequences using different techniques than the ones
used in [17]. We think that these techniques should lead us to extending our
work to more general complexes, arising from more general distributed archi-
tectures. The second major contribution of this article is the extension of these
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results to the iterated subdivision (Section 4). In order to do so, we first em-
bed simplicial complexes into a presheaf category (Section 4.1) which is much
more well behaved with respect to collapses, we then briefly extend the tools in
simple homotopy to this case (Section 4.2) and finally show in this setting that
the iterated subdivision is collapsible (Section 4.3). We conclude with further
directions for this work in Section 5.

2 Simplicial complexes
There are two main ways to represent the combinatorial objects that we are
manipulating, which are closely related: simplicial complexes and presimplicial
sets. While most constructions can be performed similarly in both settings, we
chose to use mainly simplicial complexes, because they are easier to describe,
and we recall the main definitions in this section, stated in a categorical setting
(more details can be found in many places such as [15]). It will turn out however,
that the second representation, as presheaves, has its own advantages and it will
be explained and used in Section 4.

We write [n] for the set [n] = {0, . . . , n} with n + 1 elements, and Sn for
the group of permutations on [n]. Given a set X, we write #X for the cardinal
of X.

2.1 Simplicial complexes
We only consider abstract simplicial complexes in this article, and simply call
them simplicial complexes in the following.

Definition 1. A simplicial complex (K,K) is a pair consisting of

• a set K of vertices,

• together with a set K of finite subsets of K called simplices,

such that

• K is non-empty,

• for every vertex x ∈ K, we have {x} ∈ K,

• if σ ∈ K and τ ⊆ σ then τ ∈ K.

Given two simplices σ and τ , with τ ⊆ σ, in a given simplicial complex, we say
that τ is a face of σ and that σ is a coface of τ .
Remark 2. In the above definition, requiring K to be non-empty amounts to
require ∅ ∈ K by the last condition of Definition 1. So, for instance the empty
simplicial complex (∅, {∅}) is valid, but the void simplicial complex (∅, ∅) is not.
This is not fundamental, and dropping this non-emptyness condition actually
leads to a richer structure (the category is not anymore pointed if we allow the
void simplicial complex, see Remark 16). However, the geometrical interpre-
tation is less clear, and in particular there is no obvious geometric realization
functor anymore. Notice that instead of requiring ∅ ∈ K, we could as well have
required that simplices are non-empty, but this makes some constructions, such
as the join (Definition 9), less natural to express: the simplices of K ? L are of
the form σ|τ where σ or τ can be empty.
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Remark 3. When we know that the set of vertices of a simplicial complex K is
a subset of a given set X, i.e. K ⊆ X, the set of vertices can be recovered by

K = {x ∈ X | {x} ∈ K}

This explains why in the following we will often identify a simplicial com-
plex (K,K) with the underlying setK of simplices, when a bigger set containing
the vertices is clear from the context.

Definition 4. The dimension of a simplex σ is given by

dimσ = #σ − 1

More generally, given a set X, we write

dimX = #X − 1

in the following. The dimension of a complex K is

dimK = sup {dimσ | σ ∈ K}

A complex K is finite-dimensional when dimK <∞.

Definition 5. A morphism

f : K → K ′

of simplicial complexes consists of a function

f : K → K ′

which

• preserves simplices: for every σ ∈ K, f(σ) ∈ K ′,

• is locally injective: for every σ ∈ K, the restriction of f to σ is injective.

We write SC for the category of simplicial complexes.

Most of the morphisms we consider are going to be monomorphisms, which are
those for which the function on vertices is injective (not only locally, in the
above sense). This is in particular the case for inclusions f : K ↪→ K ′, where
K ⊆ K ′, and therefore K ⊆ K ′, and f is this inclusion of K into K ′ (in this
case, we also say that K is a subcomplex of K ′).

Remark 6. Requiring functions to be locally injective instead of considering all
functions preserving simplices is roughly the same as using presimplicial sets
instead of simplicial sets. This does not play a major role in the following
constructions. As explained above, we could also have restricted to injective
functions for most of the paper. The only place where it is really important to
consider locally injective functions, which motivates our choice in the definition
of the category, is when defining colored complexes using a slice construction
in Section 2.2: it ensures that colors of two vertices in the same simplex are
distinct.
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Definition 7. Given a finite set I, the standard I-simplicial complex ∆I

is the complex with I as the set of vertices and all subsets of I as simplices. We
write ∆n instead of ∆[n] for n ∈ {−1} ∪ N.

Remark 8. Notice that an endomorphism f : ∆n → ∆n in SC is simply a
bijective function [n]→ [n], i.e. we have a group isomorphism

SC(∆n,∆n) ∼= Sn

Therefore, given a simplicial complex K, SC(∆n,K) is equipped with a struc-
ture of left Sn-module by precomposition with elements of SC(∆n,∆n). This
can enable us to formulate an analogue to Yoneda lemma in this context as
follows. Given a complex K, and n ∈ {−1} ∪ N, we write Kn for the set of
n-dimensional simplices of K:

Kn = {σ ∈ K | dimσ = n}

We have the following isomorphism of left Sn-modules:

Sn ×Kn
∼= SC(∆n,K)

The join of two simplicial complexes can be defined as follows, see [6] for a
study of this operation in the setting of simplicial sets.

Definition 9. Given two simplicial complexes K and L, their join K ?L is the
simplicial complex whose

• vertices are
K ? L = K ] L

• simplices are

K ? L = {σ ⊆ K ] L | σ ∩K ∈ K and σ ∩ L ∈ L}

Given σ ∈ K and τ ∈ L, we often write σ|τ for the simplex σ ] τ in K ? L
obtained by disjoint union:

K ? L = {σ|τ | σ ∈ K and τ ∈ L}

The neutral element for the join operation is the simplex 1 = {∅}. Given
morphisms f : K → K ′ and g : L→ L′, we write

f ? g : K ? L → K ′ ? L′

for the morphism defined as f ] g : K ] L→ K ′ ] L′ on vertices.

Remark 10. Notice that dim(σ|τ) = dim(σ) + dim(τ) + 1.
Remark 11. Suppose given σ|τ ∈ K?L and σ′|τ ′ ∈ K?L. We have σ|τ ⊆ σ′|τ ′ if
and only if σ ⊆ σ′ and τ ⊆ τ ′. Moreover, we have (σ|τ)∪(σ′|τ ′) = (σ∪σ′)|(τ∪τ ′).

Lemma 12. The join operation together with 1 equips SC with a (symmetric)
monoidal category structure.

Remark 13. For this definition to work, we have to allow ∅ as an element of K
as noticed in Remark 2.
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Lemma 14. Given two disjoint finite sets I and J , we have

∆I ?∆J = ∆I∪J

Lemma 15. Given two simplicial complexes K and L their coproduct K + L
is the simplicial complex whose

• vertices are
K + L = K ] L

• simplices are

K + L = {σ|τ ∈ K ? L | σ = ∅ or τ = ∅}

The neutral element is the complex 0 = {∅}.

Remark 16. Notice that 0 = 1. If we had allowed the void complex ∅ (not
even containing ∅ as a simplex) then constructions would have been the same
excepting that we would have defined 0 = ∅ 6= {∅} = 1.

Remark 17. Since the terminal object is the same as the initial object in our
category (0 = 1 is a zero object and the category is pointed), for every pair of
objects K and L, there is a canonical arrow

K → 1 = 0 → L

Because of this, there is a canonical arrow

K + L → K ? L

namely, writing iK : 0→ K for the initial arrow, we have

K + L ∼= K ? 1 + 1 ? L = K ? 0 + 0 ? L
idK ?iL+iK?idL−−−−−−−−−−→ K ? L

More explicitly, this morphism sends σ ∈ K to σ|∅ and τ ∈ L to ∅|τ .

Definition 18. Given a simplicial complex K and σ ⊆ K with σ 6= ∅, we define
the simplicial complex K \ σ, called the removal of σ in K or a restriction
of K, as the simplicial complex such that K \ σ ⊆ K and

K \ σ = K \ {τ ∈ K | σ ⊆ τ}

Remark 19. Notice that K \ ∅ is not defined.

Definition 20. The boundary of ∆I is ∂∆I = ∆I \ I.

Lemma 21. Given simplices σ, τ ∈ K, we have

(K \ τ) \ σ = (K \ σ) \ τ and (K \ σ) \ σ = K \ σ

Given a set Σ = {σ1, . . . , σk} ⊆ K, we can therefore define

K \ Σ = ((K \ σ1) . . .) \ σk
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Remark 22. Notice that there is a canonical inclusion morphism

K \ Σ ↪→ K

since the set of vertices (resp. simplices) of the first is a subset of the vertices
(resp. simplices) of the second.

Remark 23. There is an ambiguity in the notations, which hopefully will not
lead to confusions: the expression K \ ∅ can either denote the removal in K of
the empty set of vertices (in which case it is not defined as per Remark 19), or
the removal in K of the empty set of simplices (in which case we have K \∅ = K
following the definition given in Lemma 21).

Lemma 24. Suppose given a complex K and two sets Σ and T of simplices
of K. Then

K \ Σ = K \ T

if and only if

∀τ ∈ T, ∃σ ∈ Σ, σ ⊆ τ and ∀σ ∈ Σ,∃τ ∈ T, τ ⊆ σ

Proof. Suppose that the equality holds. In particular, K \ Σ ⊆ K \ T . Given
τ ∈ T , if for every σ ∈ Σ we have σ 6⊆ τ then τ ∈ K \Σ and therefore τ ∈ K \T ,
which is absurd. Therefore there exists σ ∈ Σ such that σ ⊆ τ . The other
direction is similar.

Conversely, suppose that the property on Σ and T holds. Let υ ∈ K \ Σ,
then for every σ ∈ Σ we have σ 6⊆ υ. Therefore for every τ ∈ T we do not have
τ ⊆ υ because there exists σ ∈ Σ such that σ ⊆ τ and υ ∈ K \ T . We have
shown K \ Σ ⊆ K \ T and the other inclusion is similar.

Remark 25. In the above lemma, the elements of Σ and T are supposed to be
simplices of K and not simply subsets of K. Otherwise the lemma is not true.
Namely, consider σ ⊆ K which is not a simplex of K. Then K \ σ = K \ ∅
(where ∅ denotes the empty set of simplices, as opposed to the empty set of
vertices whose removal would not be properly defined as per Remark 19) in
contradiction with previous lemma.

