PRESENTING
 A CATEGORY MODULO A REWRITING SYSTEM

FLORENCE CLERC SAMUEL MIMRAM

École Polytechnique

RTA conference
June 30, 2015

Higher-dimensional rewriting

We can rewrite

- points (ARS)
- strings
- terms

Higher-dimensional rewriting

We can rewrite

- points (ARS)
- strings
- terms
- morphisms in free n-categories
higher-dimensional rewriting system

Higher-dimensional rewriting

We can rewrite

- points (ARS)
- strings
- terms
- morphisms in free n-categories

Unfortunately, the resulting notion of
higher-dimensional rewriting system
is sometimes too limited: we would like to rewrite in multiple dimensions at the same time.

We present here the case of dimension 1 .

Presentations of monoids

Definition

A presentation $P=\left\langle P_{1} \mid P_{2}\right\rangle$ of a monoid M consists of

- a set P_{1} of generators
- a set $P_{2} \subseteq P_{1}^{*} \times P_{1}^{*}$ of relations
such that
where

$$
M \cong P_{1}^{*} / \underset{P_{2}}{\stackrel{*}{\leftrightarrow}}
$$

- P_{1}^{*} is the free monoid (of strings) over P_{1}
- $\underset{P_{2}}{\stackrel{*}{\leftrightarrow}}$ is the smallest congruence on P_{1}^{*} containing P_{2}

Example

- $\mathbb{N} \cong\langle a \mid\rangle$
- $\mathbb{N} / 2 \mathbb{N} \cong\langle a \mid(a a, 1)\rangle$
- $\mathbb{N} \times \mathbb{N} \cong\langle a, b \mid(b a, a b)\rangle$

Presentations of monoids

Definition

A presentation $P=\left\langle P_{1} \mid P_{2}\right\rangle$ of a monoid M consists of

- a set P_{1} of letters
- a set $P_{2} \subseteq P_{1}^{*} \times P_{1}^{*}$ of rules
such that
where

$$
M \cong P_{1}^{*} / \underset{P_{2}}{\stackrel{*}{\leftrightarrow}}
$$

- P_{1}^{*} is the free monoid (of strings) over P_{1}
- $\underset{P_{2}}{\stackrel{*}{\leftrightarrow}}$ is the smallest congruence on P_{1}^{*} containing P_{2}

Example

- $\mathbb{N} \cong\langle a \mid\rangle$
- $\mathbb{N} / 2 \mathbb{N} \cong\langle a \mid a a \rightarrow 1\rangle$
- $\mathbb{N} \times \mathbb{N} \cong\langle a, b \mid b a \rightarrow a b\rangle$

Convergent presentations

presentation $=$ string rewriting system

Convergent presentations

presentation $=$ string rewriting system

Given $\left\langle P_{1} \mid P_{2}\right\rangle$ which is convergent (= terminating + confluent),
equivalence classes

$$
\text { in } P_{1}^{*} \text { modulo } \underset{P_{2}}{\stackrel{*}{\leftrightarrow}} \quad=\quad \text { normal forms }
$$

Convergent presentations

presentation $=$ string rewriting system

Given $\left\langle P_{1} \mid P_{2}\right\rangle$ which is convergent (= terminating + confluent), equivalence classes

$$
\text { in } P_{1}^{*} \text { modulo } \underset{P_{2}}{\stackrel{*}{\leftrightarrow}} \quad=\quad \text { normal forms }
$$

and therefore showing $M=P_{1}^{*} / \underset{P_{2}}{\stackrel{*}{\leftrightarrow}}$ amounts to show

$$
M \cong N F\left(P_{1}^{*}\right)
$$

(in a way compatible with mutiplication).

Convergent presentations

Example

Consider the system $P=\langle a|$ aa $\xrightarrow{\rho} 1\rangle$: we want to show that it presents $\mathbb{N} / 2 \mathbb{N}=\{0,1\}$.

- it is terminating

Convergent presentations

Example

Consider the system $P=\langle a|$ aa $\xrightarrow{\rho} 1\rangle$: we want to show that it presents $\mathbb{N} / 2 \mathbb{N}=\{0,1\}$.

