Division by two, omniscience, and homotopy type theory

Samuel Mimram Émile Oleon
SCALP working group
February 16, 2023
Natural numbers as sets

The natural numbers \mathbb{N} can be defined as the equivalence classes of finite sets under isomorphism (= cardinals).

For instance,

$$3 = \{a, b, c\} = \{x, y, z\}$$
Operations on sets

When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?
Operations on sets

When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?

For instance,

- **addition** is the quotient of disjoint union:

\[
3 + 2 = \{a, b, c\} \sqcup \{x, y\} = \{a, b, c, x, y\} = 5
\]
Operations on sets

When we have an operation on natural number we can therefore ask:

\[\text{is the quotient of some operation on sets?} \]

For instance,

- **addition** is the quotient of disjoint union:

\[3 + 2 = \begin{array}{c} a \\ b \\ c \end{array} \sqcup \begin{array}{c} x \\ y \end{array} = \begin{array}{c} a \\ b \\ c \\ x \\ y \end{array} = 5 \]

- **product** is the quotient of cartesian product:

\[3 \times 2 = \begin{array}{c} a \\ b \\ c \end{array} \times \begin{array}{c} x \\ y \end{array} = \begin{array}{c} (a, x) \\ (b, x) \\ (c, x) \\ (a, y) \\ (b, y) \\ (c, y) \end{array} = 6 \]
Operations on sets

When we have an operation on natural number we can therefore ask:

\[\text{is the quotient of some operation on sets?} \]

This is satisfactory when it is the case because

- this is more “constructive”: we replace equality by isomorphism,
- we have an extension of the operations to infinite sets,
- we can study which axioms of set theory we need to perform this.
Next interesting operation is subtraction by 1
Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

\[m + 1 = n + 1 \quad \text{implies} \quad m = n \]
Subtraction by 1

Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

\[m + 1 = n + 1 \quad \text{implies} \quad m = n \]

At the level of sets, this means that we should have

\[A \sqcup \{\star\} \simeq B \sqcup \{\star\} \quad \text{implies} \quad A \simeq B \]
Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

\[m + 1 = n + 1 \quad \text{implies} \quad m = n \]

At the level of sets, this means that we should have

\[A \sqcup \{\star\} \simeq B \sqcup \{\star\} \quad \text{implies} \quad A \simeq B \]

We see that this approach feels more constructive!
Subtraction by 1

\[
A \sqcup \{\star\} \xrightarrow{f} B \sqcup \{\star\}
\]
Subtraction by 1

\[A \sqcup \{\star\} \xrightarrow{f} B \sqcup \{\star\} \]

\begin{align*}
A & = \{a, b, \ldots, \star\} \\
B & = \{x, y, \ldots, \star\}
\end{align*}
Subtraction by 1

\[A \sqcup \{ \star \} \xrightarrow{f} B \sqcup \{ \star \} \]
Subtraction by 1

\[A \sqcup \{ \star \} \xrightarrow{f} B \sqcup \{ \star \} \]
Subtraction by 1

\[A \sqcup \{\star\} \xrightarrow{f} B \sqcup \{\star\} \]

\[
\begin{array}{c}
 a \\
 b \\
 \vdots \\
 \star
\end{array}
\]

\[
\begin{array}{c}
 x \\
 y \\
 \vdots \\
 \star
\end{array}
\]
Subtraction by 1

\[A \sqcup \{\star\} \xrightarrow{f} B \sqcup \{\star\} \]
Subtraction by 1

\[
A \sqcup \{\star\} \xrightarrow{f} B \sqcup \{\star\}
\]

(a, b) \rightarrow (x, \ldots)

(\star, \ldots) \rightarrow (\star, \ldots)

(trace!)
Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

\[m \times 2 = n \times 2 \quad \text{implies} \quad m = n \]
Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

\[m \times 2 = n \times 2 \quad \text{implies} \quad m = n \]

At the level of sets, this means that we should have

\[A \times \{0, 1\} \simeq B \times \{0, 1\} \quad \text{implies} \quad A \simeq B \]
Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

\[m \times 2 = n \times 2 \quad \text{implies} \quad m = n \]

At the level of sets, this means that we should have

\[A \times \{0, 1\} \simeq B \times \{0, 1\} \quad \text{implies} \quad A \simeq B \]

And this is indeed the case:

- if the two sets are finite, we are essentially working with natural numbers,
- otherwise we have \(A \simeq A \sqcup A \simeq B \sqcup B \simeq B \).
Division by 2, constructively

This is the end of my talk
Division by 2, constructively

This could have been the end of my talk unless we wonder

can this be performed constructively?
Division by 2, constructively

This could have been the end of my talk unless we wonder

can this be performed constructively?

