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Abstract
Presentations of categories are a well-known algebraic tool to provide descriptions of categories
by the means of generators, for objects and morphisms, and relations on morphisms. We gener-
alize here this notion, in order to consider situations where the objects are considered modulo
an equivalence relation (in the spirit of rewriting modulo), which is described by equational gen-
erators. When those form a convergent (abstract) rewriting system on objects, there are three
very natural constructions that can be used to define the category which is described by the pre-
sentation: one is based on restricting to objects which are normal forms, one consists in turning
equational generators into identities (i.e. considering a quotient category), and one consists in
formally adding inverses to equational generators (i.e. localizing the category). We show that,
under suitable coherence conditions on the presentation, the three constructions coincide, thus
generalizing celebrated results on presentations of groups. We illustrate our techniques on a
non-trivial example, and hint at a generalization for 2-categories.
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1 Introduction

Motivated by generalizing rewriting techniques to the setting of higher-dimensional categories,
we introduce here a notion of presentation of a category modulo a rewriting system, in order
to be able to present a category as generated by objects and morphisms, quotiented by
relations on both morphisms and objects. This work can somehow be seen as an extension of
traditional techniques of rewriting modulo an equational theory [1], in the case where the
equational theory can itself be oriented as a convergent rewriting system, called an equational
rewriting system. We provide here coherence conditions on both the original rewriting system
and the equational one, so that expected properties hold: for instance, it should be “the
same” to rewrite terms modulo the equational theory than to rewrite terms in normal form
wrt the equational rewriting system. In this introduction, we expose our motivations, which
come from higher-dimensional rewriting theory, however very little knowledge about this
setting will be required in the remaining of the article.
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2 Presenting a Category Modulo a Rewriting System

A string rewriting system P consists in an alphabet P1 and a set P2 ⊆ P ∗1 × P ∗1 of
rules. Such a system induces a monoid ‖P‖ = P ∗1 /

∗⇔ obtained by quotienting the free
monoid P ∗1 on P1 by the smallest congruence ∗⇔ containing the rules in P2; when the
rewriting system is convergent, i.e. both confluent and terminating, normal forms provide
canonical representatives of equivalence classes. Given a monoid M , we say that P is a
presentation of M when M is isomorphic to ‖P‖: in this case, the elements of P1 can be seen
as generators forM , and the elements of P2 as a complete set of relations forM . For instance,
the additive monoid N×N admits the presentation P with P1 = {a, b} and P2 = {ba⇒ ab}:
namely, the string rewriting system is convergent, and its normal forms are words of the
form ambn, with (m,n) ∈ N× N, from which it is easy to build the required isomorphism.

The notion of presentation is easy to generalize from monoids to categories (a monoid
being the particular case of a category with one object): a presentation of category consists
in generators for objects and morphisms, together with rules relating morphisms in the
free category generated by the generators. Starting from this observation, people have
considered a wild generalization of the notion of presentation, in order to present n-categories
(computads [14, 13] or polygraphs [5]), thus providing us with a notion of higher-dimensional
rewriting system. While we will not, in this article, consider much more than presentations
of categories, the motivation for this work really comes from a limitation in presentations of
2-categories (and higher-dimensional categories) that we would like to overcome. We shall
explain it on a simple example of a monoidal category (which, again, is a particular case of a
2-category with only one 0-cell).

Consider the well-known simplicial category ∆ whose objects are integers n ∈ N and mor-
phisms f : m→ n are increasing functions f : [m]→ [n] where [m] = {0, . . . ,m− 1}. This
category is monoidal, with tensor product being given by addition on objects (m⊗n = m+n)
and by “juxtaposition” on morphisms, and it is well known that it admits the following
presentation as a monoidal category [12, 10]: its objects are generated by one object a,
its morphisms are generated by µ : a ⊗ a → a and η : I → a, and the relations are
α : µ ◦ (µ⊗ ida) = µ ◦ (ida⊗µ), λ : µ ◦ (η⊗ ida) = ida and ρ : µ ◦ (ida⊗η) = ida. This means
that every morphism of ∆ can be obtained as a composite of η and µ, and that two such
formal composites represent the same morphism precisely when they can be related by the
congruence generated by the above relations. As we can see on this example, a presentation P
of a monoidal category consists in generators for objects (here P1 = {a}), generators for
morphisms (P2 = {η, µ}) and relations between composite of morphisms (P3 = {α, λ, ρ}).
Notice that such a presentation does not allow for relations between objects, and thus is
restricted to presenting monoidal categories whose underlying monoid of objects is free.

This limitation can be better understood by trying to present the monoidal category ∆×∆
with tensor product extending componentwise the one of ∆: the underlying monoid of objects
is N×N, which is not free. If we try to construct a presentation for this monoidal category, seen
as consisting of “two copies” of the above category ∆, we are lead to consider a presentation
containing “two copies” of the previous presentation: we consider a presentation P with
P1 = {a, b} as object generators (where a and b respectively correspond to the objects
(1, 0) and (0, 1)), with P2 = {µa, ηa, µb, ηb} as morphism generators (with µa : a ⊗ a → a,
µb : b⊗ b→ b, etc.), and with P3 = {αa, λa, ρa, αb, λb, ρb} as relations. If we stop here adding
relations, the presented category has {a, b}∗ as underlying monoid of objects, which is not
right: recalling the above presentation for N×N, we should moreover add a relation γ : ba = ab.
However, such a relation between objects is not allowed in the usual notion of presentation
(only relations between morphisms are usually considered). In order to provide a meaning to
it, three constructions are available: restrict P to some canonical representatives of objects
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modulo the equivalence generated by γ (typically the words of the form ambn), quotient by γ
the monoidal category ‖P‖ presented by P , or formally invert the morphism γ in ‖P‖. We
show that under reasonable assumptions on the presentation, all three constructions coincide,
thus providing one with a notion of coherent presentation modulo. As a fist step toward
this situation, we study here the simpler case of presentations of categories and introduce a
notion of presentation modulo for those, leaving the case of 2-categories for future work.

We begin by recalling the notion of presentation of a category (Section 2.1), then we
extend it to work modulo a relation on objects (Section 2.2), and consider the quotient and
localization wrt to the relation (Section 2.3). In order to compare those constructions, we
consider equational rewriting systems equipped with a notion of residuation (Section 3.1)
and satisfying a particular “cylinder” property (Section 3.2). We then show that, under
suitable coherence conditions, the category of normal forms is isomorphic to the quotient
(Section 4.1) and equivalent with the localization (Section 4.2), and illustrate our results on
an example (Section 4.3). We finally discuss a possible extension of this work to presentations
of 2-categories (Section 5) and conclude (Section 6).