Definition 26. Given a simplicial complexK, the star st(σ) of a simplex σ ∈ K
is the simplicial subcomplex of K whose simplices are

st(σ) = {τ ∈ K | σ ∪ τ ∈ K}

Definition 27. Given a simplicial complex K, the open star ost(σ) of a sim-
plex σ ∈ K is the set of cofaces of σ in K:

ost(σ) = {τ ∈ K | σ ⊆ τ ∈ K}

We sometimes write stK(σ) (resp. ostK(σ)) in order to make it clear that the
(open) star is computed in the complex K. Given a set Σ ⊆ K of simplices,
we sometimes use the expected notation st(Σ) =

⋃
σ∈Σ st(σ) and similarly for

ost(Σ).

Remark 28. The open star operation does not generally define a simplicial com-
plex.
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Remark 29. We always have ost(σ) ⊆ st(σ).

Remark 30. Given a simplicial complex K, st(∅) = ost(∅) = K.

Remark 31. The condition of Lemma 24 can be reformulated as Σ ⊆ ost(T ) and
T ⊆ ost(Σ).

Lemma 32. Given two simplicial complexes K and L and a simplex σ|τ ∈ K?L,
we have

stK?L(σ|τ) = stK(σ) ? stL(τ)

and
ostK?L(σ|τ) = ostK(σ) ? ostL(τ)

Proof. Follows immediately from Remark 11.

2.2 Colored complexes
We now define the category of colored complexes, a variant of simplicial com-
plexes where vertices have an attributed color, as a slice category. We write Inj
for the category of sets and injective functions.

Definition 33. The labeling functor ! : Inj → SC is the functor which to
a set X associates the simplicial complex !X, with X as set of vertices and all
finite subsets of X as simplices (i.e. for any finite set I, we have ! I = ∆I), and
to an injective function f : X → Y associates the function f itself.

Definition 34. The category of colored complexes is the slice category

CSC = SC/ !N

An object (K, `K) in this category consists of a simplicial complex K together
with a morphism `K : K → !N called its coloring. A morphism f : K → L is
a morphism of simplicial complexes such that `L ◦ f = `K .

K

`K ''

f // L

`Lxx
!N

Remark 35. Because the morphisms of SC are locally injective functions, the
labeling is given by a function ` : K → N such that, for any two vertices
x, y ∈ K, if there exists σ ∈ K such that x ∈ σ and y ∈ σ then `(x) 6= `(y),
i.e. two vertices in the same simplex have different colors.

Remark 36. It is the comma category SC/ ! that really deserves to be called the
category of colored complexes. However, in the following, we will only consider
the case where colors are integers and morphisms act trivially on colors, which
is why we restricted to the category of Definition 34, making notations lighter.
We refer the reader to [19] for the definition of comma categories.

Remark 37. Notice that, as with any slice category, projection on the first factor
provides a forgetful functor CSC = SC/ !N→ SC.

Definition 38. The colored standard I-complex is ∆I colored with `(i) = i
for every vertex i ∈ I.
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The following definition, which plays a fundamental role in this work, had a
first occurrence in [4].

Definition 39. Given two colored complexesK and L, their colored joinK?cL
is the colored simplicial complex whose

• vertices are
K ?c L = K ] L

colored by `K ] `L

• simplices are

K ?c L = {σ|τ | σ ∈ K and τ ∈ L and `K(σ) ∩ `L(τ) = ∅}

We usually simply write ? instead of ?c in the following: given two colored
complexes K and L, K ? L will always denote their colored join. Intuitively,
K ?c L is the biggest subcomplex of K ? L which is well-colored, in the sense
that two distinct vertices of a simplex have distinct colors.

Remark 40. Suppose that K and L are complexes with disjoint sets of colors,
i.e. that we have `K(K) ∩ `L(L) = ∅. Then the join and the colored join
coincide: more precisely, writing U : CSC → SC for the forgetful functor (see
Remark 37), we have U(K ?c L) = UK ? UL.

The restriction operation can also be extended to the colored setting in a
straightforward way.

2.3 Simple homotopy
The main tool we are going to use to show that a simplicial complex is con-
tractible is the notion of simplicial collapse due to Whitehead [22], see also [5]
for a modern introduction to the subject. Collapsibility to a point implies con-
tractibility (see the classical Theorem 49), but the contrary is false, see for
instance Bing’s house with two rooms [1].

Definition 41. Suppose that K is a simplicial complex of finite dimension and
σ, τ ∈ K are two simplices. The simplex τ is a free face of σ when the following
two conditions are satisfied:

1. τ ⊆ σ and τ 6= σ,

2. σ is a maximal (w.r.t. inclusion) simplex of K and no other maximal
simplex of K contains τ .

For such a pair (τ, σ), we call K \ τ a collapse step of K. If additionally we
have dim τ = dimσ − 1, then this is called an elementary collapse step. A
collapse is a finite sequence of collapse steps. A simplicial complex that has
a finite sequence of collapses to a point is called collapsible, where a point is
a complex isomorphic to ∆0. The equivalence relation on simplicial complexes
generated by collapses is called simple homotopy.

Remark 42. Notice that we only consider collapses of complexes which are of
finite dimension, this will be implicitly checked in the following.
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By remark 22, when K collapses to K ′ there is a canonical monomorphism
K ′ → K. We thus more generally say that a morphism f : K ′ → K is a
collapse when there exists a collapse from K to K ′ such that the corresponding
monomorphism is f . By extension, morphisms obtained from collapses by pre-
and post-composing collapses by isomorphisms are also considered as collapses.
Example 43. Consider the following simplicial complex, whose set of vertices is
{0, 1, 2, 3} and whose maximal simplices are {0, 1, 2} and {1, 2, 3}:

1

120
01

02

012 123 3
13

23

2

The simplices {0} and {0, 1} are free faces of {0, 1, 2}, respectively giving rise
to the following collapses:

1

12 123 3
13

23

2

1

120
02

123 3
13

23

2

On the contrary, the simplices {1} and {1, 2} are not free faces. Note that the
free face {0, 1} induces an elementary collapse step. This is not the case for the
free face {0}, but there is an equivalent sequence of elementary collapse steps
from this free face:

1

120
01

02

012 123 3
13

23

2

↪→

1

120
02

123 3
13

23

2

↪→

1

12 123 3
13

23

2

Lemma 45 shows that this is in fact a general phenomenon: elementary collapse
steps generate all collapses.
Remark 44. As noticeable in previous example, we use a lighter notation for
sets in figures and simply write 012 instead of {0, 1, 2}, etc.

Lemma 45. Any collapse step (and thus collapse) can be decomposed as a
sequence of elementary collapse steps.

Proof. Notice that in the following, we use the close notations σ \ τ (for the
difference of sets of vertices) and K \ σ (for the removal of a simplex σ in a
simplicial complex K, see Definition 18).

Suppose that τ is a free face of σ in a simplicial complex K. We fix an
enumeration x1, . . . , xk of the elements of σ \ τ and write τi = τ ∪ {x1, . . . , xi}
for 0 ≤ i ≤ k: we have τ0 = τ , τk = σ and τi+1 = τi ∪ {xi+1}:

τ = τ0
x1

⊆ τ1
x2

⊆ τ2
x3

⊆ . . .
xk

⊆ τk = σ

First, notice that τk−1 is a free face of σ in K, because τ is a free face of σ in K
and τ ⊆ τk−1 ( σ. Moreover, given i with 0 < i < k, we show that τi−1 is a
free face of σ \ {xi} in K \ τi:
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• both cells are actually in K \ τi by an easy verification, and we have
τi−1 ( σ \ {xi} because τi ( σ and τi = τi−1 ] {xi},

• σ\{xi} is maximal inK\τi: otherwise there is a simplex σ′ = (σ\{xi})∪{x}
in K \ τi, with x 6= xi (otherwise τi ⊆ σ′ = σ and therefore σ′ 6∈ K \ τi),
which contradicts the fact that τ is a free face of σ inK since τ ⊆ (σ\{xi})∪{x} 6⊆ σ,

• σ \ {xi} is the only maximal coface of τi−1 in K \ τi: given σ′ in K \ τi
such that τi−1 ⊆ σ′, we have τ ⊆ σ′ in K and therefore σ′ ⊆ σ since τ is a
free face of σ in K, and xi 6∈ σ′ (otherwise τi ⊆ σ′, and thus σ′ 6∈ K \ τi)
therefore σ′ ⊆ σ \ {xi}.

We have thus constructed a sequence of elementary collapse steps

K \ τ = K \ τ1 \ τ ↪→ K \ τ1 = K \ τ2 \ τ1 ↪→ . . . ↪→ K \ τk−1 ↪→ K \ σ

which allows us to conclude (above, we have (K \ τi+1) \ τi = K \ τi because
τi ⊆ τi+1).

Definition 46. Given a finite set I ⊆ N and p ∈ I, we write

ΛIp = ∆I \ σ

where σ is the simplex σ = I \ {p}.

Notice that the inclusion
ΛIp ↪→ ∆I

is an elementary collapse step, and conversely, every elementary collapse step
of ∆I can be described in this way, for some p ∈ I. More generally, every
elementary collapse step can be generated by the above family of collapse steps
as follows (this is simply a reformulation of the definition of an elementary
collapse step).

Lemma 47. An inclusion K ↪→ L is an elementary collapse step if and only
if there exists an inclusion ΛIp ↪→ K for some finite set I and p ∈ I such that
K ↪→ L is part of a pushout cocone of the form

L

∆I

77

K

ff

ΛIp

ff 99 (1)

and there is no inclusion ∆I
p ↪→ K making the following diagram commute:

K

ΛIp

99

// ∆I
p

ff
(2)

Remark 48. Notice that with K = L = ∆I , the diagram (1) is a pushout, which
shows why we need condition (2) : the identity on ∆I is not an elementary
collapse step. This situation is intuitively due to the fact that in a simplicial
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complex, two simplices having the same set of vertices are necessarily equal.
We will see in Section 4 that we can embed the category CSC into a presheaf
category in which we can represent “complexes” having multiple simplices with
the same vertices, and is thus much better suited w.r.t. pushouts of collapses.

The following, which is a classical theorem, shows that collapsibility can be
used to show the contractibility of a simplicial complex in an algebraic way [22].

Theorem 49. Every collapsible complex is contractible.

Lemma 50. ∆I is collapsible for I ⊆ N finite and non-empty.

Proof. By induction on dim I. The result is immediate when dim I = 0 because
∆I is a point. Otherwise, pick i ∈ I. The simplex {i} is a free face of I in ∆I

because I is the unique maximal simplex and ∆I is finite (see Remark 42).
Therefore the inclusion ∆I \ {i} ↪→ ∆I is a collapse. It can easily be checked
that ∆I \{i} = ∆I\{i} and we can conclude using the induction hypothesis.