Namely, we have been using two dubious principles in the proof of division by 2:
Division by 2, constructively

This could have been the end of my talk unless we wonder

\textit{can this be performed \textit{constructively}?}

Namely, we have been using two dubious principles in the proof of division by 2:

- the \textbf{excluded-middle}: \textit{any set is finite or not},
Division by 2, constructively

This could have been the end of my talk unless we wonder

_can this be performed _constructively_?_

Namely, we have been using two dubious principles in the proof of division by 2:

- the **excluded-middle**: _any set is finite or not_,
- the **axiom of choice**: to construct the bijection \(A \sim A \sqcup A \).
History of division

• 1901: Bernstein gives a construction of division by 2 in ZF
• 1922: Serpiński simplifies the construction
• 1926: Lindenbaum and Tarski construct division by \(n \)
• 1943: Tarski forgets about the construction finds a new one
• 1994: Conway and Doyle manage to reinvent the 1926 solution
• 2015: Doyle, Qiu and Schartz further simplify the construction
• 2018: Swan shows that it cannot be performed entirely constructively by exhibiting a non-boolean topos in which \(\times 2 \) is not regular
• 2022: we extended this to HoTT
• 2023: we only need the limited principle of omniscience

Still an active research topic :)

In this work

We started from Conway and Doyle’s 1994 paper *Division by three*:

- we focus on division by 2,
- we formalize the results in Agda,
- we generalize from sets to spaces.
The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

\[f : A \times 2 \to B \times 2 \]

\[g : B \times 2 \to A \times 2 \]

with \(2 = \{-, +\} \). We want to construct a bijection

\[f : A \to B \]

\[g : B \to A \]

without using the axiom of choice.
The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

\[
\begin{array}{ccc}
A \times 2 & \xrightarrow{f} & B \times 2 \\
A & \xleftarrow{g} & B \\
\end{array}
\]

This data secretly corresponds to a directed graph:

- the elements of \(A \times 2\) and \(B \times 2\) are vertices,
The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

\[
\begin{array}{c}
A \times 2 \\
\Downarrow f \\
B \times 2
\end{array} \\
\begin{array}{c}
A \times 2 \\
\Downarrow g \\
B \times 2
\end{array}
\]

This data secretly corresponds to a directed graph:

- the elements of \(A \times 2 \) and \(B \times 2 \) are vertices,
- the elements of \(A \) and \(B \) are edges: for \(a \in A \),

\[
(a, -) \xrightarrow{a} (a, +)
\]

with \(2 = \{-, +\} \).
The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

\[\begin{align*}
A \times 2 & \xrightarrow{f} B \times 2 \\
B \times 2 & \xrightarrow{g} A \times 2
\end{align*} \]

This data secretly corresponds to a directed graph:

- the elements of \(A \times 2 \) and \(B \times 2 \) are vertices,
- the elements of \(A \) and \(B \) are edges: for \(a \in A \),

\[
(a, -) \xrightarrow{a} (a, +)
\]

with \(2 = \{-, +\} \)

- we identify any two vertices related by the bijection.
The bijection as a graph

For instance, suppose

$$A = \{a, a'\}$$

and consider the bijection

$$B = \{b, b'\}$$
The bijection as a graph

For instance, suppose

\[A = \{a, a'\} \quad \text{and} \quad B = \{b, b'\} \]

and consider the bijection

\[
\begin{align*}
A \times 2 & \quad \text{and} \quad B \times 2 \\
\begin{array}{r}
a- \\
a+ \\
a' - \\
a' + \\
b- \\
b+ \\
b' - \\
b' +
\end{array}
& \quad \begin{array}{r}
a+ = b+ \\
a- = b' - \\
a' + = b- \\
a' - = b' +
\end{array}
\end{align*}
\]
Properties of the graph

Such a graph is characterized by

- every vertex is connected to exactly two edges
- in a path, edges alternate between elements of A and B
A chain is a connected component.
Chains

A chain is a connected component.

It is enough to make a bijection between the edges in A and in B in every chain.
A chain is a connected component.

It is enough to make a bijection between the edges in A and in B in every chain.

Suppose that we pick a distinguished edge in every chain:
Chains

A chain is a connected component.

It is enough to make a bijection between the edges in A and in B in every chain. Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
A chain is a connected component.

It is enough to make a bijection between the edges in A and in B in every chain.

Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every red element to the “next” blue one.
Chains

\[a+ = b+ \]
\[a- = b'- \]
\[a' + = b- \]
\[a' - = b'+ \]

A chain is a connected component.

It is enough to make a bijection between the edges in \(A \) and in \(B \) in every chain. Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every red element to the “next” blue one.

We thus only need to pick an orientation in every chain.
Chains

A chain is a connected component.

It is enough to make a bijection between the edges in A and in B in every chain.

Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every red element to the “next” blue one.

We thus only need to pick an **orientation** in every chain … which is not obvious without choice!
Bracketing

Consider a chain

\[\cdots \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \leftarrow \cdot \rightarrow \cdot \leftarrow \cdot \leftarrow \cdots \]
Bracketing

Consider a chain

\[\cdots \rightarrow (\rightarrow \ . \ . \ . \ . \) \rightarrow (\rightarrow \ . \ . \ . \ . \) \rightarrow (\rightarrow \ . \ . \ . \ . \) \rightarrow (\rightarrow \ . \ . \ . \ . \) \rightarrow (\rightarrow \ . \ . \ . \ . \) \cdots \]

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following forms:
Bracketing

Consider a chain

\[\cdots \quad (\rightarrow \quad . \quad (\rightarrow \quad . \quad \leftarrow) \quad . \quad (\rightarrow \quad . \quad \leftarrow) \quad . \quad \leftarrow) \quad \cdots \]

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are **matching**: we have a bijection,
- otherwise the non-matched brackets can have the following forms:
 - **slope**: \[\cdots \quad \rightarrow \quad . \quad \rightarrow \quad \cdots \]
 we can use any arrow as an orientation!
Bracketing

