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Higher-dimensional rewriting

We can rewrite
I points (ARS)
I strings
I terms
I . . .

I morphisms in free n-categories

Unfortunately, the resulting notion of

higher-dimensional rewriting system

is sometimes too limited: we would like to rewrite in multiple
dimensions at the same time.

We present here the case of dimension 1.
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Presentations of monoids
Definition
A presentation P = 〈P1 | P2〉 of a monoid M consists of
I a set P1 of generators
I a set P2 ⊆ P∗1 × P∗1 of relations

such that
M ∼= P∗1/

∗↔
P2where

I P∗1 is the free monoid (of strings) over P1

I
∗↔
P2

is the smallest congruence on P∗1 containing P2

Example

I N ∼= 〈a | 〉
I N/2N ∼= 〈a | (aa, 1)〉
I N× N ∼= 〈a, b | (ba, ab)〉
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Convergent presentations

presentation = string rewriting system

Given 〈P1 | P2〉 which is convergent (= terminating + confluent),

equivalence classes
in P∗1 modulo ∗↔

P2

= normal forms

and therefore showing M = P∗1/
∗↔
P2

amounts to show

M ∼= NF(P∗1)

(in a way compatible with mutiplication).
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Convergent presentations
Example
Consider the system P =

〈
a
∣∣∣ aa ρ→ 1

〉
:

we want to show that it presents N/2N = {0, 1}.
I it is terminating

I it is locally confluent

aaa
ρa

||

aρ

""
aa

ρ
""

aa

ρ
||

a

I it is thus confluent
I normal forms are in bijection with elements of N/2N:

NF(P) = {1, a} ∼= {0, 1} = N/2N

I the bijection is compatible with multiplication:

aa

ρ

��

� // 1 + 1

1 � // 0

I therefore we do have a presentation:

N/2N ∼= P∗1/
∗↔
P2
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Presentations of monoids

Definition
A presentation P = 〈P1 | P2〉 consists of
I a set P1 of generators
I a set P2 of relations

with two functions

P2 ⊆ P∗1 × P∗1

i.e. a diagram in Set
P1

i1
��

P2
s1

~~ t1~~
P∗1
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a, b ∗a
%%

bee

monoid =
category
with

one object

PRESENTING
CATEGORIES



Graphs

Definition
A graph G = (V , s, t,E ) consists of
I a set V of vertices
I a set E of edges
I source and target functions s, t : E → V

The free category generated by G has
I objects: vertices V
I morphisms: paths E ∗ (with concatenation as composition)

E
s

~~ t~~
V

E ∗

8 / 30



Graphs

Definition
A graph G = (V , s, t,E ) consists of
I a set V of vertices
I a set E of edges
I source and target functions s, t : E → V

The free category generated by G has
I objects: vertices V
I morphisms: paths E ∗ (with concatenation as composition)

E
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��

V E ∗
s∗oo

t∗
oo
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Presentations of categories

Definition
A presentation P of category consists of
I a graph (the signature)
I a set of rules rewriting a path into another path with same

source and target

y1
f2 // y2

f3 // y3 f4

��
x

f1 33

g1 ..

ρ
ww� z

y g2

88

The presented category ‖P‖ is the free category on the graph
with paths taken modulo the congruence generated by rules.
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Presentations of categories (formally)

Definition
A presentation P of category consists of

P1 P2

P0

P∗1

I a set P0 of object generators

I a set P1 of morphism generators
I a set P2 of relations

with s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1
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Presenting the dihedral group
Definition
The dihedral group Dn is the group of isometries of the plane
preserving a regular polygon with n faces. This group admits the
presentation

P =
〈
r , s

∣∣ rn = 1, s2 = 1, rsr = s
〉

where
I r corresponds to a rotation of 2π/n
I s corresponds to a symmetry

Example

D8 =

11 / 30



Presenting the dihedral category
Definition
The dihedral category D•n is the variant with a vertex of the
polygon is distinguished.

Example

D•4 =

r1

##s1 //
s2

oo

r2
��

r4

OO

s4 //

r3

cc s3
oo

admits the presentation P with

P0 = { , , , }
P1 = {ri , si | i = 1, . . . , 4}
P2 = {. . .}
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The dihedral category D•n is the variant with a vertex of the
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Example

D•4 =

r1

##s1 //
s2

oo

r2
��

r4

OO

s4 //

r3

cc s3
oo

admits the presentation P with

ri+3 ◦ ri+2 ◦ ri+1 ◦ ri = id sj+1 ◦ sj = id rj ◦ sj+1 ◦ rj = sj
sj ◦ sj+1 = id rj+3 ◦ sj+2 ◦ rj+1 = sj+1

for i ∈ {1, . . . , 4} and j ∈ {1, 3}, where the indices are to be taken
modulo 4 so that they lie in {1, . . . , 4}.
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PRESENTING
MODULO



Presentations modulo

Presentations of categories start from a graph and quotient paths.