Often, one can perform many different collapse steps on a given complex. It
can be useful to perform them all at once. The following proposition provides
a useful such case in which this is possible.

Proposition 51. In a simplicial complex K, suppose that we are given a finite
family (τi, σi)i∈I of pairs of simplices such that, for every i, j ∈ I, τi is a free
face of σi in K and τi ⊆ σj implies i = j. Then the inclusion

K \ τI ↪→ K

is a collapse, where τI = {τi | i ∈ I}.

Proof. By induction on the cardinal of I. The base case where the family is
empty is trivial. Otherwise, pick i ∈ I and write K ′ = K \ τI\{i}. By definition
of K ′, σi ∈ K ′ because otherwise there would exist j ∈ I \ i such that τj ⊆ σi
which contradicts the hypothesis. Similarly, τi ∈ K ′ because otherwise there
would exist j ∈ I \ i such that τj ⊆ τi ⊆ σi which contradicts the hypothesis.
Moreover, since K ′ is included in K, σi is still maximal in K ′ and is the unique
maximal coface of τi in K ′. Indeed, suppose for contradiction that τi ⊆ σ′i for
some maximal simplex σ′i ∈ K ′. Since K is supposed to be finite-dimensional
(see Remark 42), σ′i is a face of some maximal simplex σ′′i in K. Since τi is a
free face of σi, necessarily σ′′i = σi and therefore σ′i = σi because σi ∈ K ′ and
σ′i is supposed to be maximal. Finally, τi is a free face of σi in K ′ and therefore
the inclusion K \ τI = K ′ \ τi ↪→ K is a collapse.

Remark 52. In the previous proposition, the hypothesis that τi ⊆ σj implies
i = j can be replaced by the equivalent one that the σi are pairwise distinct.

Finally, the following proposition will be used in order to extend a collapse
of a subcomplex to a collapse of the bigger complex.

Lemma 53. Suppose that we are given two complexes K and L and an inclusion
K ↪→ L. Suppose moreover that the inclusion

K \ υ ↪→ K

12



is a collapse for a given simplex υ ∈ K. If the cofaces of υ in L are also in K,
then the inclusion

L \ υ ↪→ L

is also a collapse.

Proof. SinceK\υ ↪→ K is a collapse, there exists a sequence of pairs of simplices
(τ1, σ1), . . . , (τk, σk) such that τi+1 is a free face of σi+1 in Ki = K \{τ1, . . . , τi},
forming a sequence of collapse steps

K \ υ = Kk ↪→ Kk−1 ↪→ . . . ↪→ K1 ↪→ K0 = K

Since K \ υ = Kk = K \ {τ1, . . . , τk}, we have υ ⊆ τi for every index i by
Lemma 24. Therefore the cofaces of τi inK and in L coincide: ostK(τi) = ostL(τi)
for every index i. Writing Li = L\{τ1, . . . , τi}, we deduce easily that ostKi

(τi+1) = ostLi
(τi+1),

and therefore τi+1 is a free face of σi+1 in Li. Finally, we have a sequence of
collapse steps

L \ υ = Lk ↪→ Lk−1 ↪→ . . . ↪→ L1 ↪→ L0 = L

from which we can conclude, where the first equality is easy to justify using
Lemma 24.

Example 54. Consider the simplicial complexes K, whose only maximal simplex
is {0, 1, 2}, and L, whose maximal simplices are {0, 1, 2}, {0, 1, 3} and {0, 2, 3},
together with the obvious inclusion K ↪→ L:

1 12

012

2

0
01 02

↪→

1

13
013

12

012

2

023
23

0
01 02

03

3

With υ = {1, 2}, the inclusion K \ υ ↪→ K is a collapse, the cofaces of υ in L
are also in K, and therefore the inclusion L \ υ ↪→ L is also a collapse. On the
contrary, with υ′ = {0}, the inclusion K \ υ′ ↪→ K is a collapse, but the cofaces
of υ′ in L are not all in K (e.g. {0, 3}), and the inclusion L \ υ′ ↪→ L is not a
collapse (for instance, it does not reflect contractibility):

1 2

0
01 02

1

13
013

2

023
23

0
01 02

03

3

1 12 2 1

13

12 2

23

3
K \ {1, 2} L \ {1, 2} K \ {0} L \ {0}

Proposition 55. Given a complex K and a simplex σ ∈ K, if the inclusion

stK(σ) \ σ ↪→ stK(σ)

is a collapse then the inclusion

K \ σ ↪→ K

is also a collapse.

13



Proof. As noticed in Remark 29, the cofaces of σ are all contained in st(σ). We
can therefore apply Lemma 53.

Remark 56. The previous proposition can easily be generalized to sets of sim-
plices as follows: given a complex K and a set Σ ⊆ K of simplices, if the
inclusion map stK(Σ) \Σ ↪→ stK(Σ) is a collapse then the inclusion K \Σ ↪→ K
is also a collapse.

3 The standard chromatic subdivision of the stan-
dard simplex is collapsible

3.1 The standard chromatic subdivision
In this section, we adapt the usual definition of the barycentric subdivision to
the colored case. The abstract definition we based ours on is folklore, see for
instance [9]. We first begin by introducing a category of graphs that will be
used in the following.

Definition 57. We write Graph for the category of graphs G = (VG, EG),
with EG ⊆ VG × VG, which are irreflexive, i.e. (x, y) ∈ EG implies x 6= y. A
morphism f : G → H consists of a function f : VG → VH such that for every
(x, y) ∈ EG, we have (f(x), f(y)) ∈ EH .

A useful construction when studying a simplicial complex is its poset of faces
which is the poset of non-empty simplices of the complex ordered by inclusion.
In Definition 58, we introduce a variant of this definition, that we call the
graph of elements of the complex (by analogy with the category of elements
of a presheaf such as a presimplicial set). We introduce this variant because
its generalization to colored simplicial complexes (see Definition 64) naturally
gives rise to graphs with cycles (see Example 65) which do not correspond to
posets anymore: this also explains the peculiar definition of graphs we consider
in Definition 57, which can be seen as a generalization of the notion of poset
allowing some cycles.

Definition 58. The graph of elements El(K) of a simplicial complex K is
the graph whose elements are the non-empty simplices of K and there is an edge
τ → σ whenever τ ( σ. This construction extends to a functor El : SC→ Graph.

Definition 59. The nerve of a graph G = (VG, EG) is the simplicial complex
NG whose vertices are those of G and simplices are sets of the form {x1, . . . , xn}
with an edge xi → xj for any i < j. This construction extends to a func-
tor N : Graph→ SC.

Remark 60. Given a morphism of graphs f : G→ H, the fact that f preserves
edges ensures that Nf : NG → NH preserves simplices, and the fact that
graphs are supposed to be irreflexive ensures that Nf is locally injective. The
functor N is thus well-defined, and this explains why we have chosen to restrict
to irreflexive graphs in Definition 57.

Definition 61. The barycentric subdivision functor is χ = N ◦ El.

14



Example 62. Consider ∆1:
0 1

we have El(∆1):
{0, 1}

{0}

77

{1}

gg

and χ(∆1) = N(El(∆1)):

{0} {0, 1} {1}

Similarly for ∆2:
0

1 2

we have El(∆2):
{0, 1, 2}

{0, 1}

66

{0, 2}

OO

{1, 2}

hh

{0}

OO 66

<<

{1}

JJ

hh 66

{2}

bb

hh OO

and χ(∆2) = N(El(∆2)):

{0}

{0, 1} {0, 1, 2} {0, 2}

{1} {1, 2} {2}

The previous definitions can be adapted to the colored case as follows, which
is an abstract reformulation of the usual definition of the standard chromatic
subdivision [14]. We define a functor ! : Inj → Graph which to a set X
associates the graph with X as set of vertices and pairs (x, y) ∈ X × X with
x 6= y as edges.

Definition 63. The category of colored graphs is the slice categoryGraph/ !N.

Notice that an object of this category can be seen as a pair (G, `) where G is
a graph and ` : VG → N is a function such that for every edge (x, y) we have
`(x) 6= `(y).

Definition 64. We can define a functor

El : SC/ !N → Graph/ !N

which to every simplicial complex K associates the graph whose vertices are
pairs (σ, i) where σ ∈ K and i ∈ `K(σ), labeled by i, and there is an edge
(τ, i)→ (σ, j) whenever

1. i 6= j,

15



2. τ ⊆ σ,

3. j 6∈ `K(τ) or σ ⊆ τ .

In the other direction, we can define a functor

N : Graph/ !N → SC/ !N

which to a colored graph (G, `) associates the simplicial complex with VG as
set of vertices, labeled by `, simplices being sets of the form {x1, . . . , xn} such
that there is an edge xi → xj whenever i < j. The standard chromatic
subdivision functor is

χ = N ◦ El : CSC → CSC

Example 65. Consider the labeled complex ∆1:

0 1

we have El(∆1):

{0, 1} , 1
--
{0, 1} , 0mm

{0} , 0

55

{1} , 1

ii

and χ(∆1) = N(El(∆1)):

{0} , 0 {0, 1} , 1 {0, 1} , 0 {1} , 1

Consider the labeled complex ∆2:

0

1 2

we have El(∆2):

012, 2 --rr ++
012, 1oo -- 012, 0oo

01, 1

OO

// 01, 0kk

hh

02, 2

66

// 02, 0ll

hh

12, 2

66

// 12, 1kk

OO

0, 0

CC

OO 33

44

1, 1

kk

jj

33

44

2, 2

kk

jj

OO

[[

and χ(∆2) = N(El(∆2)) is

0, 0

01, 1 02, 2

01, 0 012, 2 012, 1 02, 0

012, 0

1, 1 12, 2 12, 1 2, 2

16



3.2 The basic chromatic subdivision of the standard sim-
plex

Before showing the contractibility of the standard chromatic subdivision of the
standard simplicial complex, we first investigate a simpler complex as a toy
example: the colored join

KI = ∂∆I ?∆I

where I ⊆ N is a finite set, which we call the basic chromatic subdivision fol-
lowing [4]. We write n = dim I. The simplices of KI are of the form σ|τ with
σ, τ ⊆ I such that

1. σ 6= I (by definition of ∂∆I)

2. σ ∩ τ = ∅ (by definition of the colored join)

Given an integer n, we sometimes write Kn instead of K [n]. The simplex ∅|I is
called the central simplex of KI .