2 Presentations of categories modulo a rewriting system

2.1 Presentations of categories
Recall that a graph (P0, s0, t0, P1) consists of two sets P0 and P1, of vertices and edges
respectively, together with two functions s0, t0 : P1 → P0 associating to an edge its source
and target respectively. Such a graph generates a category with P0 as objects and the set P ∗1
of (directed) paths as morphisms. If we denote by i1 : P1 → P ∗1 the coercion of edges to
paths of length 1, and s∗0, t∗0 : P ∗1 → P0 the functions associating to a path its source and
target respectively, we thus obtain a diagram as on the left below:

P1
s0

~~ t0~~
i1

��
P0 P ∗1

s∗0oo
t∗0

oo

P1
s0

~~ t0~~
i1

��

P2
s1

~~ t1~~
P0 P ∗1

s∗0oo
t∗0

oo

(1)

in Set which is commuting in the sense that s∗0 ◦ i1 = s0 and t∗0 ◦ i1 = t0.

I Definition 1. A presentation P = (P0, s0, t0, P1, s1, t1, P2), as pictured on the right of (1),
consists in a graph (P0, s0, t0, P1) as above, the elements of P0 (resp. P1) being called
object (resp. morphism) generators, together with a set P2 of relations (or 2-generators)
and two functions s1, t1 : P2 → P ∗1 such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1. The
category ‖P‖ presented by P is the category obtained from the category generated by the
graph (P0, s0, t0, P1) by quotienting morphisms by the smallest congruence wrt composition
identifying any two morphisms f and g such that there exists α ∈ P2 satisfying s1(α) = f

and t1(α) = g.

In the following, we often simply write (P0, P1, P2) for a presentation as above, leaving the
source and target maps implicit. We write f : x→ y for an edge f ∈ P1 with s0(f) = x and
t0(f) = y, and α : f ⇒ g for a relation with f as source and g as target. We sometimes write
α : f ⇔ g to indicate that α : f ⇒ g or α : g ⇒ f is an element of P2, and we denote by ∗⇔
the smallest congruence such that f ∗⇔ g whenever there exists α : f ⇒ g in P2.

I Example 2. The monoid N/2N (seen as a category with only one object) admits the
presentation P with P0 = {x}, P1 = {f : x→ x} and P2 = {ε : f ◦ f ⇒ idx}.
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4 Presenting a Category Modulo a Rewriting System

I Remark. A presentation P generates a 2-category with invertible 2-cells (also called a
(2,1)-category), whose set of 2-cells is denoted P ∗2 , and the category presented by P is
obtained from this 2-category by identifying 1-cells where there is a 2-cell in between [5, 10].
We write α : f ∗⇔ g for such a 2-cell.

I Lemma 3. Any category C admits a presentation P C, called its standard presentation,
with P C0 being the set of objects of C, P C1 being the set of morphisms of C and P C2 being the set
of pairs (f2 ◦ f1, g) ∈ P C∗1 × P C∗1 with f1, f2, g ∈ P1 such that s0(f1) = s0(g), t0(f2) = t0(g)
and f2 ◦ f1 = g in C (with projections as source and target functions).

By previous lemma, every category admits at least one presentation. In general, it actually
admits many presentations. It can be shown that two presentations present the same category
if and only if they are related by Tietze transformations: those transformations generate all
the operations one can do on a presentation without modifying the presented category [15, 8].
For instance, Knuth-Bendix completions are a particular case of those [9].

I Definition 4. Given a presentation P , a Tietze transformation consists in
adding (resp. removing) a generator f ∈ P1 and a relation α : f ⇒ g ∈ P2 with
g ∈ (P1 \ {f})∗,
adding (resp. removing) a relation α : f ⇒ g ∈ P2 such that f and g are equivalent
wrt the congruence generated by the relations in P2 \ {α}.

I Proposition 5. Two presentations P and P ′ are related by a finite sequence of Tietze
transformations if and only if they present the same category, i.e. ‖P‖ ∼= ‖P ′‖.

2.2 Presentations modulo
In a presentation P of a category, relations are generated by elements of P2: the morphisms
of the free category on the underlying graph will be quotiented by those in order to obtain
the presented category. We now extend this notion in order to also allow for quotienting
objects in the process of constructing the presented category.

I Definition 6. A presentation modulo (P, P̃1) consists of a presentation P = (P0, P1, P2)
together with a set P̃1 ⊆ P1, whose elements are called equational generators.

The morphisms of ‖P‖ generated by the equational generators are called equational morphisms.
Intuitively, the category presented by a presentation modulo should be the “quotient category”
‖P‖ /P̃1, as explained in next section, where objects equivalent under P̃1 (i.e. related by
equational morphisms) are identified. We believe that the reason why presentations modulo
of categories were not introduced before is that they are unnecessary, in the sense that
we can always convert a presentation modulo into a regular presentation, see Lemma 10
below. However, the techniques developed here extend in the case of 2-categories (this will
be developed in a subsequent article) and moreover, our framework already enables us to
easily obtain interesting results on presented categories, see Section 4.3.

I Definition 7. Given a presentation modulo (P, P̃1), we define the presentation P/P̃1 as
the presentation (P ′0, P ′1, P ′2) where

P ′0 = P0/ ∼=1 where ∼=1 is the smallest equivalence such that x ∼=1 y whenever there exists
a generator f : x→ y in P̃1, and we denote [x] the equivalence class of x ∈ P0,
the elements of P ′1 are f : [x]→ [y] for f : x→ y in P1,
the elements of P ′2 are of the form α : f → g for α : f → g in P2, or αf : f → id[x] for
f : x→ y in P̃1.
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We will sometimes need to consider presentations modulo with “arrows reversed”:

I Definition 8. Given a presentation modulo (P, P̃1), the presentation modulo (P op, P̃ op
1 )

is given by P op = (P0, P
op
1 , P op

2 ) where P op
1 = {fop : y → x | f : x→ y ∈ P1} and where

P op
2 = {αop : fop ⇒ gop | α : f ⇒ g} with fop = fop

1 ◦ ... ◦ f
op
k for f = fk ◦ . . . ◦ f1 and where

P̃ op
1 is the subset of P op

1 corresponding to P̃1.

2.3 Quotient and localization of a presentation modulo
As explained above, we want to quotient our presentations modulo by equational morphisms,
in order for the equational morphisms to induce equalities in the presented category. Given
a category C and a set Σ of morphisms, there are essentially two canonical ways to “get rid”
of the morphisms of Σ in C: we can either force them to be identities, or to be isomorphisms,
giving rise to the two following notions of quotient and localization of a category. These are
standard construction in category theory and we recall them below.

I Definition 9. The quotient of a category C by a set Σ of morphisms of C is a category C/Σ
together with a quotient functor Q : C → C/Σ sending the elements of Σ to identities, such
that for every functor F : C → D sending the elements of Σ to identities, there exists a
unique functor F̃ such that F̃ ◦Q = F .