Consider a chain

\[\ldots \rightarrow \ (\rightarrow \cdot \leftarrow) \cdot \rightarrow \leftarrow) \cdot \leftarrow) \ldots \]

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are **matching**: we have a bijection,
- otherwise the non-matched brackets can have the following forms:
 - **slope**: \[\ldots \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \ldots \]
 we can use any arrow as an orientation!
 - **switch**: \[\ldots \leftarrow \cdot \leftarrow \cdot \leftarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \ldots \]
 we have a canonical choice of an arrow for orientation!
Consider a chain

\[\ldots \rightarrow (\rightarrow \cdot \leftarrow) \rightarrow \ldots \]

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are **matching**: we have a bijection,
- otherwise the non-matched brackets can have the following forms:
 - **slope**: \[\ldots \rightarrow \cdot \rightarrow \ldots \]
 we can use any arrow as an orientation!
 - **switch**: \[\ldots \leftarrow \cdot \leftarrow \cdot \leftarrow \cdot \leftarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \ldots \]
 we have a canonical choice of an arrow for orientation!

In each case we can pick an orientation without choice.
A formalization in homotopy type theory

We have formalized this result in classical **homotopy type theory** (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent

- the law of excluded middle: for any proposition A, $A \lor \neg A$
- the axiom of choice: for $f : A \to \text{Type}$, $(\forall x : A. \| f x \|) \to \| (\forall x : A. f x) \|
- we have access to HITs, which are useful (propositional trunc., quotient types)
- we generalize the result from sets to spaces
A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)
• we know that the following are independent
 • the law of excluded middle: for any proposition A,
 $A \lor \neg A$
A formalization in homotopy type theory

We have formalized this result in classical **homotopy type theory** (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of **excluded middle**: for any proposition A,
 \[
 A \lor \neg A
 \]
 - the **axiom of choice**: for $f : A \to \text{Type}$,
 \[
 ((x : A) \to \| f x \|) \to \| (x : A) \to f x \|
 \]
A formalization in homotopy type theory

We have formalized this result in classical **homotopy type theory** (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of **excluded middle**: for any proposition A,

 $$A \lor \lnot A$$

 - the **axiom of choice**: for $f : A \to \text{Type}$,

 $$((x : A) \to \| f x \|) \to \| ((x : A) \to f x) \|$$

- we have access to HITs, which are useful (propositional trunc., quotient types)
A formalization in homotopy type theory

We have formalized this result in classical **homotopy type theory** (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of **excluded middle**: for any proposition A, $A \lor \neg A$
 - the **axiom of choice**: for $f : A \to \text{Type}$,
 $\left((x : A) \to \|f x\| \right) \to \| (x : A) \to f x \|$
- we have access to HITs, which are useful (propositional trunc., quotient types)
- we generalize the result from sets to spaces
A formalization in homotopy type theory

We have formalized this result in classical **homotopy type theory** (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of **excluded middle**: for any proposition A, $A \lor \neg A$
 - the **axiom of choice**: for $f : A \to \text{Type}$,
 $$(x : A) \to \| f x \| \to \| (x : A) \to f x \|$$
- we have access to HITs, which are useful (propositional trunc., quotient types)
- we generalize the result from sets to spaces
The limited principle of omniscience

The law of excluded middle is: for any proposition A,

$$A \lor \neg A$$
The limited principle of omniscience

The law of excluded middle is: for any proposition \(A \),

\[
A \lor \neg A
\]

Here and after, we do not need the full power of excluded middle, but only the limited principle of omniscience (LPO): \(\mathbb{Z} \) is omniscient.

Given a sequence \(P : \mathbb{Z} \rightarrow \text{Bool} \),

- either \(\forall (n : \mathbb{Z}) \neg (P \ n) \),
- or \(\exists (n : \mathbb{Z}) (P \ n) \).

NB: \(\text{Bool} \) is the type of decidable propositions
(think: we can decide the halting problem)
The limited principle of omniscience

The limited principle of omniscience

$$(P : \mathbb{Z} \rightarrow \text{Bool}) \rightarrow (\forall (n : \mathbb{Z}) \rightarrow \neg (P \ n)) \lor (\exists (n : \mathbb{Z}) \rightarrow P \ n))$$

is used here to determine whether

• a bracket is matched
• all brackets are matched,
• we have a switching arrow.

And it does not seem that we can avoid it.
From sets to spaces

We have formalized the original result:

Theorem

For any two types A and B which are sets,

$$A \times \mathbb{2} \sim B \times \mathbb{2} \quad \rightarrow \quad A \sim B.$$
From sets to spaces

We have formalized the original result:

Theorem

For any two types A and B which are sets,

$$A \times \mathbb{2} \simeq B \times \mathbb{2} \rightarrow A \simeq B.$$

but also the generalization

Theorem

For any two types A and $B,

$$A \times \mathbb{2} \sim B \times \mathbb{2} \rightarrow A \sim B.$$

Note: we should use equivalences instead of isomorphisms for types.
From sets to spaces

We have formalized the original result:

Theorem
For any two types A and B which are sets,

$$A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B.$$

but also the generalization

Theorem
For any two types A and $B,

$$A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B.$$

Note: we should use *equivalences* instead of isomorphisms for types.
Components

Given a type A, we write $\|A\|_0$ for its set of connected components.
Given a type A, we write $\|A\|_0$ for its set of connected components.