- it is terminating
- it is locally confluent

Convergent presentations

Example

Consider the system $P=\langle a|$ aa $\xrightarrow{\rho} 1\rangle$: we want to show that it presents $\mathbb{N} / 2 \mathbb{N}=\{0,1\}$.

- it is terminating
- it is locally confluent

- it is thus confluent

Convergent presentations

Example

Consider the system $P=\langle a|$ aa $\xrightarrow{\rho} 1\rangle$: we want to show that it presents $\mathbb{N} / 2 \mathbb{N}=\{0,1\}$.

- it is terminating
- it is locally confluent
- it is thus confluent
- normal forms are in bijection with elements of $\mathbb{N} / 2 \mathbb{N}$:

$$
\operatorname{NF}(P)=\{1, a\} \cong\{0,1\}=\mathbb{N} / 2 \mathbb{N}
$$

Convergent presentations

Example

Consider the system $P=\langle a|$ aa $\xrightarrow{\rho} 1\rangle$: we want to show that it presents $\mathbb{N} / 2 \mathbb{N}=\{0,1\}$.

- it is terminating
- it is locally confluent
- it is thus confluent
- normal forms are in bijection with elements of $\mathbb{N} / 2 \mathbb{N}$:

$$
\operatorname{NF}(P)=\{1, a\} \cong\{0,1\}=\mathbb{N} / 2 \mathbb{N}
$$

- the bijection is compatible with multiplication:

Convergent presentations

Example

Consider the system $P=\langle a|$ aa $\xrightarrow{\rho} 1\rangle$: we want to show that it presents $\mathbb{N} / 2 \mathbb{N}=\{0,1\}$.

- it is terminating
- it is locally confluent
- it is thus confluent
- normal forms are in bijection with elements of $\mathbb{N} / 2 \mathbb{N}$:

$$
\operatorname{NF}(P)=\{1, a\} \cong\{0,1\}=\mathbb{N} / 2 \mathbb{N}
$$

- the bijection is compatible with multiplication:
- therefore we do have a presentation:

$$
\mathbb{N} / 2 \mathbb{N} \cong P_{1}^{*} / \underset{P_{2}}{\stackrel{*}{\leftrightarrow}}
$$

Presentations of monoids

Definition

A presentation $P=\left\langle P_{1} \mid P_{2}\right\rangle$ consists of

- a set P_{1} of generators
- a set P_{2} of relations

$$
P_{2} \subseteq \quad P_{1}^{*} \times P_{1}^{*}
$$

Presentations of monoids

Definition

A presentation $P=\left\langle P_{1} \mid P_{2}\right\rangle$ consists of

- a set P_{1} of generators
- a set P_{2} of relations with two functions

$$
s_{1}, t_{1}: \quad P_{2} \quad \rightarrow \quad P_{1}^{*}
$$

Presentations of monoids

Definition

A presentation $P=\left\langle P_{1} \mid P_{2}\right\rangle$ consists of

- a set P_{1} of generators
- a set P_{2} of relations with two functions

$$
s_{1}, t_{1}: \quad P_{2} \quad \rightarrow \quad P_{1}^{*}
$$

i.e. a diagram in Set

$$
a, b
$$

category monoid $=\begin{gathered}\text { with } \\ \text { one object }\end{gathered}$

PRESENTING CATEGORIES

Graphs

Definition
A graph $G=(V, s, t, E)$ consists of

- a set V of vertices
- a set E of edges
- source and target functions $s, t: E \rightarrow V$

Graphs

Definition
A graph $G=(V, s, t, E)$ consists of

- a set V of vertices
- a set E of edges
- source and target functions $s, t: E \rightarrow V$

The free category generated by G has

- objects: vertices V
- morphisms: paths E^{*} (with concatenation as composition)

Presentations of categories

Definition

A presentation P of category consists of

- a graph (the signature)
- a set of rules rewriting a path into another path with same source and target

The presented category $\|P\|$ is the free category on the graph with paths taken modulo the congruence generated by rules.