Such a quotient category always exists for general reasons [2] and is unique up to isomorphism.
Given a presentation modulo (P, P̃1), the category presented by the associated (non-modulo)
presentation P/P̃1 described in Definition 7, corresponds to considering the category presented
by the (non-modulo) presentation P and quotient it by P̃1.

I Lemma 10. Suppose given a presentation modulo (P, P̃1), the categories ‖P‖ /P̃1 and∥∥P/P̃1
∥∥ are isomorphic.

A second, slightly different construction, consists in turning elements of Σ into isomor-
phisms (instead of identities):

I Definition 11. The localization of a category C by a set Σ of morphisms is the cate-
gory C[Σ−1] together with a localization functor L : C → C[Σ−1] sending the elements of Σ
to isomorphisms, such that for every functor F : C → D sending the elements of Σ to
isomorphisms, there exists a unique functor F̃ such that F̃ ◦ L = F .

In the case where the category is presented, its localization admits the following presentation.

I Lemma 12. Given a presentation P = (P0, P1, P2) and a subset Σ of P1, the category
presented by P ′ = (P0, P

′
1, P

′
2) where P ′1 = P1 ]

{
f : y → x

∣∣ f : x→ y ∈ Σ
}

and where
P ′2 = P2 ]

{
f ◦ f ⇒ id, f ◦ f ⇒ id

∣∣ f ∈ Σ
}
is a localization of the category ‖P‖ by Σ.

I Example 13. Let us consider the category C = x
f //
g
// y with two objects and two

non-trivial morphisms. Its localization by Σ = {f, g} is equivalent to the category with one
object and Z as set of morphisms (with addition as composition), whereas its quotient by Σ
is the category with one object and only identity as morphism. Notice that they are not
equivalent.

The description of the localization of a category provided by the universal property is often
difficult to work with. When the set Σ has nice properties, the localization admits a much
more tractable description [7, 4].

RTA 2015



6 Presenting a Category Modulo a Rewriting System

I Definition 14. A set Σ of morphisms of a category C is a left calculus of fractions when
1. the set Σ is closed under composition : for f and g composable morphisms in Σ, g ◦ f is

in σ.
2. Σ contains the identities idx for x in P0.
3. for every pair of coinitial morphisms u : x → y in Σ and f : x → z in C, there exists a

pair of cofinal morphisms v : z → t in Σ and g : y → t in C such that v ◦ f = g ◦ u.
4. for every morphism u : x→ y in Σ and pair of parallel morphisms f, g : y → z such that

f ◦ u = g ◦ u there exists a morphism v : z → t in Σ such that v ◦ f = v ◦ g.
t

y

g ??

z

v
^^

x
u

__

f

?? x
u // y

f //
g
// z

v // t

I Theorem 15. When Σ is a left calculus of fractions for a category C, the localization
C[Σ−1] can be described as the category of fractions whose objects are the objects of C and
morphisms from x to y are equivalence classes of pairs of cofinal morphisms (f, u) with
f : x → i ∈ C and u : y → i ∈ Σ under the equivalence relation identifying two such pairs
(f1, u1) and (f2, u2) where there exists two morphisms w1, w2 ∈ Σ such that w1 ◦u1 = w2 ◦u2
and w1 ◦ f1 = w2 ◦ f2, as shown on the left:

i1
w1
��

x

f1
@@

g1 ��

j y

u2��

u1
^^

i2

w2

OO

k

i

h
AA

j

w
]]

x

f
AA

y

u
]]

g @@

z

v
]]

identity on an object x is the equivalence class of (idx, idx) and composition of two morphisms
(f, u) : x → y and (g, v) : y → z is the equivalence class of (h ◦ f, w ◦ v) : x → z where the
morphisms h and w are provided by property 1 of Definition 14.

In such a situation, the following property often enables one to show that there is a full and
faithful embedding of the category into its localization [4]:

I Proposition 16. Given a left calculus of fractions Σ for a category C, if all the morphisms
of Σ are mono then the inclusion functor F : C → C[Σ−1] is faithful, where F is the identity
on objects and sends a morphism f : x→ y to (f, idy).

Given a presentation modulo, when the (abstract) rewriting system on objects given by the
equational generators is convergent, normal forms for objects provide canonical representatives
of objects modulo equational generators, and therefore we are actually provided with three
possible and equally reasonable constructions for the category presented by a presentation
modulo (P, P̃1):
1. the full subcategory on ‖P‖ whose objects are normal forms wrt P̃1,
2. the quotient category ‖P‖ /P̃1,
3. the localization ‖P‖ [P̃−1

1 ].
The aim of this article is to provide reasonable assumptions on the presentation modulo
ensuring that the two first categories are isomorphic, and equivalent to the third one. We
introduce them gradually.
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3 Confluence properties

In this section, we introduce a series of local conditions that our presentations modulo should
satisfy in order for the constructions recalled above to coincide. These can be seen as a
generalization of classical local confluence properties in our context in which rewriting rules
correspond to equational generators only, and in which we keep track of 2-cells witnessing
local confluence.

3.1 Residuation
We begin by extending to our setting the notion of residual, which is often associated to a
confluent rewriting system in order to “keep track” of rewriting steps once others have been
performed [11, 3, 6].

I Assumption 1. We suppose fixed a presentation modulo (P, P̃1) such that

1. for every pair of distinct coinitial generators f : x→ y1 in P̃1 and g : x→ y2
in P1, there exist a pair of cofinal morphisms g′ : y1 → z in P ∗1 and
f ′ : y2 → z in P̃ ∗1 and a relation α : g′ ◦ f ⇔ f ′ ◦ g in P2, as shown on the
right,

2. there is no infinite path with generators in P̃1.

y1
g′ // z

x
f
OO

g
//

α⇐⇒
y2

f ′
OO

These assumptions ensure in particular that the (abstract) rewriting system on vertices
with P̃1 as set of rules is convergent. Given a vertex x ∈ P0, we write x̂ for the associated
normal form. For every pair of distinct morphisms (f, g), as in the first assumption, we
suppose fixed an arbitrary choice of a particular triple (g′, α, f ′) associated to it, and write
g/f for g′, f/g for f ′ and ρf,g for α. The morphism g/f (resp. f/g) is as the residual of g
after f (resp. f after g): intuitively, g/f corresponds to what remains of g once f has been
performed. It is natural to extend this definition to paths as follows:

I Definition 17. Given two coinitial paths f : x → y and g : x → z and P ∗1 such that
either f or g is in P̃ ∗1 , we define the residual g/f of g after f as above when f and g are
distinct generators, and by induction with f/f = idy and

g/ idx = g idx /f = idy (g2◦g1)/f = (g2/(f/g1))◦(g1/f) g/(f2◦f1) = (g/f1)/f2

(by convention the residual g/f is not defined when neither f nor g belongs to P̃ ∗1 ). Graphi-
cally,

id //

g

OO

id
//
g/ id=g

OO
f //

id

OO

f
//

id /f=id

OO

f/(g2◦g1)//

g2

OO

f/g1 //
g2/(f/g1)

OO

g1

OO

f
//
g1/f

OO

f1/g //f2/(g/f1)//

g

OO

f1

//
f2

//
g/f1

OO
(g/f1)/f2

OO

It can be checked that residuation is well-defined on the morphisms of the free category P ∗1
in the sense that it is compatible with associativity and identities, and moreover it does not
depend on the order in which rules are applied, see Lemma 20. In order for the definition to
be well-founded, and thus always defined, we will make the following additional assumption.