Sometimes, we would like to have a quotient on objects too!

Example
Consider the presentation

D•4

/ {r2, r4}

=

r1

$$s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

dd s3
oo

What happens if we set = and = by imposing that r2
and r4 should “be considered as identities”?
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Presentations modulo
Definition
A presentation modulo (P, P̃1) of category consists of
I a presentation of category P,
I a set P̃1 ⊆ P1 of equational generators.

x1
f1

~~
g1

��

f4

  
x2

f2   

ρ
=⇒ x4

f3~~

g2gg

x3

g3

44

P0 = {xi}
P1 = {fi , gi}
P̃1 = {fi}
P2 = {ρ}

Since, we want to consider objects modulo relations in P̃1, it is
natural to suppose that

Assumption
The abstract rewriting system (P0, P̃1) is convergent.
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The category presented modulo
r1

$$s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

dd s3
oo

Given a presentation modulo (P, P̃1), we
have three possible ways of defining the pre-
sented category from ‖P‖:

r1

$$s1 //
s2

oo

1. quotient by equational generators: turn
them into identities,

��

r1

$$s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

dd s3
oo

OO 2. localize by equational generators: turn
them into isomorphisms,

r

��

s

&&s ′

ff
3. restrict to objects which are normal
forms wrt equational generators.
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The main result

Theorem
Given a presentation modulo (P, P̃1) satisfying
suitable assumptions, the three constructions are related by

normal
forms

‖P‖↓ P̃1
iso //

equiv %%

‖P‖ /P̃1

equivzz

quotient

localization P[P̃−1
1 ]

17 / 30



Quotient and localization

Suppose given a category C and a set Σ of morphisms of C.

Definition
The quotient of C by Σ is the category C/Σ such that

C

��

F // D

C/Σ
F̃

==

for any category D there is a bijection between
I functors F : C → D sending elements of Σ to identities
I functors F̃ : C/Σ→ D

It always exists for abstract reasons.

18 / 30



Quotient and localization

Suppose given a category C and a set Σ of morphisms of C.

Definition
The localization of C by Σ is the category C[Σ−1] such that

C

��

F // D

C[Σ−1]
F̃

<<

for any category D there is a bijection between
I functors F : C → D sending elements of Σ to isomorphisms
I functors F̃ : C/Σ→ D

It always exists for abstract reasons.

18 / 30



Counter-examples
Without the suitable assumptions, the theorem is false.

Consider the category

C = x
f //
g
// y

with Σ = {f }:

Theorem
Given a presentation modulo (P, P̃1) satisfying
suitable assumptions, the three constructions are related by

normal
forms

‖P‖↓ P̃1
iso //

equiv %%

‖P‖ /P̃1

equivzz

quotient

localization P[P̃−1
1 ]
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Counter-examples
Without the suitable assumptions, the theorem is false.
Consider the category

C = x
f //
g
// y

with Σ = {f , g}:

I the quotient is
C/Σ = x idee

I the localization is equivalent to

C[Σ−1] = ? n∈Zee

They are not equivalent!
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Assumption 1: convergence

Assumption
The abstract rewriting system (P0, P̃1) is convergent.

x1
f1

~~
g1

��

f4

  
x2

f2   

ρ
=⇒ x4

f3~~

g2gg

x3

g3

44

20 / 30



Assumption 2: residuation

Assumption
For every pair of distinct coinitial generators

f : x → y1 ∈ P̃1 and g : x → y2 ∈ P1

there exist a fixed pair of cofinal morphisms

g/f : y1 → z ∈ P∗1 and f /g : y2 → z ∈ P̃∗1

and a relation

α ∈ P2 with

z

y1

g/f
<<

α⇐⇒ y2

f /g
bb

x
f

bb

g

<<

The morphism g/f is called residual of g after f , idem for f /g.

21 / 30



Assumption 3: cylinder property

Assumption
For every

f : x → x ′ ∈ P̃1 and α : g1 ⇒ g2 : x → y ∈ P2

we have
I f /g1 = f /g2

I α/f : g1/f
∗⇔ g2/f exists

x ′
g1/f

++

g2/f

33α/f y ′

x

f

OO

g1
**

g2

44α y

f /g1=f /g2

OO

22 / 30
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Assumption 4: termination

Assumption
Given f : x → x ′ and α : g1 ⇒ g2 : x → y , we have

|α/f | < |α|

for some function |−| : P2 → N.

x ′
g1/f

++

g2/f

33α/f y ′

x

f

OO

g1
**

g2

44α y

f /g1=f /g2

OO

23 / 30



Assumption 5: opposite

Assumption
The opposite presentation modulo (Pop, P̃op

1 ) with
I Pop = (P0,P

op
1 ,P

op
2 )

