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Abstract
Polygraphs generalize to n-categories the usual notion of equational

theory, thus allowing one to describe a category by the means of genera-
tors and relations. When the relations are oriented, such a presentation
can be considered as a rewriting system and one might wonder whether the
rewriting system is confluent and terminating in order to provide a notion
of canonical representative of morphisms modulo equations (the normal
forms of the morphisms). In term rewriting systems, confluence is often
proved by computing the critical pairs, which are in finite number, and
showing that they are joinable. We extend here this methodology to poly-
graphs presenting 2-categories. This task is not straightforward because
a finite polygraph might admit an infinite number of critical pairs. This
leads us to introduce the multicategory of contexts of the free compact
2-category generated by a 2-category, in which we can embed the origi-
nal 2-category generated by the polygraph and compute a finite number
of morphisms which generate all the critical pairs. We also introduce
polygraphic nets, which are a concrete representation of contexts. These
theoretical tools allow us to finally describe an algorithm for computing
generating families of critical pairs in 2-dimensional polygraphs.

Term rewriting systems have proven very useful to reason about terms mo-
dulo equations. In some cases, the equations can be oriented and completed
in a way giving rise to a convergent (that is both confluent and terminating)
rewriting system, thus providing a notion of canonical representative of equiv-
alence classes of terms. Usually, the terms are freely generated by a signature
(Σn)n∈N, which consists of a family of sets Σn of generators of arity n, and
one considers equational theories on such a signature, which consist of equations
formalized by pairs of terms freely generated by the signature. For example, the
equational theory of monoids contains two generators m and e, whose arities
are respectively 2 and 0, and three equations

m(m(x, y), z) = m(x,m(y, z)) m(e, x) = x and m(x, e) = x (1)
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If we consider these equations as oriented from left to right, and call them re-
writing rules, they form a rewriting system on terms generated by the signature.
One says that a term t rewrites to a term u, what we write t V u, if u can be
obtained from t by replacing in t an occurrence of a left member of a rewriting
rule by the corresponding right member. Such a rewriting system is terminating
when there is no infinite rewriting sequence tV t1 V t2 V . . . for some term t.
It is confluent when given a term t and two rewriting sequences t V . . . V u1
and t V . . . V u2 the terms u1 and u2 are joinable, which means that there
exists a term v and rewriting sequences u1 V . . . V v and u2 V . . . V v: in
such a rewriting system, the order in which rewriting rules are applied does not
really matter on the long run.

The rewriting systems which are both terminating and confluent, are called
convergent. These are particularly interesting because any maximal rewriting
sequence starting from a given term t will lead to a unique term t̂, called the
normal form of t, thus providing a canonical representative of terms modulo
equations. The confluence of a term rewriting system can be deduced from
joinability of critical pairs, which are minimal possible obstructions to conflu-
ence. For example, the system (1) can be shown to be terminating by giving
an interpretation of the terms in a well-founded poset, such that the rewriting
rules are strictly decreasing. Moreover, it can be verified that the pair of terms
generated by the five critical pairs

m(m(m(x, y), z), t) m(m(e, x), y) m(m(x, e), y) m(m(x, y), e) m(e, e)

are joinable. The framework of term rewriting systems is very nice because
these critical pairs are always in finite number when there is a finite number of
rewriting rules, and they can be computed using a unification algorithm: given
two terms t and u, such an algorithm computes minimal terms such that when
we replace the variables by those, t and u become equal. For example, x 7→ e,
y 7→ m(y1, y2) is a unifier of m(x,m(y1, y2)) and m(e, y) in the signature of
monoids. The critical pairs generated by two left members t and u of rewriting
rules can then be obtained by computing the unifiers of t with a subterm of u
and vice versa. Graphically, the two terms above can be represented as on the
left of (2), and the critical pair, represented on the right of (2), is computed
by starting from the term on the left and “extending” it starting from the fact
that we want the lower instance of m to be an instance of the m in the term in
the middle.

m
m

m
e

m
m

e
(2)

We refer the reader to [BN99] for a detailed presentation of term rewriting
systems along with the classic techniques to prove their convergence.

A nice categorical setting for understanding term rewriting systems was pro-
vided by Lawvere in his PhD thesis [Law63]. Lawvere theories are one of the
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main notions of this work: these are cartesian categories, whose objects are
integers, and whose cartesian product is given on objects by addition. Every
signature induces such a Lawvere theory, with morphisms f : m → n being
n-uples t1, . . . , tn of terms with free variables within x1, . . . , xm. Composi-
tion g ◦ f : m → 1 of a morphism f = (t1, . . . , tn) : m → n with a mor-
phism g = (t) : n→ 1 is given by replacing every variable xi in t by the term ti,
and this can be extended by product to define the composite of any two mor-
phisms, and identities are (x1, . . . , xn) : n→ n. More generally, every equational
theory (or term rewriting system) induces a Lawvere theory by quotienting the
morphisms of the theory generated by the signature by the equations.