I Assumption 2. There is a weight function ω1 : P1 → N, and we still write ω1 : P ∗1 → N
for its extension as morphism of category to the category corresponding to the additive
monoid (N,+), such that for every generator g ∈ P1 and f ∈ P̃1, we have ω1(g/f) < ω1(g).

RTA 2015



8 Presenting a Category Modulo a Rewriting System

I Remark. In order to simplify the presentation, we did not present the most general
axiomatization for the weight function. An important point is that it induces a well-founded
ordering on elements of P ∗1 and satisfies properties similar to monomial orderings:

it is compatible with composition: if ω1(g) < ω1(g′) then ω1(h ◦ g ◦ f) < ω1(h ◦ g′ ◦ f),
identities are minimal elements: ω1(id) < ω1(f) for every f 6= id; in particular, we have
ω1(g) < ω1(h ◦ g ◦ f) for f, h 6= id.

In order to study confluence of the rewriting system provided by equational morphisms,
through the use of residuals, we first introduce the following category, which allows us to
consider, at the same time, both residuals g/f and f/g of two coinitial morphisms f and g.

I Definition 18. The zig-zag presentation associated to the presentation modulo (P, P̃1)
is the presentation Z = (Z0, Z1, Z2) with Z0 = P0, Z1 = P1 ] P̃1 (generators in P̃1 are of
the form f : B → A for some generator f : A → B in P̃1) and relations in Z2 are of the
form g ◦ f ⇒ (f/g) ◦ (g/f) or f ◦ f ⇒ idy for some pair of distinct coinitial generators
f : x→ y ∈ P̃1 and g : x→ z ∈ P1.

I Lemma 19. The rewriting system on morphisms in Z∗1 with Z2 as rules is convergent.
Given two coinitial morphisms f : x → y in P̃ ∗1 and g : x → z in P ∗1 , the normal form of
g ◦ f is (f/g) ◦ (g/f).

Proof. We extend the weight function of Assumption 2 to morphisms in Z∗1 by setting
ω1(f) = 0 for f in P̃1. This ensures that the rewriting system on morphisms in Z∗1 with Z2
as rules is terminating. Moreover, because the left members of rules are of the form g ◦f with
g ∈ P1 and f ∈ P̃1, there are no critical pairs, which means that the rewriting system is locally
confluent and thus convergent by Newman’s lemma. Given two coinitial morphisms f : x→ y

in P̃ ∗1 and g : x→ z in P ∗1 , we prove by recurrence on ω1(g ◦ f) that the normal form of g ◦ f
is (f/g) ◦ (g/f). J

As a direct corollary of the convergence of the rewriting system, one can show that Definition 17
makes sense:

I Lemma 20. The residuation operation does not depend on the order in which equalities of
Definition 17 are applied.

Moreover, a “global” version of the residuation property (Assumption 1) holds:

I Proposition 21. Given two coinitial morphisms f : x → y in P̃ ∗1 and g : x → z in P ∗1 ,
there exists a relation α : (g/f) ◦ f ∗⇔ (f/g) ◦ g.

Proof. By Lemma 19, there exists a rewriting path β : g ◦ f ⇒ (f/g) ◦ (g/f) in Z∗2 . By
induction on its length, we can construct a relation α : (g/f) ◦ f ∗⇔ (f/g) ◦ g in the following
way. The case where β is empty is immediate, otherwise we have f = f2 ◦ f1 and g = g2 ◦ g1
where f2 is in P̃ ∗1 (resp. g2 in P ∗1 ) and f1 is a generator in P̃1 (resp. g1 in P1). We distinguish
two cases depending on the form of the first rule of β:

g/f=g2/f2 //

f2

OO

id //

f1

OO

g1
//

⇒

g2
//

id

OO f/g=f2/g2

OO

g/f //

f2

OO

g1/f1 //

g/f1

��g2/(f1/g1) //
q

f2/(g/f1)

OO

f1

OO

g1
//

⇒

g2
//

f1/g1

OO
∗⇒ f1/g

OO
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If f1 = g1, i.e. the first step of β corresponds to rewriting g2 ◦ g1 ◦ f1 ◦ f2 to g2 ◦ f2
by applying the rewriting rule f1 ◦ f1 ⇒ id of Z2, then by induction hypothesis, there
exists a relation α̂′ : (g2/f2) ◦ f2

∗⇔ (f2/g2) ◦ g2. Besides, f2/g2 = f/g and g2/f2 = g/f

which means that there exists a relation (g/f) ◦ f ∗⇔ (f/g) ◦ g. Otherwise f1 6= g1,
and g2 ◦ g1 ◦ f1 ◦ f2 rewrites to g2 ◦ (f1/g1) ◦ (g1/f1) ◦ f2 by applying the rewriting rule
g1 ◦ f1 ⇒ (f1/g1) ◦ (g1/f1) of Z2. By definition of the relations in Z2, there exists a relation
(g1/f1) ◦ f1 ⇔ (f1/g1) ◦ g1 in P2. Moreover, by Lemma 19, the morphism g2 ◦ (f1/g1) in Z∗1
rewrites to (f1/g)◦(g2/(f1/g1)), and therefore by induction hypothesis, there exists a relation
(g2/(f1/g1)) ◦ (f1/g1) ∗⇔ ((f1/g1)/g2) ◦ g2 in P ∗2 . This means that there is a relation in P ∗2

(g/f1) ◦ f1 = (g2/(f1/g1)) ◦ (g1/f1) ◦ f1
∗⇔ ((f1/g1)/g2) ◦ g2 ◦ g1 = (f1/g) ◦ g

Similarly, by lemma 19, (g/f1)◦f2 rewrites to (f2/(g/f1)◦ (g/f) by rules in Z2, which means
that there exists a relation (g/f) ◦ f2

∗⇔ (f2/(g/f1)) ◦ (g/f1) in P ∗2 and therefore, there exists
a relation in P ∗2 :

(g/f) ◦ f = (g/f) ◦ f2 ◦ f1
∗⇔ (f2/(g/f1)) ◦ (f1/g) ◦ g = (f/g) ◦ g

from which we conclude, as indicated in the above diagram. J

3.2 The cylinder property
In previous section, we have studied residuation, which enables one to recover a residual g/f
of a morphism g after a coinitial equational morphism f . We now strengthen our hypothesis
in order to ensure that if two morphisms are equal (wrt the equivalence generated by P ∗2 ) then
their residuals after a same morphism are equal, i.e. equality is compatible with residuation.