Given $a \in A$, we write $\text{shape}(a)$ for the actual component of A, which is a space.
Components

Given a type A, we write $\|A\|_0$ for its set of connected components.

Given $a \in A$, we write $\text{shape}(a)$ for the actual component of A, which is a space.

The bijection

$$f : A \sqcup A \to B \sqcup B$$

induces, for $a \in A \sqcup A$, a bijection

$$f_a : \text{shape}(a) \to \text{shape}(f(a))$$

which are thus “homotopy equivalent”.
Dividing homotopy types by 2

Theorem

Given types A and B, we have

$$A \times \mathbb{2} \simeq B \times \mathbb{2} \quad \rightarrow \quad A \simeq B$$

Proof.
Dividing homotopy types by 2

Theorem
Given types A and B, we have

\[A \times \{0,1\} \sim B \times \{0,1\} \quad \rightarrow \quad A \sim B \]

Proof.

\[A \times \{0,1\} \sim B \times \{0,1\} \]
Dividing homotopy types by 2

Theorem
Given types \(A\) *and* \(B\), we have

\[A \times 2 \simeq B \times 2 \rightarrow A \simeq B \]

Proof.

\[A \times 2 \simeq B \times 2 \]
\[\| A \times 2 \|_o \simeq \| B \times 2 \|_o \]
Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$A \times 2 \simeq B \times 2 \rightarrow A \simeq B$$

Proof.

$$A \times 2 \simeq B \times 2$$

$$\parallel A \times 2 \parallel_o \simeq \parallel B \times 2 \parallel_o$$

$$\parallel A \parallel_o \times 2 \simeq \parallel B \parallel_o \times 2$$
Dividing homotopy types by 2

Theorem

Given types A and B, we have

$$A \times 2 \simeq B \times 2 \rightarrow A \simeq B$$

Proof.

$$A \times 2 \simeq B \times 2$$

$$\| A \times 2 \|_o \simeq \| B \times 2 \|_o$$

$$\| A \|_o \times 2 \simeq \| B \|_o \times 2$$

$$\| A \|_o \simeq \| B \|_o$$
Dividing homotopy types by 2

Theorem
Given types \(A \) and \(B \), we have

\[
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
\]

Proof.

\[
\begin{align*}
A \times 2 & \simeq B \times 2 \\
\| A \times 2 \|_0 & \simeq \| B \times 2 \|_0 \\
\| A \|_0 \times 2 & \simeq \| B \|_0 \times 2 \\
\| A \|_0 & \simeq \| B \|_0
\end{align*}
\]

Since this bijection sends a directed arrow \(a \) to a reachable one \(b \),

\[
\text{shape } a \simeq \text{shape } b
\]
Dividing homotopy types by 2

Theorem

Given types A and B, we have

$$A \times \mathbb{2} \simeq B \times \mathbb{2} \quad \rightarrow \quad A \simeq B$$

Proof.

$$A \times \mathbb{2} \simeq B \times \mathbb{2}$$

$$\| A \times \mathbb{2} \|_0 \simeq \| B \times \mathbb{2} \|_0$$

$$\| A \|_0 \times \mathbb{2} \simeq \| B \|_0 \times \mathbb{2}$$

$$\| A \|_0 \simeq \| B \|_0$$

Since this bijection sends a directed arrow a to a reachable one b,

$$\text{shape } a \simeq \text{shape } b$$

thus

$$A \simeq \Sigma [\ a \in A \] \ (\text{shape } a) \simeq \Sigma [\ b \in B \] \ (\text{shape } b) \simeq B$$
Dividing homotopy types by 2

Theorem
Given types \(A \) and \(B \), we have

\[
A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B
\]

Proof.

\[
\parallel A \times 2 \parallel_0 \simeq \parallel B \times 2 \parallel_0 \\
\parallel A \parallel_0 \times 2 \simeq \parallel B \parallel_0 \times 2 \\
\parallel A \parallel_0 \simeq \parallel B \parallel_0
\]

Since this bijection sends a directed arrow \(a \) to a reachable one \(b \),

\[
\text{shape } a \simeq \text{shape } b
\]

thus

\[
A \simeq \Sigma[\ a \in A \] \ (\text{shape } a) \simeq \Sigma[\ b \in B \] \ (\text{shape } b) \simeq B
\]
Consider the type \(\mathbb{2} \) with two elements \(\text{src} \) and \(\text{tgt} \)
Agda formalization

Consider the type \(\mathcal{2} \) with two elements \(\text{src} \) and \(\text{tgt} \) and suppose fixed a bijection

\[
A \times \mathcal{2} \simeq B \times \mathcal{2}
\]

with \(A \) and \(B \) sets.
Agda formalization

Consider the type \(\mathbb{2} \) with two elements src and tgt and suppose fixed a bijection

\[
A \times \mathbb{2} \simeq B \times \mathbb{2}
\]

with A and B sets. We define

- Arrows = \(A \uplus B \)
- Ends = Arrows \(\times \mathbb{2} = dArrows \)