Example 66. K0 is
|0

(we sometimes write |σ instead of ∅|τ), K1 is

0|
0|1

|1
|01

|0
1|0

1|

and K2 is

0|

01|

0|2 0|12 0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2

1|0

12| 2|
2|0

2|1

Lemma 67. The canonical inclusion

∆I ↪→ ∂∆I ?∆I = KI

σ 7→ ∅|σ

is a collapse.

Proof. Given k ≥ 0, we write

Σk =
{
σ|∅ ∈ KI

∣∣ dimσ = k
}

and
KI
k = KI \

⋃
k′≥k

Σk′

17



i.e.

KI
k =

{
KI when k > n

KI
k+1 \ Σk when 0 ≤ k ≤ n

Notice that KI
k is KI restricted to simplices σ|τ satisfying dimσ < k. A simplex

σ|∅ ∈ Σk is therefore a free face of σ|τ in KI
k+1 with τ = I \ σ and we thus

have a collapse KI
k = KI

k+1 \Σk ↪→ KI
k+1 by Proposition 51. We constructed a

sequence of collapses

KI
0 ↪→ KI

1 ↪→ . . . ↪→ KI
n−1 ↪→ KI

n = KI

Moreover, a simplex of KI
0 is a simplex σ|τ of KI with dimσ < 0. The simplices

of KI
0 are thus of the form ∅|τ with τ ∈ ∆I .

Example 68. The collapse of K2 onto ∆2 goes as follows:

K2 = K2
2 =

0|

01|

0|2
0|12

0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2

1|0

12| 2|
2|0

2|1

K2
1 =

0|

0|2
0|12

0|1

|2 |12

1|02
|012

|1
2|01

|0
|02 |01

1|

1|2

1|0

2|
2|0

2|1

∆2 = K2
0 =

|2 |12

|012

|1

|0
|02 |01

Corollary 69. The simplex KI is collapsible.

Proof. We have shown in previous lemma that KI collapses to ∆I , and ∆I is
collapsible by Lemma 50.

An interesting remark one can make using the same ideas on those simplicial
complexes is that after removing the central simplex ∅|I, the complex contracts
to its boundary:

Lemma 70. The canonical inclusion

∂∆I ↪→
(
∂∆I ?∆I

)
\ ∅|I = KI \ ∅|I

σ 7→ σ|∅

18



is a collapse.

Proof. Given k ≥ 0, we write

Tk =
{
∅|τ ∈ KI

∣∣ dim τ = k
}

and
KI
k = KI \

⋃
k′≥k

Tk′

Notice that KI
k is KI restricted to simplices σ|τ satisfying dim τ < k. In

particular, KI
n = KI \ ∅|I. Given 0 ≤ k < n, a simplex ∅|τ ∈ Tk is a free face

of σ|τ in KI
k+1 with σ = I \ τ and we have a collapse KI

k = KI
k+1 \ Tk ↪→ KI

k+1

by Proposition 51. We thus get a sequence of collapses

KI
0 ↪→ KI

1 ↪→ . . . ↪→ KI
n−1 ↪→ KI

n = KI \ ∅|I

Finally, KI
0 is the restriction of KI to simplices of the form σ|∅ with σ ∈ ∂∆I .

Example 71. The collapse of K2 \ ∅|012 onto ∂∆2 goes as follows:

K2
2 =

0|

01|

0|2
0|12

0|1

02||201|2 |12

1|02

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2

1|0

12| 2|
2|0

2|1

K2
1 =

0|

01|

0|2 0|1

02||201|2 |1 02|1

|0
12|0

1|

1|2

1|0

12| 2|
2|0

2|1

∂∆2 = K2
0 =

0|

01| 02|

1| 12| 2|

19



Finally, we can remark that we can mimic elementary collapse steps on this
construction.

Lemma 72. Given p ∈ I, the canonical inclusion

ΛIp ↪→ ∂∆I ?∆I = KI

σ 7→ σ|∅

is a collapse.

Proof. We first remark that, writing I ′ = I \ {p}, the simplex I ′|∅ is a free face
of I ′| {p}. We thus have a collapse step

K ′ ↪→ KI

with K ′ = KI \ (I ′|∅). We write

Σk = {σ|p ∈ K ′ | dimσ = k}

and
K ′k = K ′ \

⋃
k′≥k

Σk′

i.e. K ′k is K ′ restricted to simplices σ|τ such that p ∈ τ implies dimσ < k.
Notice that K ′k = K ′ for k ≥ n − 1. Moreover, given −1 ≤ k < n − 1 and
σ|p ∈ Σk, the simplex σ|p is a free face of σ|(I \ σ) in K ′k+1 and we have a
collapse K ′k = K ′k+1 \Σk ↪→ K ′k+1 by Proposition 51. We have thus constructed
a sequence of collapses

K ′−1 ↪→ K ′0 ↪→ . . . ↪→ K ′n−1 = K ′

Notice that K ′−1 = K \ {∅|p, I ′|∅}. Finally, we write

Tk =
{
∅|τ ∈ K ′−1

∣∣ dim τ = k
}

and
K ′′k = K ′−1 \

⋃
k′≥k

Tk′

Notice that K ′′k = K ′−1 for k ≥ n and more generally, K ′′k consists of simplices
σ|τ ∈ K ′ such that p 6∈ τ and dim τ < k. Moreover, given 0 ≤ k < n and
∅|τ ∈ Tk, the simplex ∅|τ is a free face of (I \ τ)|τ in K ′′k+1, and we have a
collapse K ′′k = K ′′k+1 \Tk ↪→ K ′′k+1 by Proposition 51. We thus have constructed
a sequence of collapses

ΛIp = K ′′0 ↪→ K ′′1 ↪→ . . . ↪→ K ′′n = K ′−1

By the preceding remark, the simplices σ|τ ∈ K ′′0 are those in KI such that
τ = ∅ and σ 6= I ′, thus justifying the equality ΛIp = K ′′0 .
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Example 73. The collapse of K2 onto Λ
[2]
0 goes as follows.

K2 =

0|

01|

0|2
0|12

0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2

1|0

12| 2|
2|0

2|1

K ′ = K ′1 =

0|

01|

0|2
0|12

0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

1|

1|2

1|0

2|
2|0

2|1

K ′0 =

0|

01|

0|2
0|12

0|1

02||201|2 |12

|012

|1 02|1

|0
|02 |01

1|

1|2

2|

2|1

K ′−1 = K ′′2 =

0|

01|

0|2
0|12

0|1

02|
|201|2 |12 |1 02|1

1|

1|2

2|

2|1
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K ′1 =

0|

01|

0|2 0|1

02|
|201|2 |1 02|1

1|

1|2

2|

2|1

Λ
[2]
0 = K ′0 =

0|

01| 02|

1| 2|

3.3 Joins and simple homotopy
In this section, we show a bunch of useful lemmas relating joins and free faces.
For simplicity, we state them in the non-colored case, but those extend straight-
forwardly to the colored case, using Remark 40, when we suppose that the col-
ored complexes over which the join is taken have disjoint sets of colors, which
will be the case in our applications. We suppose that K is a simplicial complex
and I ⊆ N a finite set. We omit proofs when they are immediate.

Lemma 74. Given σ ∈ K, we have(
K ?∆I

)
\ (σ|∅) = (K \ σ) ?∆I

and the canonical inclusions into K ?∆I coincide.

Proof. We have K ?∆I =
{
σ|τ

∣∣ σ ∈ K and τ ∈ ∆I
}
. Thus,(

K ?∆I
)
\ (σ|∅) =

{
σ′|τ

∣∣ σ′ ∈ K and τ ∈ ∆I and σ|∅ 6⊆ σ′|τ
}

=
{
σ′|τ

∣∣ σ′ ∈ K and τ ∈ ∆I and σ 6⊆ σ′
}

=
{
σ′|τ

∣∣ σ′ ∈ K \ σ and τ ∈ ∆I
}

= (K \ σ) ?∆I

Definition 75. Given a morphism f : K ′ → K, we write K ?K′ ∆I for the
complex defined by the pushout

K ?K′ ∆I

K

66

K ′ ?∆I

ii

K ′
f

ii 44

where the map K ′ ↪→ K ′ ?∆I is the canonical inclusion map σ 7→ σ|∅ given by
Remark 17. The morphism f is often clear from the context, which is why we
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did not include it in the notation. The universal morphism

K ?K′ ∆I → K ?∆I

given by the inclusionK ↪→ K?∆I (see Remark 17) and f?∆I : K ′?∆I → K?∆I

is called the canonical inclusion:

K ?∆I

K ?K′ ∆I

OO

K

88

66

K ′ ?∆I

ii

hh

K ′
f

ii 44

Lemma 76. In the previous definition, when f : K ′ ↪→ K is an inclusion, the
simplex K ?K′ ∆I is the subcomplex of K ? L whose simplices are

K ?K′ ∆I = {σ|τ ∈ K ? L | σ ∈ K ′ or τ = ∅}

Lemma 77. Given σ ∈ K, we have(
K ?∆I

)
\ {σ| {i} | i ∈ I} = K ?K\σ ∆I

(where f : K \ σ ↪→ K is the canonical inclusion, see Remark 22) and the
canonical inclusions into K ?∆I coincide.

Proof. We have

(K ?∆I) \ {σ| {i} | i ∈ I}
=
{
σ′|τ

∣∣ σ′ ∈ K and τ ∈ ∆I and ∀i ∈ I, σ| {i} 6⊆ σ′|τ
}

=
{
σ′|τ

∣∣ σ′ ∈ K and τ ∈ ∆I and ∀i ∈ I, (σ 6⊆ σ′ or {i} 6⊆ τ)
}

=
{
σ′|τ

∣∣ σ′ ∈ K and τ ∈ ∆I and (σ 6⊆ σ′ or ∀i ∈ I, {i} 6⊆ τ)
}

=
{
σ′|τ

∣∣ σ′ ∈ K and τ ∈ ∆I and (σ 6⊆ σ′ or τ = ∅)
}

= K ?K\σ ∆I

Example 78. Consider the complex K1 of Example 66:

a
ab

b
bc

c
cd

d

and σ = bc. ThenK1?∆0 is pictured on the left and (K1?∆0)\(σ|I) = K1?K\σ∆0

is pictured on the right:

ab|0

|0

a|0 b|0 c|0 d|0

bc|0 cd|0
a|

ab|
b|

bc|
c|

cd|
d|

ab|0

|0

a|0 b|0 c|0 d|0
cd|0

a|
ab|

b|
bc|

c|
cd|

d|
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The following lemma looks like a particular case of the previous one, which
it is not because K \ ∅ is not defined (see Remark 19).