I Assumption 3. The presentation (P, P̃1) satisfies the cylinder
property: for every triple of coinitial morphisms f : x → x′ in
P̃1 (resp. in P1) and g1, g2 : x→ y in P ∗1 (resp. in P̃ ∗1 ) such that
there exists a relation α : g1 ⇔ g2, we have f/g1 = f/g2 and there
exists a 2-cell g1/f

∗⇔ g2/f . We write α/f for an arbitrary choice
of such a 2-cell.

x′
g1/f

++

g2/f

33α/f y′

x

f

OO

g1
**

g2

44α y

f/g1=f/g2

OO

As in previous section, we would like to extend this “local” property (f and α are supposed
to be generators) to a “global” one (where f and α can be composite of cells):

I Proposition 22 (Global cylinder property). Given coinitial morphisms f : x → x′ in P̃ ∗1
(resp. in P ∗1 ) and g1, g2 : x→ y in P ∗1 (resp. in P̃ ∗1 ) such that there exists a composite relation
α : g1

∗⇔ g2, we have f/g1 = f/g2 and there exists a 2-cell g1/f
∗⇔ g2/f .

The proof of previous proposition requires generalizing, in dimension 2, the termination
condition (Assumption 2) and the construction of the zig-zag presentation (Definition 18).

I Definition 23. The 2-zig-zag presentation associated to (P, P̃1) is Y = (Y0, Y1, Y2) with
Y0 = P0, Y1 = PH

1 ] PV
1 (where the morphisms of PH

1 are called horizontal of the form
fH : A → B for some morphism f : A → B in P1 and similarly for the morphisms in PV

1
which are called vertical), and the 2-cells in Y2 = Y H

2 ] Y V
2 are either

horizontal 2-cells: Y H
2 = PH

2 ] P2
H (i.e. relations in P2 taken forward

or backward, and decorated by H)
vertical 2-cells: given two generators f : x → y and g : x → z

in P1 such that f or g belongs to P̃1, we have a relation
ρV
f,g : (g/f)H ◦ fV ⇒ (f/g)V ◦ gH in Y V

2 .

x′
(g/f)H

// y′

x

fV

OO

gH
//

ρV
f,g

=⇒
(f/g)V

OO
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10 Presenting a Category Modulo a Rewriting System

We consider the following rewriting system on the 2-cells in Y ∗2 : for every 2-cell α : g1 ⇔ g2 : x→ y

in P2, for every coinitial 1-cell f : x→ x′ in P1 such that either f or both g1 and g2 belong
to P̃ ∗1 , there is a rewriting rule

((f/g1)V ◦ αH) • ρV
f,g1

V ρV
f,g2
• ((α/f)H ◦ fV)

x′
g1/f

H

++

ρV
f,g1

y′

x

fV

OO

gH
1

**

gH
2

44αH y

(f/g1)V

OO

V

x′
(g1/f)H

++

(g2/f)H

33(α/f)H

ρV
f,g2

y′

x

fV

OO

gH
2

44 y

(f/g1)V

OO
(2)

where ◦ (resp. •) denotes horizontal (resp. vertical) composition in a 2-category.
In order to ensure the termination of the rewriting system, we suppose the following.

I Assumption 4. There is a weight function ω2 : PH
2 → N such that for every α : g1 ⇒ g2

in Y ∗2 and f in P1 such that α/f exists we have ω2(α/f) < ω2(α). We still write
ω2 :

(
PH

2 ] P2
H)∗

→ N for the function such that ω2(α) = ω2(α) and both horizontal
and vertical compositions are sent to addition (N being a commutative additive monoid, this
definition is compatible with axioms of 2-categories, such as associativity or exchange law).

I Corollary 24. The rewriting system (2) is convergent.

Proposition 22 follows easily, by a reasoning similar to Proposition 21.
The cylinder property has many interesting consequences for the residuation operation,

as we now investigate.

I Proposition 25. In the category ‖P‖, every equational morphism is epi.

Proof. Suppose given f : x → y in P̃ ∗1 , and g1, g2 : y → z in P ∗1 such that g1 ◦ f
∗⇔ g2 ◦ f .

By Proposition 22, we have g1 = (g1 ◦ f)/f ∗⇔ (g2 ◦ f)/f = g2. J

I Proposition 26. In the category ‖P‖, every morphism g admits a pushout along a coinitial
equational morphism f given by g/f .

Proof. Suppose given f : x→ y1 in P̃ ∗1 and g : x→ y2 in P ∗1 . By Proposition 21, we have
(g/f) ◦ f ∗⇔ (f/g) ◦ g and we now show that (g/f, f/g) forms a universal cocone. Suppose
given f ′ : y1 → z and g′ : y2 → z such that f ′ ◦ f ∗⇔ g′ ◦ g.

y1 g/f

&&

f ′

""
x

f 77

g ''

∗m
g′/(f/g) //
∗m

z
idz

(f/g)/g′oo

y2
f/g

88

g′

<<

We have (g′/(f/g)) ◦ (f/g) ∗⇔ ((f/g)/g′) ◦ g′, where residuals exist because f/g is in P̃ ∗1 .
Moreover, by applying Proposition 22 to morphism f and 2-cell f ′ ◦ f ∗⇔ g′ ◦ g, we have
(f/g)/g′ = f/(g′◦g) ∗⇔ f/(f ′◦f) = idz. Finally, we have f ′◦f

∗⇔ g′◦g ∗⇔ (g′/(f/g))◦(g/f)◦f ,
and by Proposition 25, we have f ′ ∗⇔ (g′/(f/g)) ◦ (g/f). From which we conclude. J
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4 Comparing presented categories

4.1 The category of normal forms
We show here that with our hypothesis on the rewriting system, the quotient category ‖P‖ /P̃1
can be recovered as the following subcategory of ‖P‖, whose objects are those which are in
normal form for P̃1.

I Definition 27. The category of normal forms ‖P‖↓ P̃1 is the full subcategory of ‖P‖ whose
objects are the normal forms of elements of P0 wrt rules in P̃1. We write I : ‖P‖↓ P̃1 → ‖P‖
for the inclusion functor.

I Theorem 28. The category ‖P‖↓ P̃1 is (isomorphic to) the quotient category ‖P‖ /P̃1.