As a particular case, if we consider an equational theory E whose gene-
rators are of arity 1, the Lawvere theory it generates is characterized by the
monoid ME of endomorphisms on the object 1 (with composition as multiplica-
tion and identities as neutral elements), and one says that the equational theory
presents a monoid M when ME is isomorphic to M . For example the monoid
N/2N is presented by the equational theory with only one generator a of arity 1
and the equation a(a(x1)) = x1. These presentations of monoids (or of groups)
are particularly useful and studied since they can provide finite description of
monoids which may be infinite, thus allowing computations on these monoids
and a manipulation of them with a computer. More generally, an equational
theory E presents a Lawvere theory C when the category C is isomorphic to E
via a pair of mutually inverse product-preserving functors.

A generalization of presentations to 2-categories (and actually even to ω-ca-
tegories) can be given by the notion of polygraph. These were introduced in
their 2-dimensional version by Street [Str76] under the name of computads and
later on extended to higher dimensions by Power [Pow90b] and Burroni [Bur93].
They generalize term rewriting systems in the sense that a Lawvere theory be-
ing a cartesian category, it can be seen as a particular monoidal category, and
therefore as a 2-category with only one 0-cell. In other words, polygraphs can
be seen as term rewriting systems improved on the following points:

– the variables of terms are simply typed,

– variables in terms cannot necessarily be duplicated, erased or swapped,

– and the terms can have multiple outputs as well as multiple inputs.

A polygraph essentially consists of typed generators in dimensions 0, 1, 2 and 3,
the three first generating a 2-category and the 3-generators expressing equa-
tions: a 2-category C is presented by the polygraph P when the 2-category it
freely generates, quotiented by the equations, is isomorphic to C. Many exam-
ples of presentations of monoidal categories where studied by Lafont [Laf03],
Guiraud [Gui06c, Gui06b] and the author [Mim08, Mim09]. A fundamental ex-
ample is the 3-polygraph S, presenting the monoidal category Bij (the category
of finite ordinals and bijections). This polygraph has one generator for objects 1,
one generator for morphisms γ : 2→ 2 (where 2 is a notation for 1⊗ 1) and two
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equations

(γ⊗1)◦(1⊗γ)◦(γ⊗1) = (1⊗γ)◦(γ⊗1)◦(1⊗γ) and γ◦γ = 1⊗1 (3)

where the morphism 1 is a short notation for id1. That this polygraph is a pre-
sentation of the category Bij means that this category is isomorphic to the free
monoidal category containing an object 1 and a generator γ, quotiented by the
smallest congruence generated by the equations (3). This result can be seen as a
generalization of the presentation of the symmetric groups by products of trans-
positions. The equations can be better understood with the graphical notation
provided by string diagrams, which is a diagrammatic notation for morphisms
in monoidal categories, introduced formally in [JS91]. The morphism γ should
be thought as a device with two inputs and two outputs of type 1, and the two
equations (3) can thus be represented graphically by

γ

γ

γ

=

γ

γ

γ

and
γ

γ
= (4)

In this notation, wires represent identities (on the object 1), horizontal juxta-
position of diagrams corresponds to tensoring, and vertical linking of diagrams
corresponds to composition of morphisms. Moreover, these diagrams should
be considered modulo planar continuous deformations, so that the axioms of
monoidal categories are verified. These diagrams are conceptually important
because they allows us to see morphisms in monoidal categories (or more gen-
erally in 2-categories) either as algebraic objects or as geometric objects. Now,
if we orient the two equations (4) from left to right, we get a rewriting system
which can be shown to be convergent [Laf03]. It has the three critical pairs
given in Figure 1. Moreover, for every morphism φ : 1 ⊗m → 1 ⊗ n, the mor-
phism on the left of Figure 2 can be rewritten in two different ways, thus giving
rise to an infinite number of critical pairs for the rewriting system. This phe-
nomenon was first observed by Lafont [Laf03] and later on studied by Guiraud
and Malbos [GM09]. Interestingly, we can nevertheless consider that there is a
finite number of (families of) critical pairs if we allow ourselves to consider the
“diagram” on the center of Figure 2 as a critical pair (or more precisely as a
generator for a family of critical pairs). Of course, this diagram does not make
sense at first. However, we can give a precise meaning to it if we embed our
terms in a larger category, which is compact: in such a category every object
has a dual, which corresponds graphically to having the ability to bend wires
(see the figure on the right).

There is also another kind of situation that we should handle: critical
pairs can have “holes” in them. Namely, consider a polygraph presenting a
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Figure 1: Three critical pairs of the presentation of Bij.
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Figure 2: A family of critical pairs of the presentation of Bij.

monoidal category with one generator 1 for objects, three generators for mor-
phisms δ : 1→ 3, µ : 3 → 1 and σ : 1 → 1, and two equations whose left
members are pictured on the left of Figure 3. The “morphism” pictured on the
right of Figure 3 should be considered as a critical pair generated by the two
rules. Again, we need a new theoretical tool in order to make sense of such
morphisms containing holes, which is why we will model them as contexts.