Lemma 79. We have(
K ?∆I

)
\ (∅|I) = K ? (∆I \ I) = K ? ∂∆I

Proof. The second equality is simply by definition of ∂∆I . The first one is
shown as follows:(

K ?∆I
)
\ (∅|I) =

{
σ|τ ∈ K ?∆I

∣∣ σ ∈ K and τ ∈ ∆I and ∅|I 6⊆ σ|τ
}

=
{
σ|τ ∈ K ?∆I

∣∣ σ ∈ K and τ ∈ ∆I and I 6⊆ τ
}

=
{
σ|τ ∈ K ?∆I

∣∣ σ ∈ K and τ ∈ ∆I \ I
}

= K ?
(
∆I \ I

)
From the following simple proposition will follow lemmas which will be useful

when combining free faces and join operation.

Proposition 80. Given two simplicial complexes K and L, the following prop-
erties hold.

1. If σ′ is a free face of σ in K and τ ′ is a free face of τ in L then σ′|τ ′ is a
free face of σ|τ in K ? L.

2. If σ is a maximal face in K and τ ′ is a free face of τ in L then σ|τ ′ is a
free face of σ|τ in K ? L.

3. If σ′ is a free face of σ in K and τ is a maximal face of L then σ′|τ is a
free face of σ|τ in K ? L.

Proof. Immediate from Remark 11.

Lemma 81. Suppose that σ is a maximal face in K. Then σ|∅ is a free face of
σ|I in K ?∆I .

Proof. Corollary of Proposition 80 (property 2).

Example 82. Consider the complex K1 of Example 66:

a
ab

b
bc

c
cd

d

where bc is a maximal face. Then bc| is free face of bc|0 in K1 ?∆0 and of bc|01
in K1 ?∆1:

ab|0

|0

a|0 b|0 c|0 d|0

bc|0 cd|0
a|

ab|
b|

bc|
c|

cd|
d|

|0 01 |1

a|
ab|

b|
bc|

c|
cd|

d|

Lemma 83. Suppose that τ is a free face of σ in K. Then, given J ⊆ I, τ |J
is a free face of σ|I in K ?∆I .

Proof. Corollary of Proposition 80 (property 1).
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Example 84. Consider the following complex K = K1 \ bc:

a
ab

b c
cd

d

where b and c are free faces of ab and cd respectively. Then b| and c| are free
faces of ab|0 and bc|0 respectively in K ?∆1:

ab|0

|0

a|0 b|0 c|0 d|0
cd|0

a|
ab|

b| c|
cd|

d|

and b| and c| are free faces of ab|01 and bc|01 respectively in K ?∆2:

|0
a|0

01 |1
d|1

a|
ab|

b| c|
cd|

d|

Lemma 85. Suppose that K collapses to K ′. Then K?∆I collapses to K ′?∆I .
More precisely, given a collapse

f : K ′ ↪→ K

the morphism
f ?∆I : K ′ ?∆I ↪→ K ?∆I

is also a collapse.

Proof. The collapsing f can be decomposed in a sequence of collapsing steps, it
is therefore enough to handle the case whereK ′ = K\τ where τ is a free face of σ
in K. By Lemma 83, τ |∅ is a free face of σ|I in K ?∆I . Therefore the inclusion(
K ?∆I

)
\ (τ |∅) = (K \ τ) ?∆I ↪→ K ?∆I is a collapse by Lemma 74.

Remark 86. As mentioned in the introduction of the section, in the colored case,
we have to suppose that `K(K) ∩ I = ∅.
Example 87. Consider the following complex K:

abx bcx

x

ax bx cx dx
cdx

a
ab

b
bc

c
cd

d

where bc is a free face of bcx. Then bc|0 is a free face of bcx|0 in K ?∆0:

0

abx bcx

x

ax bx cx dx
cdx

a
ab

b
bc

c
cd

d
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Lemma 88. Suppose that K ′ ↪→ K is a collapse. Then the inclusion

K ?K′ ∆I ↪→ K ?∆I

is also a collapse.

Proof. We can suppose that K ′ = K \ τ where τ is a free face of σ in K.
We fix an enumeration of I = {i1, . . . , in} and write Ik = {i1, . . . , ik}. Sup-
pose given k such that 1 ≤ k < n. Similarly to Proposition 80, we have
that τ | {ik} is a free face of σ|Ik in K ? ∆I \ {τ | {ik+1} , . . . , τ | {in}}. Writing
Tk = {τ | {ik+1} , . . . , τ | {in}}, we thus have constructed a sequence of collapse
steps

K ?∆I \ T0 ↪→ K ?∆I \ T1 ↪→ . . . ↪→ K ?∆I \ Tn = K ?∆I

and we have K ?K′ ∆I = K ?∆I \ T0 by Lemma 77.

3.4 Collapsibility of χ(∆n)

We now consider the complex χ(∆I) with I ⊆ N finite and write n = dim I.
We recall that the standard chromatic subdivision χ(∆I) of ∆I is defined as
follows (we are just paraphrasing the definition given in Section 3.1 applied to
the complex ∆I).

Definition 89. The standard chromatic subdivision χ(∆I) of the standard
I-simplicial complex ∆I is the simplicial complex whose vertices are pairs (V, i)
with V ⊆ I and i ∈ V and simplices are sets

σ = {(V0, i0), . . . , (Vd, id)}

with d ≥ −1 (σ = ∅ when d = −1) which are

1. well-colored : for every k, l ∈ [d],

ik = il implies k = l

2. ordered : for every k, l ∈ [d],

Vk ⊆ Vl or Vl ⊆ Vk

3. transitive: for every k, l ∈ [d],

il ∈ Vk implies Vl ⊆ Vk

This complex is colored via the second projection: `(V, i) = i.

Remark 90. In [16], Kozlov shows that the cells of the complex are in bijection
with pairs of sequences

σ = B0| . . . |Bp, C0| . . . |Cp

with Bi, Ci ⊆ I such that

• ∀i, j ∈ [p], Bi ∩Bj = ∅
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• ∀i ∈ [p], Ci 6= ∅

• ∀i ∈ [p], Ci ⊆ Bi

The dimension of such a cell is #C0 + . . .+ #Cp− 1. In the following, we some-
times use this notation since it makes it easy to draw planar simplicial complexes
of dimension 2, and the notation for vertices coincides with the one of Defini-
tion 89. However, none of the following proofs rely on it. For instance χ(∆2)
is

0, 0

0|1,0|1

0|12,0|2

0|12,0|12

0|12,0|1

0|2,0|2

01, 1

01|2,01|2
01,01

0|1|2,0|1|2 02, 20|2|1,0|2|1

02|1,02|1
02,02

01, 0

1|0,1|0
1|0|2,1|0|2

012, 201|2,0|2

01|2,1|2

012,12

1|02,1|02

012, 1

2|01,2|01

02|1,0|1

02|1,0|1 02, 0

2|0|1,2|0|1
2|0,2|0012, 0

012,02

12|0,2|0 12|0,1|0

012,01

12|0,12|0

012,012

1, 1

1|02,1|2

1|02,1|0

1|2,1|2 12, 2
1|2|0,1|2|0

12,12 12, 1
2|1|0,2|1|0

2|1,2|1 2, 2

2|01,2|0

2|01,2|1

By direct inspection of Definition 89, we have:

Lemma 91. Given two finite sets I and J such that J ⊆ I, we have a canonical
inclusion

χ(∆J) ↪→ χ(∆I)

Maximal simplices are those of dimension n. The maximal simplex

{I} × I = {(I, 0), (I, 1), . . . , (I, n)}

is called the central simplex. Notice that more generally, there is a canonical
inclusion

∆I ↪→ χ(∆I)
σ 7→ {I} × σ (3)

and we define the sets of central k-simplices by

ΣIk =
{
{I} × σ

∣∣ σ ∈ ∆I and dimσ = k
}

indexed by k ≥ 0, and write

ΣI =
⋃
k≥0

ΣIk

i.e. given a simplex σ ∈ ΣI , (V, i) ∈ σ implies V = I.

Remark 92. Notice that ∅ 6∈ ΣI when I 6= ∅.
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Definition 93. The boundary ∂χ(∆I) of the complex ∆I is the complex

∂χ(∆I) = χ(∆I) \ ΣI

Example 94. ∂χ(∆2) is

0, 0

01, 1 02, 2

01, 0 02, 0

1, 1 12, 2 12, 1 2, 2

Now, we would like to reason as in the previous section, but things are
more complicated because the complex is more subdivided. For instance, the
following subcomplex of K2 (see Example 66)

|0

12|0

1|

1|0

12| 2|

2|0

has been replaced by

012, 0

12|0,2|0 12|0,1|012|0,12|0

1, 1

1|02,1|0

1|2,1|2 12, 2

1|2|0,1|2|0

12,12 12, 1

2|1|0,2|1|0

2|1,2|1 2, 2

2|01,2|0

which is more subdivided. In the first complex, 12| is a free face of 12|0, and
we have a collapse by removing the simplex 12|. In the second one, the face 12|
has been subdivided. However, we can still simulate the previous collapse in
multiple steps as follows:

012, 0

12|0,2|0 12|0,1|0

1, 1

1|02,1|0

1|2,1|2 12, 2

1|2|0,1|2|0

12, 1

2|1|0,2|1|0

2|1,2|1 2, 2

2|01,2|0

and then

012, 0

1, 1

2|01,2|0

2, 2

1|02,1|0

(notice that we first remove the face corresponding to the central simplex, then
the faces corresponding to the faces of the central simplex). In the first one, we
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can also remove the free face |0, and again this can be done in multiple steps in
the second one:

012, 0

12|0,2|0 12|0,1|012|0,12|0

1, 1 1|2,1|2 12, 2 12,12 12, 1 2|1,2|1 2, 2

and then

1, 1 1|2,1|2 12, 2 12,12 12, 1 2|1,2|1 2, 2

(notice that this time, we first remove the faces corresponding to the exterior
of the lower subsimplex). In order to show that χ(∆I) is collapsible, we are
thus going to proceed essentially as in Section 3.2 (the proofs of Lemma 67
and Corollary 69 in particular), simulating each collapse step by a sequence of
multiple collapse steps.

The following lemma shows that χ(∆I) is a subcomplex of the join ∂χ(∆I)?∆I .
It will enable us to use theorems about joins to show results concerning the sub-
division.