Presentations of categories (formally)

Definition
 A presentation P of category consists of

$$
P_{0}
$$

- a set P_{0} of object generators

Presentations of categories (formally)

Definition

A presentation P of category consists of

- a set P_{0} of object generators
- a set P_{1} of morphism generators

Presentations of categories (formally)

Definition

A presentation P of category consists of

- a set P_{0} of object generators
- a set P_{1} of morphism generators

Presentations of categories (formally)

Definition

A presentation P of category consists of

- a set P_{0} of object generators
- a set P_{1} of morphism generators
- a set P_{2} of relations with $s_{0}^{*} \circ s_{1}=s_{0}^{*} \circ t_{1}$ and $t_{0}^{*} \circ s_{1}=t_{0}^{*} \circ t_{1}$

Presenting the dihedral group

Definition

The dihedral group D_{n} is the group of isometries of the plane preserving a regular polygon with n faces. This group admits the presentation

$$
P=\left\langle r, s \mid r^{n}=1, s^{2}=1, r s r=s\right\rangle
$$

where

- r corresponds to a rotation of $2 \pi / n$
- s corresponds to a symmetry

Example

Presenting the dihedral category

Definition

The dihedral category D_{n}^{\bullet} is the variant with a vertex of the polygon is distinguished.

Example

admits the presentation P with

$$
\begin{aligned}
P_{0} & =\{\square, \square, \square, \square\} \\
P_{1} & =\left\{r_{i}, s_{i} \mid i=1, \ldots, 4\right\} \\
P_{2} & =\{\ldots\}
\end{aligned}
$$

Presenting the dihedral category

Definition

The dihedral category D_{n}^{\bullet} is the variant with a vertex of the polygon is distinguished.

Example

admits the presentation P with

$$
\begin{aligned}
& r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_{i}=\mathrm{id} \quad s_{j+1} \circ s_{j}=\mathrm{id} \quad r_{j} \circ s_{j+1} \circ r_{j}=s_{j} \\
& s_{j} \circ s_{j+1}=\mathrm{id} \quad r_{j+3} \circ s_{j+2} \circ r_{j+1}=s_{j+1}
\end{aligned}
$$

for $i \in\{1, \ldots, 4\}$ and $j \in\{1,3\}$, where the indices are to be taken modulo 4 so that they lie in $\{1, \ldots, 4\}$.

PRESENTING MODULO

Presentations modulo

Presentations of categories start from a graph and quotient paths.
Sometimes, we would like to have a quotient on objects too!

Presentations modulo

Presentations of categories start from a graph and quotient paths.
Sometimes, we would like to have a quotient on objects too!

Example

Consider the presentation

Presentations modulo

Presentations of categories start from a graph and quotient paths.
Sometimes, we would like to have a quotient on objects too!

Example

Consider the presentation

What happens if we set $\square=\square$ and $\square=\square$ by imposing that r_{2} and r_{4} should "be considered as identities"?

Presentations modulo

Definition

A presentation modulo (P, \tilde{P}_{1}) of category consists of

- a presentation of category P,
- a set $\tilde{P}_{1} \subseteq P_{1}$ of equational generators.

Presentations modulo

Definition

A presentation modulo (P, \tilde{P}_{1}) of category consists of

- a presentation of category P,
- a set $\tilde{P}_{1} \subseteq P_{1}$ of equational generators.

Since, we want to consider objects modulo relations in \tilde{P}_{1}, it is natural to suppose that
Assumption
The abstract rewriting system $\left(P_{0}, \tilde{P}_{1}\right)$ is convergent.