Proof. Recall that for every object x ∈ ‖P‖, the associated normal form wrt rules in P̃1 is
denoted by x̂, and we write ux : x→ x̂ for any equational morphism from x to its normal
form. In particular, we always have ux̂ = idx̂. We define a functor N : ‖P‖ → ‖P‖↓ P̃1 as
the functor associating to each object x its normal form x̂ under P̃1, and to each morphism
f : x→ y, the morphism f̂ : x̂→ ŷ where f̂ = uy′ ◦ (f/ux) with y′ being the target of f/ux:

ŷ = ŷ′

x̂

f̂ 88

f/ux // y′

uy′

OO

x

ux

OO

f
// y

ux/f

OO

Notice that this definition depends on a choice of a representative in P ∗1 for f , and in P̃ ∗1 for
ux and uy′ , in the equivalence classes of morphisms modulo the relations in P2. The global
cylinder property shown in Proposition 22 ensures that the definition is independent of the
choice of such representatives. Given two composable morphisms f : x→ y and g : y → z we
have

Ng ◦Nf = uz′ ◦ (g/uy) ◦ uy′ ◦ (f/ux)
= uz′ ◦ (g/(uy′ ◦ (ux/f))) ◦ uy′ ◦ (f/ux)
= uz′ ◦ (g/(ux/f))/uy′ ◦ uy′ ◦ (f/ux)
= uz′ ◦ uy′/(g/(ux/f)) ◦ g/(ux/f) ◦ (f/ux)
= uz′′ ◦ ((g ◦ f)/ux)
= N(g ◦ f)

ẑ

ŷ

Ng

55

g/uy // z′

uz′

OO

x̂

N(g◦f)

00

Nf

66

f/ux // y′

uy′

OO

g/(ux/f)// z′′

uy′/(g/(ux/f))

OO

x

ux

OO

f
// y

ux/f

OO

g
// z

ux/(g◦f)

OO

The image of an equational morphism u : x→ y under the functor N is an identity. Namely,
we have Nu = û = uz ◦ (u/ux): since u/ux is an equational morphism (since it is the residual
of an equational morphism) whose source is a normal form, necessarily u/ux = idx̂, z = x̂

and uz = idx̂. In particular, N preserves identities.
Suppose given a functor F : ‖P‖ → C sending the equational morphisms to identities. In

order to obtain the result, we have to show that there exits a unique functor G : ‖P‖↓ P̃1 → C
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12 Presenting a Category Modulo a Rewriting System

such that G ◦N = F . Writing I : ‖P‖↓ P̃1 → ‖P‖ for the inclusion functor, it is easy to show
I is a section of F , i.e. N ◦ I = Id‖P‖↓P̃1

. Since F sends equational morphisms to identities,
it is easy to check that G ◦N = F : given an object x, we have

G ◦N(x) = G(x̂) = F ◦ I(x̂) = F (x̂) = F (x)

the last equality, being due to the fact that F (ux) = idF (x̂) = idF (x), and similarly
for morphisms. Finally, we check the uniqueness of G. Suppose given another functor
G′ : ‖P‖↓ P̃1 → C such that G′◦N = F = G◦N . We have G′ = G′◦N ◦I = G◦N ◦I = G. J

4.2 Equivalence with localization
We now show that the two previous constructions (quotient and normal forms) also coincide
with the third possible construction which consists in formally adding inverses for equational
morphisms. First, notice that we can use the description of the localization ‖P‖ [P̃−1

1 ] as a
category of fractions given in Theorem 15:

I Lemma 29. The set of equational morphisms of ‖P‖ is a left calculus of fractions.

Proof. We have to show that the set of equational morphisms satisfies the four conditions
of Definition 14: the two first (closure under composition and identities) are immediate,
the third one follows from Proposition 21, and the last one is ensured by the fact that all
equational morphisms are epi by Proposition 25. J

Our proof of the equivalence is based on the embedding of the presented category into the
localization provided by Proposition 16. In order for the hypothesis of this proposition to
hold, we first need to impose that the same properties hold for the opposite presentation as
for the presentation itself:

I Assumption 5. The presentation modulo (P op, P̃ op) satisfies Assumptions 1, 2, 3 and 4.

This implies that the duals of previously shown properties hold for ‖P‖. For instance, by dual
of Proposition 25, all equational morphisms are mono, from which follows, by Proposition 16:

I Proposition 30. The canonical functor ‖P‖ → ‖P‖ [P̃−1
1 ] is faithful.

I Remark. This generalizes Dehornoy’s theorem [6] stating that under conditions (which
are generalized here), there is an embedding of a monoid into its envelopping groupoid: by
localizing wrt all morphisms rather than simply a subset of them, we recover this result.
Besides, our hypothesis on relations are weaker (for instance, we only require fixed a choice
of residual instead that there is only one possible choice for those).

I Definition 31. A presentation modulo satisfying assumptions 1 to 5 is called coherent.

I Theorem 32. Given a coherent presentation modulo (P, P̃1), the categories ‖P‖ /P̃1 and
‖P‖ [P̃−1

1 ] are equivalent.

Proof. Consider the functor F : ‖P‖ ↓ P̃1 → ‖P‖ [P̃−1
1 ] defined as the composite of the

inclusion functor I : ‖P‖ ↓ P̃1 → ‖P‖, see Definition 27, with the localization func-
tor L : ‖P‖ → ‖P‖ [P̃−1

1 ], see Definition 11. The functor F is faithful since it is the
case for both I and L by Proposition 30. It is also full. Namely, by Theorem 15, given any
two objects x̂ and ŷ of ‖P‖ ↓ P̃1, a morphism from F (x̂) = x̂ to F (ŷ) = ŷ in ‖P‖ [P̃−1

1 ] is
of the form (f, u) with f : x̂ → z and u : ŷ → z equational. Since ŷ is a normal form, we
necessarily have u = idŷ and thus (f, u) = Ff . Finally, given an object y ∈ ‖P‖ [P̃−1

1 ], there
is a morphism u : y → ŷ in P̃ ∗1 to its normal form which induces an isomorphism y ∼= ŷ in
‖P‖ [P̃−1

1 ]. The functor F is thus an equivalence of categories. J
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4.3 An example: the dihedral category D•
4

As an illustration of previous properties, we are going to study a presentation of a category
which is a variant of the dihedral group. Recall that the dihedral group Dn is the group of
isometries of the plane preserving a regular polygon with n faces. This group is generated by
a rotation r of angle 2π/n and a reflection s, and can be described as the free group over the
two generators r and s quotiented by the congruence generated by the three relations s2 = id,
rn = id and rsr = s. We consider here a variant of this group: the category D•n of isometries
of the plane preserving a regular polygon with n faces together with a distinguished vertex
(the category thus has n objects). For instance, the category D•4 is pictured on the left below,
the distinguished vertex of the square being pictured by a black triangle:

r1

%%s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

ee s3
oo

r4

��

r1

%%s1 //
s2

oo

r2

��
r1

ee

s4 //

r4

OO

r3
%%

r3

ee s3
oo

(3)

This category D•4 admits a presentation P with 4 objects and 8 generating morphisms, as
pictured on the left above, satisfying the 12 relations:

ri+3 ◦ ri+2 ◦ ri+1 ◦ ri = id sj+1 ◦ sj = id rj ◦ sj+1 ◦ rj = sj

sj ◦ sj+1 = id rj+3 ◦ sj+2 ◦ rj+1 = sj+1

for i ∈ {1, . . . , 4} and j ∈ {1, 3}, where the indices are to be taken modulo 4 so that they lie
in {1, . . . , 4}.