Lemma 95. The map defined by

φ : χ(∆I) ↪→ ∂χ(∆I) ?∆I

which to every simplex υ = {(V1, i1), . . . , (Vk, ik)} of χ(∆I) associates the sim-
plex σ|τ of ∂χ(∆I) ?∆I , with

σ = {(V, i) ∈ υ | V 6= I} and τ = {i ∈ I | (I, i) ∈ υ}

is well-defined and injective. The simplices in its image are those of the form
σ|τ satisfying

∀(V, i) ∈ σ, V ⊆ I \ τ (4)

Proof. Consider the image σ|τ = φ(υ). The complex ∂χ(∆I) = χ(∆I) \ ΣI

is obtained by restricting χ(∆I) to simplices of the form {(V1, i1), . . . , (Vk, ik)}
with Vp 6= I for every index 1 ≤ p ≤ k. Since σ ⊆ υ, we know that σ is a simplex
of χ(∆I), and thus of ∂χ(∆I) by the preceding remark. By the well-coloring
property of Definition 89, the sets of colors of σ and τ are disjoint. The map φ
is thus well defined, and it is clearly injective. Moreover, its images satisfy con-
dition (4) because of transitivity property of Definition 89. Conversely, consider
a simplex σ|τ ∈ ∂χ(∆I) ? ∆I satisfying (4), and write υ = σ ∪ ({I} × τ). It
can be checked that υ satisfies the conditions of Definition 89: it is well-colored
because the colors of σ and τ are disjoint (by definition of the colored join), it
is ordered because σ is and for every (V, i) ∈ σ we have V ⊆ I, and finally it is
transitive because of (4). Finally, we have σ|τ = φ(υ).

Example 96. The simplicial complex χ(∆2) can be seen as the following sub-
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complex of ∂χ(∆2) ?∆2:

(0, 0)|

(0,0)|2

(0,0)|12

(0,0)|1

(01, 1)| (02, 2)|

(01, 0)| |2(01,0)|2

(01,1)|2

|12

(1,1)|02

|1

(2,2)|01

(02,0)|1

(02,0)|1 (02, 0)|

(2,2)|0|0

|02

(12,2)|0 (12,1)|0

|01

(12,12)|0

|012

(1, 1)|

(1,1)|2

(1,1)|0

(1,1)|2 (12, 2)| 12,12 (12, 1)| 2|1,2|1 (2, 2)|

(2,2)|0

(2,2)|1

(in order for the figure to be readable, we did not write the name for all sim-
plices). Notice that this embedding is not full. For instance, the simplex

(01, 0)| (01,0)|1 |1

|2

(01,0)|2
(01,0)|12

|12

is present in ∂χ(∆2) ?∆2 but not in the embedding shown above.
Remark 97. The fact that the map given by Lemma 95 is not full, as illus-
trated in previous example, is due to the fact that we restricted to transitive
simplices in the standard chromatic subdivision (in Definition 89, which corre-
sponds to condition 3 of Definition 64): without this condition, the map would
be an isomorphism. The subdivision without the transitivity condition is the
one we would get if we considered layered protocols which are not immediate
snapshot [14]. This case is briefly discussed in Section 5.

Lemma 98. The star of ΣI in ∆I satisfies

st(ΣI) = χ(∆I)

Proof. By Lemma 95, χ(∆I) can be seen as a subcomplex of ∂χ(∆I) ?∆I , and
its simplices can be written in the form σ|τ with σ ∈ ∂χ(∆I) and τ ∈ ∆I .
Suppose given such a simplex σ|τ . If τ 6= ∅ then σ|τ = (σ|τ) ∪ (∅|τ) with
∅|τ ∈ ΣI and therefore σ|τ ∈ st(ΣI). Now, suppose that τ = ∅: Remark 92
shows that we cannot conclude as before. By Definition 89, the simplex σ is of
the form σ = {(V0, i0), . . . , (Vd, id)} with Vi ⊆ Vi+1 for i ∈ [d − 1], and Vd 6= I
by Definition 93. Therefore, writing τ ′ = I \ Vd 6= ∅, the simplex σ|τ ′ is in
χ(∆I) by the characterization (4) of Lemma 95. Since τ ′ 6= ∅, we have seen that
σ|τ ′ ∈ st(ΣI), and therefore its face σ|∅ is also in χ(ΣI).

Theorem 99. The complex χ(∆I) satisfies the following properties. We write J
for a finite subset of N satisfying I ∩ J = ∅.

30



1. The inclusion

∂χ(∆I) = χ(∆I) \ ΣI ↪→ χ(∆I) \ ΣIn

is a collapse.

2. The inclusion
∂χ(∆I) ?∆J ↪→ χ(∆I) ?∆J

is a collapse.

3. The inclusion
∆I ↪→ χ(∆I)

is a collapse.

4. The inclusion
χ(∆I) ? ∂∆J ↪→ χ(∆I) ?∆J

is a collapse.

5. χ(∆I) is collapsible.

Proof. By induction over the integer n = dim I. The base case with n = 1 is
left to the reader. Consider χ(∆I) with n = dim I and suppose that all the five
properties hold up to dimension n− 1.

1. We write
KI
k = χ(∆I) \

⋃
k′≥k

ΣIk′

for 0 ≤ k ≤ n. Now, fix k such that 0 ≤ k < n. By Lemma 95, the
simplices of ΣIk and χ(∆I), and thus of KI

k , can be seen as elements
of ∂χ(∆I) ? ∆I , and are thus of the form σ|τ with σ ∈ ∂χ(∆I) and
τ ∈ ∆I . In particular, the simplices in ΣIk are of the form ∅|τ with τ ⊆ I
such that dim τ = k, and the complex KI

k is obtained from χ(∆I) by
restricting to simplices of the form σ|τ with dim τ < k. Now, fix a cell
∅|τ ∈ ΣIk, and consider its associated star st(∅|τ) in the simplicial complex
KI
k+1. The simplices of st(∅|τ) are of the form σ|τ ′ with τ ′ ⊆ τ and

σ such that σ|τ ∈ KI
k+1, i.e. σ ∈ χ

(
∆I\τ). We have therefore shown

st(∅|τ) = χ
(
∆I\τ) ?∆τ . By induction property 4, the inclusion

st(∅|τ) \ (∅|τ) = χ
(

∆I\τ
)
? ∂∆τ ↪→ χ

(
∆I\τ

)
?∆τ = st(∅|τ)

is a collapse, the first equality being shown in Lemma 79. Therefore, the
inclusion

KI
k+1 \ (∅|τ) ↪→ KI

k+1

is also a collapse by Proposition 55 and Definition 26 of the star of a cell.
Since the above reasoning holds for any simplex ∅|τ ∈ ΣIk, we thus have a
collapse

KI
k = KI

k+1 \ ΣIk ↪→ KI
k+1

since by Proposition 51, all those collapses can be performed at once. We
have constructed a sequence of collapses

∂χ(∆I) = χ(∆I)\ΣI = KI
0 ↪→ KI

1 ↪→ . . . ↪→ KI
n = χ(∆I)\ΣIn

which shows the required property.
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2. By property 1, we have a collapse

∂χ(∆I) ↪→ χ(∆I) \ ΣIn

Therefore, the map

∂χ(∆I) ?∆J ↪→
(
χ(∆I) \ ΣIn

)
?∆J

obtained by applying the functor − ? ∆J is also a collapse by Lemma 85
and the fact that I ∩ J = ∅. Finally, we have that ΣIn = {σ} where σ
is the central face of χ(∆I). By Lemma 81, since σ is a maximal face in
χ(∆I), σ|∅ is a free face of σ|J in χ(∆I) ?∆J . Therefore the inclusion(

χ(∆I) \ σ
)
?∆J =

(
χ(∆I) ?∆J

)
\ (σ|∅) ↪→ χ(∆I) ?∆J

is a collapse, the first equality being shown in Lemma 74. Composing the
two previous collapses, we have shown that the inclusion

∂χ(∆I) ?∆J ↪→ χ(∆I) ?∆J

is a collapse, as desired.

3. Given 0 ≤ k ≤ n, we define

ΣI−k =
⋃
I′⊆I

dim I−dim I′=k

ΣI
′

We also write, given 1 ≤ k ≤ n,

KI
k = χ(∆I) \

⋃
0≤k′≤k

ΣI−k
′

and by convention KI
0 = χ(∆I). If we see χ(∆I) as a subcomplex of

∂χ(∆I) ?∆I by Lemma 95, KI
k is the subcomplex constituted of the cells

σ|τ such that given (V, i) ∈ σ, dimV < n− k. Now suppose fixed k such
that 0 < k ≤ n and pick a cell ∅|τ ∈ KI

k−1 with dim τ = k − 1. Using
Lemma 91, we can construct an inclusion χ(∆I\τ ) ↪→ χ(∆I), which core-
stricts to an inclusion χ(∆I\τ ) ↪→ ∂χ(∆I), and similarly we have an inclu-
sion ∆τ ↪→ ∆I . We therefore have an inclusion χ(∆I\τ )?∆τ ↪→ ∂χ(∆I)?∆I

since (I \ τ) ∩ τ = ∅, which corestricts into an inclusion

χ(∆I\τ ) ?∆τ ↪→ χ(∆I)

via the map defined in Lemma 95, the corestriction being shown using the
characterization given in this lemma and the definition of the colored join.
By induction property 2, the inclusion(

χ(∆I\τ ) ?∆τ
)
\
(

ΣI\τ |∅
)

= ∂χ(∆I\τ ) ?∆τ ↪→ χ(∆I\τ ) ?∆τ

is a collapse, the first equality being justified by Lemma 74. Moreover,
by Lemma 98, we have st(ΣI\τ ) = χ(∆I\τ ), the star being computed in
KI
k−1, and therefore

st
({
σ|∅

∣∣∣ σ ∈ ΣI\τ
})

= χ(∆I\τ ) ?∆τ
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by Remark 30 and Lemma 32. Therefore the inclusion

KI
k−1 \

(
ΣI\τ |∅

)
↪→ KI

k−1

is a collapse by Proposition 55 (in the variant mentioned in Remark 56).
Since the above reasoning holds for any simplex τ ⊆ I with dim τ = k−1,
i.e. #τ = k, we get a collapse

KI
k = KI

k−1 \ ΣI−k ↪→ KI
k−1

since by Proposition 51, all those collapses can be performed at once. We
therefore have a sequence of collapses

∆I ∼= KI
n ↪→ KI

n−1 ↪→ . . . ↪→ KI
0 = χ(∆I)

4. By property 3, the inclusion

∆I ↪→ χ(∆I)

is a collapse. By Lemma 88, the inclusion

χ(∆I) ?∆I ∆J ↪→ χ(∆I) ?∆J

is therefore also a collapse. Finally, the inclusion

χ(∆I) ↪→ χ(∆I) ?∆I ∆J

is also a collapse: the inclusion

(∆I ?∆J) \ (∅|∆J) = ∆I ↪→ ∆I ?∆J

is easily shown to be a collapse, and by Proposition 55 and Remark 56 we
have

χ(∆I) = (χ(∆I) ?∆I ∆J) \ (∅|∆J) ↪→ χ(∆I) ?∆I ∆J

since st(∅|∆J) = ∆I ?∆J , where the star is computed in χ(∆I) ?∆I ∆J .