The idea:

\[
(a, \text{src}) \xrightarrow{a} (a, \text{tgt})
\]
Agda formalization

Consider the type \(2 \) with two elements \(\text{src} \) and \(\text{tgt} \) and suppose fixed a bijection

\[
A \times 2 \simeq B \times 2
\]

with \(A \) and \(B \) sets. We define

- \(\text{Arrows} = A \uplus B \)
- \(\text{Ends} = \text{Arrows} \times 2 = d\text{Arrows} \)

The idea:

\[
(a, \text{src}) \cdot \overset{a}{\rightarrow} \cdot (a, \text{tgt})
\]

We also have functions

\[
\text{arr} : d\text{Arrows} \rightarrow \text{Arrows} \quad \text{fw} : \text{Arrows} \rightarrow d\text{Arrows}
\]

\[
(a, \text{src}) \mapsto a \quad a \mapsto (a, \text{src})
\]

\[
(a, \text{tgt}) \mapsto a
\]
Reachability

We can then define a function:

\[
\text{iterate} : \mathbb{Z} \rightarrow \text{dArrows} \rightarrow \text{dArrows}
\]
Reachability

We can then define a function:

\[\text{iterate} : \mathbb{Z} \to \text{dArrows} \to \text{dArrows} \]

And thus

\[\text{reachable} : \text{dArrows} \to \text{dArrows} \to \text{Type} \]

\[\text{reachable } e \, e' = \Sigma [n \in \mathbb{Z}] (\text{iterate } n \, e \equiv e') \]
Reachability

We can then define a function:

\[
\text{iterate} : \mathbb{Z} \to \text{dArrows} \to \text{dArrows}
\]

And thus

\[
\text{reachable} : \text{dArrows} \to \text{dArrows} \to \text{Type}
\]

\[
\text{reachable } e \; e' = \Sigma [\; n \in \mathbb{Z} \;] \; (\text{iterate } n \; e \equiv e')
\]

as well as

\[
\text{is-reachable} : \text{dArrows} \to \text{dArrows} \to \text{Type}
\]

\[
\text{is-reachable } e \; e' = \| \text{reachable } e \; e' \|\]
Revealing reachability

Recall,

\[
\text{reachable } e \ e' = \Sigma [\ n \in \mathbb{Z}] \ (\text{iterate } n \ e \equiv e')
\]
\[
\text{is-reachable } e \ e' = \| \text{reachable } e \ e' \|
\]

Clearly, \(\text{reachable } e \ e' \rightarrow \text{is-reachable } e \ e'\)
Revealing rechability

Recall,

\[\text{reachable } e \ e' = \Sigma [\ n \in \mathbb{Z}] \ (\text{iterate } n \ e \equiv e') \]
\[\text{is-reachable } e \ e' = \left\lVert \text{reachable } e \ e' \right\rVert \]

Clearly, \(\text{reachable } e \ e' \rightarrow \text{is-reachable } e \ e' \)

Proposition
\(\text{Conversely, is-reachable } e \ e' \rightarrow \text{reachable } e \ e' \)

Proof.
Revealing reachability

Recall,

\[\text{reachable } e \leftrightarrow e' = \Sigma \left[n \in \mathbb{Z} \right] (\text{iterate } n \ e \equiv e') \]
\[\text{is-reachable } e \leftrightarrow e' = \parallel \text{reachable } e \leftrightarrow e' \parallel \]

Clearly, \(\text{reachable } e \leftrightarrow e' \rightarrow \text{is-reachable } e \leftrightarrow e' \)

Proposition

Conversely, \(\text{is-reachable } e \leftrightarrow e' \rightarrow \text{reachable } e \leftrightarrow e' \)

Proof.

Since \(A \) and \(B \) are sets, so is \(\text{dArrows} = (A \cup B) \times \mathcal{P} \).
Revealing reachability

Recall,

\[
\text{reachable } e \; e' = \Sigma \left[n \in \mathbb{Z} \right] (\text{iterate } n \; e \equiv e')
\]
\[
\text{is-reachable } e \; e' = \| \text{reachable } e \; e' \|
\]

Clearly, \(\text{reachable } e \; e' \rightarrow \text{is-reachable } e \; e' \)

Proposition

Conversely, \(\text{is-reachable } e \; e' \rightarrow \text{reachable } e \; e' \)

Proof.

Since \(\text{A and B are sets} \), so is \(\text{dArrows} = (A \cup B) \times \mathcal{P} \).

Thus \(\text{reachable } e \; e' \) is a proposition,
Revealing reachability

Recall,

\[\text{reachable } e \; e' = \sum_{n \in \mathbb{Z}} (\text{iterate } n \; e \equiv e') \]
\[\text{is-reachable } e \; e' = \| \text{reachable } e \; e' \| \]

Clearly, \(\text{reachable } e \; e' \rightarrow \text{is-reachable } e \; e' \)

Proposition

Conversely, \(\text{is-reachable } e \; e' \rightarrow \text{reachable } e \; e' \)

Proof.

Since \(A \) and \(B \) are sets, so is \(\text{dArrows} = (A \cup B) \times \wp \).