I Pop
1 = {f op : y → x | f : x → y ∈ P1}

I Pop
2 = {αop : f op ⇒ gop | α : f ⇒ g} with

f op = f op
1 ◦ ... ◦ f

op
k for f = fk ◦ . . . ◦ f1

I P̃op
1 is the subset of Pop

1 corresponding to P̃1

also satisfies previous assumptions

24 / 30



Proofs
Theorem
Given a presentation modulo (P, P̃1) satisfying
the five assumptions, the three constructions are related by

normal
forms

‖P‖↓ P̃1
iso //

equiv ((

‖P‖ /P̃1

equivww

quotient

localization P[P̃−1
1 ]

Proof. See the article!
I Termination ensures global properties.
I The cylinder property is close to the usual “cube identity” for

residuals, it ensures that every equational morphism is epi
and has pushout along other morphisms.

I We use the description of the localization as a category of
fractions. 25 / 30



The dihedral example
What is the category presented by the following presentation
modulo?

r1

##s1 //
s2

oo

r2
��

r4

OO

s4 //

r3

cc s3
oo

with
P0 = { , , , }
P1 = {ri , si | i = 1, . . . , 4}
P̃1 = {r2, r4}
P2 = {. . .}

Problem: it does not satisfy our hypothesis! (r2/s2 =?)
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Tietze transformations

Definition
Given a presentation P, a Tietze transformation consists in
I adding / removing a definable generator:

a generator f ∈ P1 together with a relation α : f ⇒ g ∈ P2
such that g ∈ (P1 \ {f })∗,

I adding / removing a derivable relation:
a relation α : f ⇒ g ∈ P2 such that f and g are equivalent
wrt the congruence generated by the relations in P2 \ {α}.

Proposition
Two presentations P and P ′ are related by a finite sequence of
Tietze transformations if and only if they present the same
category, i.e. ‖P‖ ∼= ‖P ′‖.

27 / 30



The dihedral example
Consider the presentation

r1

##s1 //
s2

oo

r2
��

r4

OO

s4 //

r3

cc s3
oo

r2/s2 = ?

with relations

ri+3 ◦ ri+2 ◦ ri+1 ◦ ri = id sj+1 ◦ sj = id rj ◦ sj+1 ◦ rj = sj
sj ◦ sj+1 = id rj+3 ◦ sj+2 ◦ rj+1 = sj+1

r4 ◦ r4 = id r4 ◦ r4 = id r3 ◦ r2 ◦ r1 = r4

28 / 30



The dihedral example
Consider the presentation

r1

##

r4
��

s1 //
s2

oo

r2
��

r4

OO

s4 //

r3

cc s3
oo

r2/s2 = ?

with relations

ri+3 ◦ ri+2 ◦ ri+1 ◦ ri = id sj+1 ◦ sj = id rj ◦ sj+1 ◦ rj = sj
sj ◦ sj+1 = id rj+3 ◦ sj+2 ◦ rj+1 = sj+1

r4 ◦ r4 = id r4 ◦ r4 = id

r3 ◦ r2 ◦ r1 = r4
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The dihedral example
Consider the presentation

r4
��

r1

##s1 //
s2

oo

r2
��

r1

cc

s4 //

r4

OO

r3
##

r3

cc s3
oo

with relations

sj+1 ◦ sj = id r1 ◦ s2 ◦ r1 = s1 rk ◦ r k = id r2 ◦ r1 = r3 ◦ r4

sj ◦ sj+1 = id r3 ◦ s3 ◦ r3 = s4 r k ◦ rk = id r3 ◦ r2 = r4 ◦ r1

s3 ◦ r2 = r4 ◦ s2
r2 ◦ s1 = s4 ◦ r4

and all residuals can be suitably defined. . .
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The dihedral example
The category presented modulo by

r1

$$s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

dd s3
oo

or r4
��

r1

##s1 //
s2

oo

r2
��

r1

cc

s4 //

r4

OO

r3
##

r3

cc s3
oo

is
D•2 =

s4 //

r3

##

r3

cc s3
oo

and we have that D•2
I is isomorphic to the quotient D•4/ {r2, r4},
I embeds fully and faithfully into the category D•4 ,
I is equivalent to the localization D•4 [{r2, r4}−1].
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Conclusion and future works

We have
I defined a presentation of a category modulo an abstract

rewriting system,
I shown that it comes with a decent notion of presented

category,
I generalized well-known techniques in rewriting (residuation)

and group theory (Ore theorem).

Next step is to go higher in dimensions where really interesting
examples occur, e.g. we could present the cartesian product of
monoidal categories!
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