5. By property 3, the inclusion

∆I ↪→ χ(∆I)

is a collapse, and ∆I is collapsible by Lemma 50.

Example 100. The first point of the above theorem can be illustrated on χ(∆2)\Σ2
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as follows:

χ(∆2) \ Σ2 = K2
0 =

0, 0

0|2,0|2

0|12,0|1

0|12,0|12

0|12,0|2

0|1,0|1

02, 2

02|1,02|1
02,02

0|2|1,0|2|1 01, 10|1|2,0|1|2

01|2,01|2
01,01

02, 0

2|0,2|0
2|0|1,2|0|1

012, 102|1,0|1

02|1,2|1

012,12

2|01,2|01

012, 2

1|02,1|02

01|2,0|2

01|2,0|2 01, 0

1|0|2,1|0|2
1|0,1|0012, 0

012,01

12|0,1|0 12|0,2|0

012,02

12|0,12|0

2, 2

2|01,2|1

2|01,2|0

2|1,2|1 12, 1
2|1|0,2|1|0

12,12 12, 2
1|2|0,1|2|0

1|2,1|2 1, 1

1|02,1|0

1|02,1|2

K2
1 =

0, 0

0|2,0|2

0|12,0|1 0|12,0|2

0|1,0|1

02, 2

02|1,02|1
02,02

0|2|1,0|2|1 01, 10|1|2,0|1|2

01|2,01|2
01,01

02, 0

2|0,2|0
2|0|1,2|0|1

012, 102|1,0|1

02|1,2|1

012, 2

01|2,0|2

01|2,0|2 01, 0

1|0|2,1|0|2
1|0,1|0012, 0

12|0,1|0 12|0,2|012|0,12|0

2, 2

2|01,2|1

2|01,2|0

2|1,2|1 12, 1
2|1|0,2|1|0

12,12 12, 2
1|2|0,1|2|0

1|2,1|2 1, 1

1|02,1|0

1|02,1|2

χ(∆2) \ Σ2
2 = K2

2 =

0, 0

0|2,0|2 0|1,0|1

02, 2

02,02

01, 1

01,01

02, 0

2|0,2|0

01, 0

1|0,1|0

2, 2 2|1,2|1 12, 1 12,12 12, 2 1|2,1|2 1, 1

The second point is simply the suspension of the previous example. The third
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point is:

χ(∆2) = K2
0 =

0, 0

0|1,0|1

0|12,0|2

0|12,0|12

0|12,0|1

0|2,0|2

01, 1

01|2,01|2
01,01

0|1|2,0|1|2 02, 20|2|1,0|2|1

02|1,02|1
02,02

01, 0

1|0,1|0
1|0|2,1|0|2

012, 201|2,0|2

01|2,1|2

012,12

1|02,1|02

012, 1

2|01,2|01

02|1,0|1

02|1,0|1 02, 0

2|0|1,2|0|1
2|0,2|0012, 0

012,02

12|0,2|0 12|0,1|0

012,01

12|0,12|0

012,012

1, 1

1|02,1|2

1|02,1|0

1|2,1|2 12, 2
1|2|0,1|2|0

12,12 12, 1
2|1|0,2|1|0

2|1,2|1 2, 2

2|01,2|0

2|01,2|1

K2
1 =

0, 0

0|12,0|2

0|12,0|12

0|12,0|1

012, 2 012,12

1|02,1|02

012, 1

2|01,2|01
012, 0

012,02 012,01
012,012

1, 1

1|02,1|2

1|02,1|0

2, 2

2|01,2|0

2|01,2|1

∆2 ∼= K2
2 =

012, 2 012,12 012, 1

012, 0

012,02 012,01
012,012

This result was obtained independently by Kozlov [17], arriving by different
means to a sequence collapse similar to ours. His paper moreover notices that
the collapses can be performed in batches which are equivariant w.r.t. to the
action of the symmetric group on ∆I , which can also be directly checked in our
case by examining the proof.

3.5 Simulation of elementary collapses
Consider an elementary collapse step for ∆I . It is of the form

ΛIp ↪→ ∆I

We show here that after subdivision, it is still possible to simulate this collapse
step.
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Proposition 101. For every finite set I and p ∈ I, the inclusion

χ(ΛIp) ↪→ χ(∆I)

obtained as the image under the functor χ of the canonical inclusion ΛIp ↪→ ∆I

is a collapse.

Proof. The steps described in Lemma 72 in the case of the basic subdivision
can be extended to the subdivision as in the proof of Theorem 99.

This will be used in the next section as a crucial step in order to show that the
iterated standard chromatic subdivision is collapsible.

4 The iterated subdivision is collapsible
In this section, we finally show that the iterated standard chromatic subdivi-
sion of the standard chromatic complex is collapsible: for every n ∈ N, χn(∆I)
is collapsible. The general proof strategy is clear: we proceed by induction,
and supposing that χn(∆I) is collapsible, we show that χn+1(∆I) is collapsible
because, after the subdivision, we can still “simulate” the collapsing sequence
in χn(∆I) using Proposition 101. While a proof could certainly be performed
“by hand”, we give a fairly abstract proof of this result: we embed the cate-
gory of simplicial complexes into a presheaf category whose elements are called
chromatic presimplicial sets, which is much better suited w.r.t. colimits (in par-
ticular, the pushout of a collapse along another map is still a collapse), and
then use the pair of adjoint functors given by nerve and realization in order to
conclude.

4.1 Chromatic presimplicial sets
We first introduce the notion of “geometric” realization of a colored simplicial
complex. In the case where colors are elements of N (and thus totally ordered),
we can use the classical nice abstract machinery developed for (pre)simplicial
sets, as we explain below. We refer the reader to [20] for details and proofs in
the general case.

Definition 102. The presimplicial category ∆ is the category whose ob-
jects are integers and morphisms f : m → n are injective increasing functions
f : [m]→ [n]. The category of presimplicial sets is the presheaf category ∆̂.

Definition 103. We write Λ for the chromatic presimplicial category
whose objects are finite non-empty subsets I of N and morphisms are inclu-
sions. Presheaves on this category are called chromatic presimplicial sets.

Proposition 104. We can define a functor U : CSC → Λ̂ which to every
colored simplicial complex K associates the chromatic presimplicial set UK such
that given I ⊆ N,

UK(I) = {σ ∈ K | `(σ) = I}

and given J ⊆ I the associated function is

UK(I) → UK(J)
σ 7→ {x ∈ σ | `(x) ∈ J}
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Conversely, we can define a functor F : Λ̂ → CSC which to a chromatic pres-
implicial set P ∈ Λ̂ associates the simplicial complex whose set of vertices is

FP =
⊎
i∈N

P ({i})

a vertex x ∈ P ({i}) being labeled by `(x) = i, and set of simplices is

FP =
{
P (ιIi )(σ)

∣∣ σ ∈ P (I) and i ∈ I
}

where ιIi : {i} ↪→ I is the inclusion. The functor F is left adjoint to U and the
induced comonad F ◦U is the identity comonad: in particular, the functor U is
an embedding.

This proposition allows us to consider any simplicial complex as a chromatic
presimplicial set in Λ̂ (in particular, we will simply write ∆I , ΛIp, etc. for the
presheaves corresponding to the simplicial complexes). By extension w.r.t. sim-
plicial complexes, given P ∈ Λ̂ and I ∈ Λ, an element of P (I) is called an
I-simplex.

Remark 105. The adjunction is not an equivalence of categories. For instance,
consider the chromatic presimplicial set P ∈ Λ̂ defined by

P ({0}) = {x} P ({1}) = {y} P ({0, 1}) = {f, g}

and other sets P (I) are empty, with

P (ι
{0,1}
0 )(f) = P (ι

{0,1}
0 )(g) = x and P (ι

{0,1}
1 )(f) = P (ι

{0,1}
1 )(g) = y

Graphically,

x

f

y
g

Then UF (P ) is such that

UFP ({0}) = {x} UFP ({1}) = {y} UFP ({0, 1}) = {{x, y}}

with UFP (ι
{0,1}
0 )({x, y}) = x and UFP (ι

{0,1}
1 )({x, y}) = y:

x
{x,y}

y

and the two above presheaves are not isomorphic.

Remark 106. In the non-colored case the situation is of course similar: there is a
forgetful functor from the category SC of simplicial complexes to the category ∆̂
of presimplicial sets, which admits a left adjoint.

Definition 107. To a functor

F : Λ → C

with C cocomplete, we associate a nerve functor

NF : C → Λ̂
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defined on A ∈ C by
NFA = C(F−, A)

and a realization functor

RF : Λ̂ → C

defined on P ∈ Λ̂ by

RFP = colim
(

El(P )
π−→ Λ

F−→ C
)

Remark 108. Above, El(P ) denotes the category of elements of the presheaf
P : its objects are pairs (I, x) with I ∈ Λ and x ∈ P (I) and a morphism
f : (I, x) → (J, y) is a morphism f : I → J in Λ such that P (f)(y) = x. The
functor π : El(P )→ Λ is the first projection. The category of elements can also
equivalently be defined as the slice category y/P where y : Λ→ Λ̂ is the Yoneda
embedding.
It can then be shown [20]:

Proposition 109. For any functor F , the functor RF is left adjoint to NF .

Definition 110. Given a functor F : Λ → C, by precomposing the realization
functor Λ̂→ C with the forgetful functor CSC→ Λ̂, we obtain a functor

RF : CSC → C

that we still write RF and call it the realization (the typing makes clear the
distinction between the two functors). The situation can thus be pictured as

CSC

RF

%%**> Λ̂ll

RF

**⊥ C
NF

jj

Λ

y
OO

F

<<

(this is not a commutative diagram) where y : Λ→ Λ̂ is the Yoneda embedding
and RF = Lany F is the left Kan extension of F along y.