The methodology introduced earlier can be used to show that by quotienting (resp. local-
izing) by Σ = {r2, r4}, we obtain a category which is isomorphic (resp. equivalent) to D•2 :
intuitively, “forgetting” about those rotations quotients the square under symmetry wrt an
horizontal axis. We thus consider the presentation modulo (P, P̃1) with P̃1 = Σ. Unfortu-
nately, this presentation does not satisfy the assumptions required to apply our results; for
instance, there is no residual of r2 after s2. It is thus necessary to complete the presentation
in order to have the confluence properties (namely, the residuation and cylinder properties).
In rewriting theory, when a rewriting system is not confluent, one usually tries to complete
it (typically using a Knuth-Bendix completion algorithm) in order for confluence to hold.
Similarly, we can transform our presentation using a series of Tietze transformations (Defini-
tion 4 and Proposition 5) while preserving the same presented category, in order to obtain
another presentation of the same category which satisfies the required assumptions.

We first consider the presentation P ′ obtained from P by adding the generator r4 = r3◦r2◦r1
and its defining relation, as well as the derivable relations r4 ◦ r4 = id and r4 ◦ r4 = id.
We can now define r2/s2 as r4, if we consider r4 as an equational morphism. Fortunately,
following lemma shows that we can quotient, or localize, by r4 instead of r4, and we therefore
define P̃ ′1 = {r2, r4}:

I Lemma 33. Let P be a presentation of category such that there exist f and g in P1 and
two relations f ◦ g ⇔ id and g ◦ f ⇔ id in P2. Let Σ be a subset of P1 not containing f
nor g. Then the quotients (resp. localizations) of ‖P‖ by Σ ] {f}, Σ ] {f, g}, and Σ ] {g}
are isomorphic.
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14 Presenting a Category Modulo a Rewriting System

In this way, we have transformed the presentation (P, P̃1) into a presentation (P ′, P̃ ′1) for
which we can now define the residual r2/s2. Similarly, in order for all the required residual to
be defined, we modify P ′ using Tietze transformations by adding generators r1 = r4 ◦ r3 ◦ r2
and r3 = r2 ◦ r1 ◦ r4 and modifying the set of relations. Finally, the presentation we end up
with a presentation P ′′ which has 11 morphism generators ri, si, rk, as shown on the right
of (3), and 16 relations:

sj+1 ◦ sj = id r1 ◦ s2 ◦ r1 = s1 rk ◦ rk = id r2 ◦ r1 = r3 ◦ r4 s3 ◦ r2 = r4 ◦ s2

sj ◦ sj+1 = id r3 ◦ s3 ◦ r3 = s4 rk ◦ rk = id r3 ◦ r2 = r4 ◦ r1 r2 ◦ s1 = s4 ◦ r4

for i ∈ {1, . . . , 4}, j ∈ {1, 3} and k ∈ {1, 3, 4}, which is considered modulo P̃ ′′1 = {r2, r4}.
This presentation modulo is coherent. It satisfies convergence assumption 1, and residuals
are defined by

r2/s2 = r2/r1 = r4 r4/s1 = r4/r1 = r2 s1/r4 = s4 r1/r4 = r3 s2/r2 = s3 r1/r2 = r3

For termination assumption 2, we define ω1 as equal to 1 on s1, s2, r1 and r1 and 0 on
other morphism generators. The cylinder assumption 3 follows from considering 5 diagrams.
For termination assumption 4 we define ω2 as 1 on relation generators such that the only
morphism generators occurring in the source or the target are r1, r1, s1 or s2, and as
0 otherwise. It can be checked similarly that (P ′′op, (P̃ ′′1 )op) satisfies the assumptions.
Therefore ‖P ′′‖↓{r2, r4} is isomorphic to ‖P ′′‖ / {r2, r4} by Theorem 28, and equivalent to
‖P ′′‖ [{r2, r4}−1] by Theorem 32, the left-to-right part of the equivalence being an embedding
by Proposition 30. An explicit (non-modulo) presentation for the quotient can be obtained
by Lemma 10, and this presentation is Tietze equivalent to the canonical presentation of D•2 .
We finally obtain the following result:

I Theorem 34. The category D•2 is isomorphic to the quotient D•4/ {r2, r4}, embeds fully
and faithfully into the category D•4, and is equivalent to the localization D•4 [{r2, r4}−1].

I Remark. In this case, since r2 and r4 are already invertible in ‖P‖, we moreover have
D•4 [{r2, r4}−1] ∼= D•4 .
This illustrates the fact that, even though restricted for now to categories, the tools developed
in this article enable one to obtain interesting results about presented categories.

5 Towards an extension to 2-categories

We would like to briefly mention how this work can be extended to presentations of 2-cat-
egories, and thus be able to handle examples such as the presentation of the monoidal
(i.e. 2-)category ∆×∆ described in the introduction: it should admit a presentation mod-
ulo (P, P̃2) where P = (P0, P1, P2, P3) is a presentation of a 2-category and P̃2 ⊆ P2 is a set
of equational 2-generators, and in particular we should be able to show that the 2-category
of normal forms ‖P‖↓ P̃2 is isomorphic to the quotient 2-category ‖P‖ /P̃2 and equivalent to
the localization ‖P‖ [P̃−1

2 ].
While we leave such an extension for future work, we would like to briefly mention some of

the adjustments necessary to cover this case. Firstly, since the exchange law in a 2-category
ensures that two disjoint rewrites commute, it is enough to impose the existence of suitable
residuals for critical pairs only (this is, in our context, a variant of Newman’s lemma),
and similarly the cylinder property only has to be imposed for triples of coinitial rewriting
rules forming a critical triple. Secondly, since in practice not all operations (residuation for
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instance in our example) are compatible with exchange law, one actually has to explicitly
handle this law and work in the setting of sesquicategories. Thirdly, the precise notion of
equivalence between 2-categories is subtle. For instance, the canonical “inclusion” functor
‖P‖↓ P̃2 ↪→ ‖P‖, exhibiting the restriction to 1-cells in normal form as a “sub-2-category”
of ‖P‖, is in fact a lax 2-functor: the 0-composition of two 1-cells in normal form is not
necessarily a normal form, but always normalizes to one.