Thus \(\text{reachable } e \; e' \) is a proposition,

which is moreover decidable because we are classical.
Revealing reachability

Recall,

\[
\text{reachable } e \ e' = \Sigma \left[\ n \in \mathbb{Z} \right] (\text{iterate } n \ e \equiv e')
\]

\[
\text{is-reachable } e \ e' = \| \text{reachable } e \ e' \|
\]

Clearly, \(\text{reachable } e \ e' \rightarrow \text{is-reachable } e \ e'\)

Proposition

Conversely, \(\text{is-reachable } e \ e' \rightarrow \text{reachable } e \ e'\)

Proof.

Since \(A\) and \(B\) are sets, so is \(\text{dArrows} = (A \cup B) \times \mathcal{P}\).

Thus \(\text{reachable } e \ e'\) is a proposition,

which is moreover decidable because we are classical.

Supposing \(\text{reachable } e \ e'\), since we have a way to enumerate \(\mathbb{Z}\),

we can therefore find an \(n : \mathbb{Z}\) such that \(\text{iterate } n \ e \equiv e'\).
We are tempted to define directed chains as

\[\Sigma \left[e \in \text{dArrows} \right] (\Sigma \left[e' \in \text{dArrows} \right] (\text{is-reachable} e e')) \]
Chains

We are tempted to define directed chains as

\[\sum_{e \in dArrows} \left(\sum_{e' \in dArrows} \text{is-reachable } e \leftrightarrow e' \right) \]

However, this are rather pointed chains.
We are tempted to define directed chains as

$$\Sigma[e \in d\text{Arrows}] (\Sigma[e' \in d\text{Arrows}] (\text{is-reachable} \ e \ e'))$$

However, this are rather *pointed* chains.

A satisfactory definition of directed chains

$$d\text{Chains} = d\text{Arrows} / \text{is-reachable}$$
We are tempted to define directed chains as

$$\Sigma[e \in dArrows] (\Sigma[e' \in dArrows] (\text{is-reachable} e e'))$$

However, this are rather pointed chains.

A satisfactory definition of directed chains

$$dChains = dArrows / \text{is-reachable}$$

and similarly, we define chains as

$$\text{Chains} = \text{Arrows} / \text{is-reachable-arr}$$
Building the bijection chainwise

Given a chain \(c \), we write \texttt{chainA } c \texttt{(resp. chainB } c \texttt{)} for the type of its elements in \(A \) (resp. \(B \)).
Building the bijection chainwise

Given a chain \(c \), we write \(\text{chain}_A \ c \) (resp. \(\text{chain}_B \ c \)) for the type of its elements in \(A \) (resp. \(B \)).

Lemma

If, for every chain \(c \), we have \(\text{chain}_A \ c \cong \text{chain}_B \ c \), then \(A \cong B \).

Proof.

Given a relation \(R \) on a type \(A \), the type is the union of its equivalence classes:

\[
A \cong \Sigma \left[c \in A / R \right] \ \text{fiber} \ \ _c
\]

The result can be deduced from this and standard equivalences.
Types of chain

Recall that a chain c can be

- well-bracketed:

 \[\cdots \rightarrow \cdot \left(\rightarrow \cdot \leftarrow \right) \cdot \left(\rightarrow \cdot \leftarrow \right) \cdot \leftarrow \cdots \]

- a switching chain:

 \[\cdots \leftarrow \cdot \leftrightarrow \cdot \leftrightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdots \]

- a slope:

 \[\cdots \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot \rightarrow \cdots \]

By excluded-middle, we know that we are in one of those three cases (provided we show that they are propositions).
Types of chain

Recall that a chain c can be

- well-bracketed:
 \[
 \cdots \xrightarrow{\cdot} \xrightarrow{(\cdot)} \xleftarrow{\cdot} \xrightarrow{(\cdot)} \xleftarrow{\cdot} \xrightarrow{(\cdot)} \xleftarrow{\cdot} \xrightarrow{(\cdot)} \xleftarrow{\cdot} \cdots
 \]

- a switching chain:
 \[
 \cdots \leftarrow \xrightarrow{\cdot} \leftarrow \xrightarrow{\cdot} \leftarrow \xrightarrow{\cdot} \cdots \xrightarrow{\cdot} \leftarrow \xrightarrow{\cdot} \cdots
 \]

- a slope:
 \[
 \cdots \xrightarrow{\cdot} \xrightarrow{\cdot} \xrightarrow{\cdot} \xrightarrow{\cdot} \xrightarrow{\cdot} \xrightarrow{\cdot} \xrightarrow{\cdot} \cdots
 \]

By excluded-middle, we know that we are in one of those three cases (provided we show that they are propositions).

It only remains to show $\text{chain}_A \ c \simeq \text{chain}_B \ c$ in each case (we will only present well-bracketing).
Well-bracketing

A word over \{(),\} may be interpreted as a Dyck path:
Well-bracketing

The **height** of the following path is 4:

\[
\cdot \; \frac{(1 \rightarrow)}{1} \cdot \; \frac{(1 \rightarrow)}{1} \cdot \; \frac{(\leftarrow \; -1)}{} \cdot \; \frac{(1 \rightarrow)}{1} \cdot
\]
Well-bracketing

The **height** of the following path is 4:

\[
\cdot \xrightarrow{1} \cdot \xrightarrow{1} \cdot \xleftarrow{1} \cdot \xrightarrow{1} \cdot
\]

An arrow \(a \) is **matched** when it satisfies

\[
\Sigma[n \in \mathbb{N}] (\\
\text{height (suc } n) (\text{fw } a) \equiv 0 \land \\
((k : \mathbb{N}) \to k < \text{suc } n \to \neg (\text{height } k (\text{fw } x) \equiv 0)))
\]
Well-bracketing

The chain of an arrow \circ is **well-bracketed** when every arrow reachable from \circ is matched.