While we will not need this in the following, we mention here that this
abstract setting can be used to easily define the usual notion of geometric real-
ization of a (colored) simplicial complex:

Definition 111. Given a set I ⊆ N, there is a unique increasing bijection

ιI : I → [dim I]

We can thus define a functor
Λ → ∆

which to a set I associates its cardinal #I = dim I + 1 and to a morphism
f : I → J associates the function ιJ ◦ f ◦ ι−1

I : [dim I] → [dim J ]. By post-
composing with the usual functor

∆ → Top
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which to n associate the standard geometric n-simplex, we obtain a functor

Λ → Top

The associated realization functor

R : CSC → Top

is called the geometric realization of colored simplicial complexes.

4.2 Simple homotopy in chromatic presimplicial sets
By Proposition 104, the category CSC embeds into Λ̂. It is thus natural to
wonder whether the constructions performed on simplicial complexes extend to
chromatic presimplicial sets, and they actually do: we could have written the
whole article using Λ̂ instead of CSC, at the expense of heavier notations.

We only explain here how to extend the definition of simplicial collapses.
Given P ∈ Λ̂, an object I ∈ Λ and an element p ∈ I, the inclusion I ′ ↪→ I,
with I ′ = I \ {p}, induces by functoriality of P a function ∂Ip : P (I) → P (I ′)

which to an I-simplex x ∈ P (I) associates its p-th face ∂Ip(x). Given J ⊆ I
such that I = J ]{p1, . . . , pn}, we say that y ∈ P (J) is a face of x ∈ P (I) when
y = ∂pn . . . ∂p1(x). In this case y is a free face of x when x is maximal (it is the
face of only itself), distinct from y, and is the only maximal simplex admitting y
as a face. Based on this, it is easy to define the notion of (elementary) collapse
step similarly as in Section 2.3. In this setting, Lemma 45 still holds (a collapse
can be decomposed into a sequence of elementary collapse steps), and more
interestingly an analogous of Lemma 47 holds, but is simpler to express since
we do not need the extra condition, as discussed in Remark 48:

Lemma 112. Given P,Q ∈ Λ̂, an inclusion P ↪→ Q is an elementary collapse
step if and only if there exists an inclusion ΛIp ↪→ P for some I ∈ Λ and p ∈ I
such that P ↪→ Q is obtained by a pushout of the form

Q

∆I

88

P

ff

ΛIp

ff 99

As a direct corollary we have that

Lemma 113. Given P,Q,R ∈ Λ̂, together with inclusions P ↪→ Q and P ↪→ R,
such that P ↪→ Q is a collapse, then the map R ↪→ S obtained by the pushout is
also a collapse

S

Q

88

R

ff

P

ff 99

More succinctly: collapses are stable under pushout.

Proof. The collapse P ↪→ Q can be decomposed as a sequence of elementary
collapse steps by Lemma 45 and we conclude using Lemma 112 and the fact
that pushouts are stable under composition.
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4.3 The iterated subdivision is collapsible
In the non-colored case, the barycentric subdivision of a presimplicial set P can
be defined as χ(P ) = N ◦ El(P ) where El : ∆̂→ Cat is the functor of elements
(see Remark 108) and N : Cat → ∆̂ is the usual nerve functor. This functor
is left adjoint (to a functor named Ex : ∆̂ → ∆̂), it is thus cocontinuous [9].
Moreover, every presheaf is a colimit of representables [20]: P ∼= RyP . The
functor χ is thus characterized by its image on representables: we have

P ∼= Rχ◦yP = colim
(

El(P )
π−→ ∆

y−→ ∆̂
χ−→ ∆̂

)
In the colored case, this situation generalizes as follows:

Proposition 114. We can define a functor

χ∆ : Λ → CSC

which to every object I ∈ Λ associates χ(∆I) and to every morphism J → I wit-
nessing an inclusion J ⊆ I associates the corresponding inclusion χ(∆J) ↪→ χ(∆I)
given by Lemma 91. The associated realization functor

Rχ∆ : CSC → CSC

is the standard chromatic subdivision:

χ = Rχ∆

Similarly, the functor
χ∆ : Λ → Λ̂

induces a functor
Rχ∆ : Λ̂ → Λ̂

which coincides with the previous functor up to the embedding CSC→ Λ̂. This
justifies the use of the same notation for both.

Lemma 115. For every collapse P ↪→ Q with P,Q ∈ Λ̂, the map χ(P ) ↪→ χ(Q)
obtained as the image of the functor χ is also a collapse.

Proof. By functoriality, it is enough to consider the case where the collapse
P ↪→ Q is a collapse step, and by Lemma 45 we can even suppose the collapse
step to be elementary. By Lemma 112, Q can be obtained as the pushout of a
diagram of the form

Q

∆I

88

P

ff

ΛIp

ff 99

for some I ∈ Λ and p ∈ I. By Proposition 114, the functor χ is a left adjoint
and therefore preserves colimits. Thus, the image of the above pushout diagram
is a pushout diagram

χ(Q)

χ(∆I)

66

χ(P )

hh

χ(ΛIp)

hh 77
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We have shown in proposition 101 that the map χ(ΛIp) ↪→ χ(∆I) is still a collapse
and therefore the map χ(P ) ↪→ χ(Q) is also a collapse by Lemma 113.

Theorem 116. Suppose that K is a collapsible simplicial complex. Then χ(K)
is also collapsible. In particular, for every I ∈ Λ and n ∈ N, χn(∆I) is collapsi-
ble.

Proof. The simplicial complex K can be seen as a chromatic presimplicial set
via the embedding of Proposition 104. By assumption, K is collapsible to
a point, i.e. there exists a collapse ∆0 ↪→ K. By Lemma 115, its image
χ(∆0) ↪→ χ(K) under χ is also a collapse and we conclude that χ(K) is col-
lapsible since χ(∆0) ∼= ∆0. Given I ∈ Λ, ∆I is collapsible by Lemma 50, and
we conclude that χn(∆I) is collapsible for every n ∈ N by induction.

5 Conclusion
We have shown that the iterated standard chromatic subdivision of the standard
simplicial complex is contractible and explored some of the combinatorial and
categorical structures present in the category of colored simplicial complexes.

In the future, we plan to extend this work to other variants of view com-
plexes. In particular, the proof that the standard chromatic subdivision of the
standard simplex is contractible can be extended to the subdivision correspond-
ing to non-layered protocols [10]. This has been recently been independently
investigated [17], so that we did not think it was necessary to include it here.
Our methods should be well suited for studying the more intricate iterated non-
layered snapshot model, which is the real depiction of the reachable states in
an atomic read write distributed model. We plan on extending this work for
the study of full information protocols for other, more modern synchronization
primitives, such as test&set, fetch&add, compare&swap etc. Finally, a com-
panion paper will explicit the relationships between the topology of the view
complex (the full information protocol complex) and the (directed) topology [11]
of the semantics [7] of the protocols involved. We wish also to develop further
the strong links between this work and tools used in order to elaborate model
structures for our chromatic simplicial complexes (in fact, for their chromatic
presimplicial sets counterparts). The chromatic join we defined extends natu-
rally, as in [6] to joins on a category of (augmented) chromatic presimplicial sets,
with a right adjoint, similar to the well-known Ex functor which is a central
tool in simplicial approximation theorems, and model structures on simplicial
sets. We believe that the results of [14] (which are nothing but some form of
chromatic simplicial approximation theorem) can be reformulated in that more
general abstract setting, and will be published elsewhere.

References
[1] R. H. Bing. Some aspects of the topology of 3-manifolds related to the

poincaré conjecture. Lectures on Modern Mathematics II, pages 93–128,
1964.

[2] O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the
distributed tasks which are solvable in the presence of one faulty processor.

41



In Proceedings of the seventh annual ACM Symposium on Principles of
distributed computing, pages 263–275. ACM, 1988.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-
resilient asynchronous computations. In Proc. of the 25th STOC. ACM
Press, 1993.

[4] A. Castañeda and S. Rajsbaum. New combinatorial topology bounds for
renaming: The upper bound. Journal of the ACM (JACM), 59(1):3, 2012.

[5] M. M. Cohen. A Course in Simple-Homotopy Theory, volume 10 of Grad-
uate Texts in Mathematics. Springer New York, 1973.

[6] P. Ehlers and T. Porter. Joins for (augmented) simplicial sets. Journal of
pure and applied algebra, 145(1):37–44, 2000.

[7] L. Fajstrup, É. Goubault, E. Haucourt, S. Mimram, and M. Raußen. Trace
spaces: An efficient new technique for state-space reduction. In ESOP,
pages 274–294, 2012.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[9] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174.
Springer, 2009.

[10] É. Goubault and S. Mimram. Trace spaces: algorithmics and applications.
Presentation in Applied Algebraic Topology conference, July 2011.

[11] M. Grandis. Directed algebraic topology: models of non-reversible worlds.
Cambridge University Press, 2009.

[12] M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through
Combinatorial Topology. Elsevier, 2014.

[13] M. Herlihy and N. Shavit. The asynchronous computability theorem for
t-resilient tasks. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 111–120. ACM, 1993.

[14] M. Herlihy and N. Shavit. The topological structure of asynchronous com-
putability. Journal of the ACM (JACM), 46(6):858–923, 1999.

[15] D. Kozlov. Combinatorial algebraic topology, volume 21. Springer, 2008.

[16] D. Kozlov. Chromatic subdivision of a simplicial complex. Homology,
Homotopy and Applications, 14(2):197–209, 2012.

[17] D. Kozlov. Topology of the view complex. arXiv preprint arXiv:1311.7283,
2013.

[18] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[19] S. Mac Lane. Categories for the working mathematician, volume 5. springer,
1998.

42



[20] S. MacLane and I. Moerdijk. Sheaves in geometry and logic: A first intro-
duction to topos theory. Springer, 1992.

[21] M. E. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible:
the topology of public knowledge. In STOC, pages 101–110, 1993.

[22] J. H. C. Whitehead. Simplicial spaces, nuclei and m-groups. Proceedings
of the London mathematical society, 2(1):243–327, 1939.

43


	Introduction
	Simplicial complexes
	Simplicial complexes
	Colored complexes
	Simple homotopy

	The standard chromatic subdivision of the standard simplex is collapsible
	The standard chromatic subdivision
	The basic chromatic subdivision of the standard simplex
	Joins and simple homotopy
	Collapsibility of (n)
	Simulation of elementary collapses

	The iterated subdivision is collapsible
	Chromatic presimplicial sets
	Simple homotopy in chromatic presimplicial sets
	The iterated subdivision is collapsible

	Conclusion