The category presented modulo

Given a presentation modulo $\left(P, \tilde{P}_{1}\right)$, we have three possible ways of defining the presented category from $\|P\|$:

The category presented modulo

Given a presentation modulo $\left(P, \tilde{P}_{1}\right)$, we have three possible ways of defining the presented category from $\|P\|$:

1. quotient by equational generators: turn them into identities,

The category presented modulo

Given a presentation modulo $\left(P, \tilde{P}_{1}\right)$, we have three possible ways of defining the presented category from $\|P\|$:

1. quotient by equational generators: turn them into identities,
2. localize by equational generators: turn them into isomorphisms,

The category presented modulo

Given a presentation modulo $\left(P, \tilde{P}_{1}\right)$, we have three possible ways of defining the presented category from $\|P\|$:

1. quotient by equational generators: turn them into identities,
2. localize by equational generators: turn them into isomorphisms,
3. restrict to objects which are normal forms wrt equational generators.

The main result

Theorem
Given a presentation modulo (P, \tilde{P}_{1}) satisfying suitable assumptions, the three constructions are related by
normal
forms

Quotient and localization

Suppose given a category \mathcal{C} and a set Σ of morphisms of \mathcal{C}.
Definition
The quotient of \mathcal{C} by Σ is the category \mathcal{C} / Σ such that

for any category \mathcal{D} there is a bijection between

- functors $F: \mathcal{C} \rightarrow \mathcal{D}$ sending elements of Σ to identities
- functors $\tilde{F}: \mathcal{C} / \Sigma \rightarrow \mathcal{D}$

It always exists for abstract reasons.

Quotient and localization

Suppose given a category \mathcal{C} and a set Σ of morphisms of \mathcal{C}.
Definition
The localization of \mathcal{C} by Σ is the category $\mathcal{C}\left[\Sigma^{-1}\right]$ such that

for any category \mathcal{D} there is a bijection between

- functors $F: \mathcal{C} \rightarrow \mathcal{D}$ sending elements of Σ to isomorphisms
- functors $\tilde{F}: \mathcal{C} / \Sigma \rightarrow \mathcal{D}$

It always exists for abstract reasons.

Counter-examples

Without the suitable assumptions, the theorem is false.

Theorem
Given a presentation modulo (P, \tilde{P}_{1}) satisfying suitable assumptions, the three constructions are related by normal forms

Counter-examples

Without the suitable assumptions, the theorem is false.
Consider the category

$$
\mathcal{C}=x \underset{g}{\stackrel{f}{\Longrightarrow}} y
$$

with $\Sigma=\{f, g\}$:

- the quotient is

$$
\mathcal{C} / \Sigma=\bar{x} \bigcirc \mathrm{id}
$$

- the localization is equivalent to

$$
\mathcal{C}\left[\Sigma^{-1}\right]=\star \supseteq n \in \mathbb{Z}
$$

They are not equivalent!

Counter-examples

Without the suitable assumptions, the theorem is false.
Consider the category

$$
\mathcal{C}=x \underset{g}{\stackrel{f}{\Longrightarrow}} y
$$

with $\Sigma=\{f\}$:

- the category of normal forms is

- the localization is

They are not equivalent!

Counter-examples

Without the suitable assumptions, the theorem is false.
Consider the category

$$
\mathcal{C}=x \underset{g}{\stackrel{f}{\Longrightarrow}} y
$$

with $\Sigma=\{f\}$:

- the category of normal forms is

- the quotient is

$$
\bar{y} \bigcirc g^{n}
$$

They are not isomorphic!

Assumption 1: convergence

Assumption

The abstract rewriting system (P_{0}, \tilde{P}_{1}) is convergent.

Assumption 2: residuation

Assumption

For every pair of distinct coinitial generators

$$
f: x \rightarrow y_{1} \in \tilde{P}_{1} \quad \text { and } \quad g: x \rightarrow y_{2} \in P_{1}
$$

there exist a fixed pair of cofinal morphisms

$$
g / f: y_{1} \rightarrow z \in P_{1}^{*} \quad \text { and } \quad f / g: y_{2} \rightarrow z \in \tilde{P}_{1}^{*}
$$

and a relation

The morphism g / f is called residual of g after f, idem for f / g.