Proposition

Being well-bracketed for a reachable arrow is a proposition, which is independent of the choice of \circ.
The chain of an arrow \circ is well-bracketed when every arrow reachable from \circ is matched.

Proposition
Being well-bracketed for a reachable arrow is a proposition, which is independent of the choice of \circ.

A chain is well-bracketed when each of its arrow is well-bracketed in the above sense.
Well-bracketing

A chain is **well-bracketed** when each of its arrow is well-bracketed.

Remark
Since

\[
\text{Chains} = \frac{\text{Arrows}}{\text{is-reachable-arr}}
\]

in order for this definition to make sense:

- we need to eliminate to a set (by definition of chains as *quotients*): here, we eliminate to \(\text{HProp} \), which is a set, of which being well-bracketed is an element!
- we need to show that this is independent of the choice of the representative for the origin \(\circ \).
Well-bracketing

A chain is **well-bracketed** when each of its arrow is well-bracketed.

Remark

Since

\[
\text{Chains} = \text{Arrows} / \text{is-reachable-arr}
\]

in order for this definition to make sense:

- we need to eliminate to a set (by definition of chains as *quotients*): here, we eliminate to \(\text{HProp} \), which is a set, of which being well-bracketed is an element!
- we need to show that this is independent of the choice of the representative for the origin \(o \).

Proposition

Given a well-bracketed chain \(c \), we have an equivalence \(\text{chainA} \ c \simeq \text{chainB} \ c \).
The two other cases

• switching chains
• slopes

are handled similarly.
Division by 2

Theorem

For any two types A and B which are sets,

$$A \times 2 \cong B \times 2 \quad \rightarrow \quad A \cong B.$$
Our aim is now to generalize the theorem to the situation where A and B are arbitrary types (as opposed to sets).

We suppose fixed an equivalence $A \times \mathbb{2} \simeq B \times \mathbb{2}$.
The set truncation

Given a type A, we write $\| A \|_0$ for its set truncation:

$\|\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\cdot\|_0 = \bullet \bullet$
The set truncation

Given a type A, we write $\|A\|_0$ for its set truncation:

\[\|\bullet\bullet\bullet\bullet\bullet\|_0 = \bullet\bullet\bullet\bullet\bullet\]

We have a quotient map

\[|__|_0 : A \rightarrow \|A\|_0\]
The set truncation

Given a type A, we write $\|A\|_0$ for its **set truncation**:

$\|\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\|_0 = \bullet \bullet$

We have a quotient map

$\ |-|_0 : A \to \|A\|_0$

The picture we should have in mind is

Given $a : A$,
- $\ |a|_0$ is its connected component,
- fiber $\ |-|_0 \mid a \mid_0$ are the elements of this connected component.
Proposition
Suppose given an equivalence $A \simeq B$ (with $f : A \to B$).

- There is an induced equivalence $\| A \|_0 \simeq \| B \|_0$.
- Given $x : \| A \|_0$, we have an equivalence
 \[
 \text{fiber } |-|_0 x \simeq \text{fiber } |-|_0 (\| \|_0 \text{-map } f x)
 \]
Equivalences and set truncation

Proposition
Given an equivalence $A_0 \simeq B_0$ (with $f : A_0 \to B_0$), and type families $P : A_0 \to \text{Type}$ and $Q : B_0 \to \text{Type}$, such that for $x : A$, we have

$$P x \simeq Q (f x)$$

Then

$$\Sigma A_0 P \simeq \Sigma B_0 Q$$
Reachability and equivalence

Proposition
Given directed arrows a and b in $\parallel d\text{Arrows} \parallel_o$ reachable from the other, we have

$$\text{fiber } \|_0 a \simeq \text{fiber } \|_0 b$$

Proof.
We can define functions

$$\text{next} : d\text{Arrows} \rightarrow d\text{Arrows} \quad \quad \text{prev} : d\text{Arrows} \rightarrow d\text{Arrows}$$

sending a directed arrow to the next one (in the direction), which form an equivalence, thus

$$\text{fiber } \|_0 a \simeq \text{fiber } \|_0 (\parallel \text{next} \parallel_o a)$$

by previous proposition and we conclude by induction.
Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$A \times \mathbb{2} \simeq B \times \mathbb{2} \quad \rightarrow \quad A \simeq B$$

Proof.
Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B$$

Proof.

$$A \times 2 \simeq B \times 2$$
Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B$$

Proof.

$$A \times 2 \simeq B \times 2$$

$$\| A \times 2 \|_o \simeq \| B \times 2 \|_o$$
Dividing homotopy types by 2

Theorem
Given types A and B, we have

\[
A \times \{0,1\} \simeq B \times \{0,1\} \Rightarrow A \simeq B
\]

Proof.