6 Conclusion

We have introduced a notion of presentation of a category modulo an “equational” rewriting
system, and provided a series of reasonable coherence conditions ensuring that the equational
rules are well-behaved wrt the generators. In particular, we show that, under those assump-
tions, all the three possible natural constructions for the presented category are equivalent.
These assumptions are “local” in the sense that they are given directly on the presentations,
and can thus be used in practice in order to perform computations, as illustrated in the
article. In the future, we would like to investigate more applications, by studying classes of
presentations (presentations of monoids and groups are well investigated, but there are fewer
studied examples of presentations of categories), and also extend this work to presentations
of 2-(and possibly higher-)categories.
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16 Presenting a Category Modulo a Rewriting System

A Omitted proofs

Proof of Lemma 10. It is enough to show that
∥∥P/P̃1

∥∥ is a quotient of ‖P‖ by P̃1. We
define a quotient functor Q : ‖P‖ →

∥∥P/P̃1
∥∥ on generators by Q(x) = [x] for x ∈ P0 and

Q(f) = f for f ∈ P1 (this extends to a functor since for every 2-generator α ∈ P2 there is
a corresponding 2-generator in P/P̃1). For every generator f ∈ P̃1, we immediately have
Q(f) = id. Suppose given a functor F : ‖P‖ → C sending equational morphisms to identities.
We define a functor F̃ :

∥∥P/P̃1
∥∥→ C by F̃ [x] = Fx for an object [x] of

∥∥P/P̃1
∥∥ (this does

not depend on the choice of the representative of class) and, given f = fk ◦ . . . ◦ f1 in
∥∥P/P̃1

∥∥
with fi ∈ P1, we define F̃ f = Ffk ◦ . . . ◦Ff1 (it can be checked that this is also well-defined).
The functor F̃ satisfies F = F̃ ◦ Q, and it is the only such functor since it has to send
elements of P̃1 to identities. J

Proof of Lemma 12. The localization functor L is defined by Lx = x for x ∈ P0, and
Lf = f for f ∈ P ∗1 . This functor is well-defined since for any 2-generator α : f ⇒ g in P2, we
have that Lf = f and Lg = g, and there is a relation f ⇒ g in P ′2 by definition. Besides, for
any f in Σ, Lf = f is an isomorphism since f is an inverse for f . Suppose given F : ‖P‖ → C
sending the elements of Σ to isomorphisms. We define a functor F̃ : ‖P ′‖ → C on the
generators by F̃ x = Fx for x ∈ P0, F̃ f = Ff for f ∈ P1 and F̃ f = (Ff)−1. This functor is
well-defined, since for any relation α : f ⇒ g in P2 ⊂ P ′2, we have F̃ f = Ff = Fg = F̃ g and
F̃ (f ◦ f) = Ff ◦ Ff = Ff ◦ (Ff)−1 = id and similarly F̃ (f ◦ f) = id. This functor satisfies
F̃ ◦ L = F and is the unique such functor. J

Proof of Lemma 19. We extend the weight function of Assumption 2 to morphisms in Z∗1
by setting ω1(f) = 0 for f in P̃1. This ensures that the rewriting system on morphisms in Z∗1
with Z2 as rules is terminating. Moreover, because the left members of rules are of the form
g ◦ f with g ∈ P1 and f ∈ P̃1, there are no critical pairs, which means that the rewriting
system is locally confluent and thus convergent by Newman’s lemma. Given two coinitial
morphisms f : x→ y in P̃ ∗1 and g : x→ z in P ∗1 , we prove by recurrence on ω1(g ◦ f) that
the normal form of g ◦ f is (f/g) ◦ (g/f). If either f or g is an identity, this result is direct.
Otherwise, f = f2 ◦ f1 and g = g2 ◦ g1 where f1, f2, g1 and g2 are non identity-morphisms.

(g1/f1)/f2// g2/(f/g1) //

f2

OO

g1/f1 //

∗⇒ f2/(g1/f1)

OO

=

f1

OO

g1
//

f/g1

bb

g2
//

f1/g1

OO
∗⇒

(f/g1)/g2

OO

By induction, we have

g1 ◦ f1
∗⇒ (f1/g1) ◦ (g1/f1) and (g1/f1) ◦ f2

∗⇒ (f2/(g1/f1)) ◦ ((g1/f1)/f2)

since ω1((g1/f1) ◦ f2) < ω1

(
g2 ◦

(
(f1/g1) ◦ (g1/f1)

)
◦ f2

)
< ω1(g ◦ f). And therefore,

g ◦ f ∗⇒ g2 ◦
(

(f1/g1) ◦ (g1/f1)
)
◦ f2

∗⇒ g2 ◦ (f1/g1) ◦
(

(f2/(g1/f1)) ◦ ((g1/f1)/f2)
)

∗⇒ g2 ◦ (f/g1) ◦ (g1/f)
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Similarly ω1(g2 ◦ (f/g1)) < ω1(g ◦ f), therefore ω1(g2 ◦ (f/g1)) ∗⇒ ((f/g1)/g2) ◦ (g2/(f/g1)),
and we have

g ◦ f ∗⇒ g2 ◦ (f/g1) ◦ (g1/f)
∗⇒ ((f/g1)/g2) ◦ (g2/(f/g1)) ◦ (g1/f)
∗⇒ (f/g) ◦ (g/f)

from which we conclude. J

Proof of Lemma 33. The isomorphism of localizations follows from Lemma 12 and the
usual proof that a morphism admits at most one inverse in a category. We now consider the
case of quotient: we are going to show that the categories ‖P‖f,g = ‖P‖ /(Σ ] {f, g} and
‖P‖f = ‖P‖ /(Σ]{f}) are isomorphic. We write Qf,g : ‖P‖ → ‖P‖f,g and Qf : ‖P‖ → ‖P‖f
for the quotient functors. By the universal property ofQf , there exist a uniqueQ′ : ‖P‖f → ‖P‖f,g
such that Qf,g = Q′ ◦Qf :

‖P‖
Qf //

Qf,g

��

‖P‖f

Q′{{
‖P‖f,g

‖P‖
Qf,g //

Qf

��

‖P‖f,g

F{{
‖P‖f

‖P‖
Qf //

Qf

��

‖P‖f

Id{{
Q′

��
‖P‖f ‖P‖f,gF

oo

Moreover, since Qf (f) = id, we get that Qf (g) = Qf (g) ◦ Qf (f) = Qf (g ◦ f) = id and
therefore, by the universal property of Qf,g, there exists a unique functor F : ‖P‖f → ‖P‖f,g
such that Qf = F ◦ Qf,g. From these equalities, we get that Qf = F ◦ Q′ ◦ Qf and that
Qf,g = Q′ ◦ F ◦Qf,g. By universal property of Qf , the identity is the unique endofunctor of
‖P‖f such that id ◦Qf = Qf , and therefore F ◦Q′ = Id. Similarly, we have Q′ ◦ I = Id, and
therefore the categories ‖P‖f and ‖P‖f,g are isomorphic. J
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