Assumption 3: cylinder property

Assumption

For every

$$
f: x \rightarrow x^{\prime} \in \tilde{P}_{1} \quad \text { and } \quad \alpha: g_{1} \Rightarrow g_{2}: x \rightarrow y \in P_{2}
$$

we have

- $f / g_{1}=f / g_{2}$
- $\alpha / f: g_{1} / f \stackrel{*}{\Leftrightarrow} g_{2} / f$ exists

Assumption 3: cylinder property

Assumption

For every

$$
f: x \rightarrow x^{\prime} \in P_{1} \quad \text { and } \quad \alpha: g_{1} \Rightarrow g_{2}: x \rightarrow y \in P_{2}
$$

we have

- $f / g_{1}=f / g_{2}$
- $\alpha / f: g_{1} / f \stackrel{*}{\Leftrightarrow} g_{2} / f$ exists

Assumption 4: termination

Assumption

Given $f: x \rightarrow x^{\prime}$ and $\alpha: g_{1} \Rightarrow g_{2}: x \rightarrow y$, we have

$$
|\alpha / f|<|\alpha|
$$

for some function $|-|: P_{2} \rightarrow \mathbb{N}$.

Assumption 5: opposite

Assumption

The opposite presentation modulo ($P^{\mathrm{op}}, \tilde{P}_{1}^{\mathrm{op}}$) with
$-P^{\mathrm{op}}=\left(P_{0}, P_{1}^{\mathrm{op}}, P_{2}^{\mathrm{op}}\right)$

- $P_{1}^{\mathrm{op}}=\left\{f^{\mathrm{Op}}: y \rightarrow x \mid f: x \rightarrow y \in P_{1}\right\}$
- $P_{2}^{\mathrm{op}}=\left\{\alpha^{\mathrm{OP}}: f^{\mathrm{OP}} \Rightarrow g^{\mathrm{op}} \mid \alpha: f \Rightarrow g\right\}$ with $f^{\circ \mathrm{p}}=f_{1}^{\text {op }} \circ \ldots \circ f_{k}^{\text {op }}$ for $f=f_{k} \circ \ldots \circ f_{1}$
- $\tilde{P}_{1}^{\text {op }}$ is the subset of $P_{1}^{\text {op }}$ corresponding to \tilde{P}_{1}
also satisfies previous assumptions

Proofs

Theorem
Given a presentation modulo (P, \tilde{P}_{1}) satisfying the five assumptions, the three constructions are related by
normal
forms

Proof. See the article!

- Termination ensures global properties.
- The cylinder property is close to the usual "cube identity" for residuals, it ensures that every equational morphism is epi and has pushout along other morphisms.
- We use the description of the localization as a category of fractions.

The dihedral example

What is the category presented by the following presentation modulo?

with

$$
\begin{aligned}
P_{0} & =\{\square, \square, \square, \square\} \\
P_{1} & =\left\{r_{i}, s_{i} \mid i=1, \ldots, 4\right\} \\
\tilde{P}_{1} & =\left\{r_{2}, r_{4}\right\} \\
P_{2} & =\{\ldots\}
\end{aligned}
$$

The dihedral example

What is the category presented by the following presentation modulo?

with

$$
\begin{aligned}
P_{0} & =\{\square, \square, \square, \square\} \\
P_{1} & =\left\{r_{i}, s_{i} \mid i=1, \ldots, 4\right\} \\
\tilde{P}_{1} & =\left\{r_{2}, r_{4}\right\} \\
P_{2} & =\{\ldots\}
\end{aligned}
$$

Problem: it does not satisfy our hypothesis! $\left(r_{2} / s_{2}=\right.$?)

Tietze transformations

Definition

Given a presentation P, a Tietze transformation consists in

- adding / removing a definable generator:
a generator $f \in P_{1}$ together with a relation $\alpha: f \Rightarrow g \in P_{2}$ such that $g \in\left(P_{1} \backslash\{f\}\right)^{*}$,
- adding / removing a derivable relation: a relation $\alpha: f \Rightarrow g \in P_{2}$ such that f and g are equivalent wrt the congruence generated by the relations in $P_{2} \backslash\{\alpha\}$.

Proposition

Two presentations P and P^{\prime} are related by a finite sequence of Tietze transformations if and only if they present the same category, i.e. $\|P\| \cong\left\|P^{\prime}\right\|$.