\[
\begin{align*}
A \times \{0,1\} &\simeq B \times \{0,1\} \\
\| A \times \{0,1\} \|_0 &\simeq \| B \times \{0,1\} \|_0 \\
\| A \|_0 \times \{0,1\} &\simeq \| B \|_0 \times \{0,1\}
\end{align*}
\]
Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$A \times 2 \cong B \times 2 \quad \rightarrow \quad A \cong B$$

Proof.

$$A \times 2 \cong B \times 2$$

$$\parallel A \times 2 \parallel_0 \cong \parallel B \times 2 \parallel_0$$

$$\parallel A \parallel_0 \times 2 \cong \parallel B \parallel_0 \times 2$$

$$\parallel A \parallel_0 \cong \parallel B \parallel_0$$
Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$A \times \mathbb{2} \simeq B \times \mathbb{2} \quad \rightarrow \quad A \simeq B$$

Proof.

$$\| A \times \mathbb{2} \|_o \simeq \| B \times \mathbb{2} \|_o$$

$$\| A \|_o \times \mathbb{2} \simeq \| B \|_o \times \mathbb{2}$$

$$\| A \|_o \simeq \| B \|_o$$

Since this bijection sends a directed arrow a to a reachable one b,

$$\text{fiber } \|_o a \simeq \text{fiber } \|_o b$$
Dividing homotopy types by 2

Theorem
Given types A and B, we have

$$A \times 2 \simeq B \times 2 \rightarrow A \simeq B$$

Proof.

$$A \times 2 \simeq B \times 2$$

$$\parallel A \times 2 \parallel_0 \simeq \parallel B \times 2 \parallel_0$$

$$\parallel A \parallel_0 \times 2 \simeq \parallel B \parallel_0 \times 2$$

$$\parallel A \parallel_0 \simeq \parallel B \parallel_0$$

Since this bijection sends a directed arrow a to a reachable one b,

$$\text{fiber } \downarrow_0 a \simeq \text{fiber } \downarrow_0 b$$

thus

$$A \simeq \Sigma[a \in A] (\text{fiber } \downarrow_0 a) \simeq \Sigma[b \in B] (\text{fiber } \downarrow_0 b) \simeq B$$
The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f: A \to B$ and $g: B \to A$ there is a bijection $h: A \simeq B$.
The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections \(f : A \to B \) and \(g : B \to A \) there is a bijection \(h : A \simeq B \)

It can be shown in classical logic.
The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections \(f : A \to B \) and \(g : B \to A \) there is a bijection \(h : A \simeq B \) such that \(h(x) = y \implies f(x) = y \) or \(x = g(y) \).

It can be shown in classical logic.
The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f : A \rightarrow B$ and $g : B \rightarrow A$ there is a bijection $h : A \simeq B$ such that $h(x) = y$ implies $f(x) = y$ or $x = g(y)$.

It can be shown in classical logic.

Theorem (Pradic-Brown’22)
CBS implies excluded middle.

Proof.
Given P, take $A = \mathbb{N}$ and $B = \{\star \mid P\} \cup \mathbb{N}$.

\[0 \leftarrow \cdots \leftarrow \star \leftarrow 1 \leftarrow 0 \leftarrow 2 \leftarrow 1 \leftarrow \cdots \]
The Cantor-Bernstein-Schröder theorem

Theorem (Cantor-Bernstein-Schröder)
Given injections $f : A \to B$ and $g : B \to A$ *there is a bijection* $h : A \simeq B$

It can be shown in classical logic.

Theorem (Pradic-Brown’22)
CBS implies excluded middle.

Proof.
Replace \mathbb{N} with an infinite type for which LPO holds
(yes, this exists! [Escardò’13])
The converse implication

Conjecture
“For every A and B, $2A \simeq 2B$ implies $A \simeq B$” implies LPO.

Proof.
Take $A = B = \mathbb{Z}$ and $P : \mathbb{Z} \to \text{Bool}$. We take the bijection $f : A \to B$ such that

- if $\neg P(n)$ then $\cdot \xrightarrow{n} \cdot \xleftarrow{n} \cdot$

- if $P(n)$ then $\cdot \xleftarrow{n} \cdot \xleftarrow{n} \cdot$

- we link $\cdot \xleftarrow{n-1} \cdot \xrightarrow{n} \cdot$
The converse implication

Conjecture

“For every A and B, $2A \simeq 2B$ implies $A \simeq B$” implies LPO.

Proof.

Take $A = B = \mathbb{Z}$ and $P : \mathbb{Z} \to \text{Bool}$. We take the bijection $f : A \to B$ such that

1. if $\neg P(n)$ then \(\cdot \xrightarrow{n} \cdot \xleftarrow{n} \cdot \)
2. if $P(n)$ then \(\cdot \xleftarrow{n} \cdot \xleftarrow{n} \cdot \)
3. we link \(\cdot \xleftarrow{n-1} \cdot \xrightarrow{n} \cdot \)

Thus

1. if $\forall n. \neg P(n)$ then we are well-bracketed and match n with n
2. if $\exists n. P(n)$ then there is an excess in “)” and we match n with $n - 1$

We have $\exists n. (P)$ if $h(0) = -1$!
Quick announcements

• the **SYCO conference** will take place at École polytechnique on 20-21 April 2023 (deadline: 6 March 2023)

• there is an open assistant professor position in **foundations of computer science** open at École polytechnique (deadline: 15 March 2023)

• please also consider submitting posters for **GT LHC**!
Questions?