The dihedral example

Consider the presentation

$$
r_{2} / s_{2}=?
$$

with relations

$$
\begin{aligned}
r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_{i}=\text { id } & s_{j+1} \circ s_{j} & =\text { id } & r_{j} \circ s_{j+1} \circ r_{j}
\end{aligned}=s_{j}, ~ l o s_{j+1}=\text { id } \quad r_{j+3} \circ s_{j+2} \circ r_{j+1}=s_{j+1} .
$$

The dihedral example

Consider the presentation

$$
r_{2} / s_{2}=?
$$

with relations

$$
\begin{aligned}
& r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_{i}=\text { id } \quad s_{j+1} \circ s_{j}=\text { id } \quad r_{j} \circ s_{j+1} \circ r_{j}=s_{j} \\
& s_{j} \circ s_{j+1}=\mathrm{id} \quad r_{j+3} \circ s_{j+2} \circ r_{j+1}=s_{j+1} \\
& r_{3} \circ r_{2} \circ r_{1}=\overline{r_{4}}
\end{aligned}
$$

The dihedral example

Consider the presentation

$$
r_{2} / s_{2}=?
$$

with relations

$$
\begin{aligned}
& r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_{i}=\text { id } \quad s_{j+1} \circ s_{j}=\text { id } \quad r_{j} \circ s_{j+1} \circ r_{j}=s_{j} \\
& s_{j} \circ s_{j+1}=\text { id } \quad r_{j+3} \circ s_{j+2} \circ r_{j+1}=s_{j+1} \\
& r_{4} \circ \overline{r_{4}}=\mathrm{id} \quad \overline{r_{4}} \circ r_{4}=\mathrm{id} \quad r_{3} \circ r_{2} \circ r_{1}=\overline{r_{4}}
\end{aligned}
$$

The dihedral example

Consider the presentation

$$
r_{2} / s_{2}=\overline{r_{4}}
$$

with relations

$$
\begin{aligned}
r_{i+3} \circ r_{i+2} \circ r_{i+1} \circ r_{i}=\text { id } & s_{j+1} \circ s_{j} & =\text { id } & r_{j} \circ s_{j+1} \circ r_{j}
\end{aligned}=s_{j}{ }_{r l}
$$

The dihedral example

Consider the presentation

with relations

$$
\begin{array}{llll}
s_{j+1} \circ s_{j}=\mathrm{id} & r_{1} \circ s_{2} \circ r_{1}=s_{1} & r_{k} \circ \bar{r}_{k}=\mathrm{id} & r_{2} \circ r_{1}=\bar{r}_{3} \circ \bar{r}_{4} \\
s_{j} \circ s_{j+1}=\mathrm{id} & \bar{r}_{3} \circ s_{3} \circ \bar{r}_{3}=s_{4} & \bar{r}_{k} \circ r_{k}=\mathrm{id} & r_{3} \circ r_{2}=\bar{r}_{4} \circ \bar{r}_{1} \\
& & & s_{3} \circ r_{2}=\bar{r}_{4} \circ s_{2} \\
& & r_{2} \circ s_{1}=s_{4} \circ \bar{r}_{4}
\end{array}
$$

and all residuals can be suitably defined. . .

The dihedral example

The category presented modulo by

is
and we have that D_{2}^{\bullet}

- is isomorphic to the quotient $D_{4}^{\bullet} /\left\{r_{2}, r_{4}\right\}$,
- embeds fully and faithfully into the category D_{4}^{\bullet},
- is equivalent to the localization $D_{4}^{\bullet}\left[\left\{r_{2}, r_{4}\right\}^{-1}\right]$.

Conclusion and future works

We have

- defined a presentation of a category modulo an abstract rewriting system,
- shown that it comes with a decent notion of presented category,
- generalized well-known techniques in rewriting (residuation) and group theory (Ore theorem).

Next step is to go higher in dimensions where really interesting examples occur, e.g. we could present the cartesian product of monoidal categories!