These observations were the starting point of this paper which is devoted
to formalizing the intuitions explained above, in order to propose an algorithm
for computing critical pairs in polygraphs. We believe that this is a major area
of higher-dimensional algebra where computer scientists should step in: typical
presentations of categories can give rise to a very large number of critical pairs
and having automated tools to compute them seems to be necessary in order to
push further the study of those systems. The present paper constitutes a first
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Figure 3: A critical pair containing a hole.

step in this direction, by defining the structures necessary to manipulate algo-
rithmically the morphisms in categories generated by polygraphs, thus allowing
us to propose an algorithm to compute the critical pairs in polygraphic rewri-
ting systems. Conversely, algebra provides strong indications about technical
choices that should be made in order to generalize rewriting theory in higher
dimensions. The framework of polygraphs being very subtle, we deliberately
refrained ourselves from being too abstract, because we think that the explicit
manipulation of the structures involved is important in order to grasp and un-
derstand them. A more general, formal and categorical treatment of the matter
should be given in a companion paper, with a uniform handling in higher dimen-
sions of the notions introduced here. We believe that the major contributions
of this paper are the representation of morphisms in free 2-categories by nets,
the proof that the embedding of a 2-category into the free compact 2-category
over it is full and faithful, and the definition of the multicategory of contexts
in a 2-category. The unification algorithm for 3-polygraphs, which is the real
motivation for introducing this theoretical setting, is sketched in the end of the
paper.

1 Category theory recalled
We recall here basic definitions in category theory. A more detailed introduction
to category theory can be found in MacLane’s reference book [Mac71]. In the
following, we will mostly be interested in 2-categories, which is why we only
recall the definition of 2-categories for the lack of space. However, the definition
of polygraphs is better stated in the general case, and we will we make use of
the more general notion of n-category in next section, whose definition can be
found in e.g. [Lei04].

2-categories. A 2-category C is given by the following data.

– A class C0 of 0-cells.

– A category C(A,B) for every pair of 0-cells A and B. Its objects f : A→ B
are called 1-cells, its morphisms α : f ⇒ g are called 2-cells, composition is
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written ◦ and called vertical composition, and identities are called vertical
identities.

– A function ⊗ : C(A,B)×C(B,C)→ C(A,C) called horizontal composition.

– A 1-cell idA : A→ A for every object A called vertical identity.
These should be such that the following properties are satisfied.

– Horizontal composition is associative: for every 0-cells A, B, C and D,
for every 1-cells f, f ′ : A→ B, g, g′ : B → C and h, h′ : C → D, for every
2-cells α : f ⇒ f ′, β : g ⇒ g′ and γ : h⇒ h′,
(f⊗g)⊗h = f⊗(g⊗h) (α⊗β)⊗γ = α⊗(β⊗γ) (f ′⊗g′)⊗h′ = f ′⊗(g′⊗h′)

– Horizontal identities are neutral elements for horizontal composition: for
every 0-cells A and B, for every 1-cells f, f ′ : A → B, for every 2-cell
α : f ⇒ f ′,
idA⊗f = f = f⊗idB ididA⊗α = α = α⊗ididB idA⊗f ′ = f ′ = f ′⊗idB

We sometimes simply write A for idA and f for idf . Two cells are parallel
if they have the same source and target. This construction can be generalized
in any dimension n and we write Catn for the category of n-categories. A
strict monoidal category is a 2-category with only one 0-cell. All the monoidal
categories involved in this paper are implicitly supposed to be strict.

Exchange law. In a 2-category C, for any four 2-cells
α : f ⇒ f ′ : A → B
α′ : f ′ ⇒ f ′′ : A → B

and β : g ⇒ g′ : B → C
β′ : g′ ⇒ g′′ : B → C

we have
(β ⊗ β′) ◦ (α⊗ α′) = (β ◦ α)⊗ (β′ ◦ α′) (5)

and moreover, for every objects A and B, identities are monoidal natural trans-
formations

idA⊗B = idA ⊗ idB (6)

String diagrams. As explained in the introduction, the morphisms in 2-ca-
tegories can be represented using string diagrams. A 2-cell

α : f1 ⊗ . . .⊗ fm ⇒ g1 ⊗ . . .⊗ gn
with fi : Ai−1 → Ai and gi : Bi−1 → Bi (and of course A0 = B0 and Am = Bn)
will be represented by a diagram

f1
A1

f2
A2

. . .

Am−1

fm

A0 α Am

g1
B1
g2
B2
. . .
Bn−1

gm
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and bigger diagrams can be constructed from these diagrams by composing
them: horizontal composition correspond to juxtaposing diagrams horizontally
and vertical composition corresponds to juxtaposing diagrams vertically and
linking the wires (see the examples in the introduction). Joyal and Street have
shown in details that the category of those diagrams, modulo planar isotopies,
is precisely the free 2-category generated by a 2-polygraph. For example, the
equality

(1⊗ 1⊗ γ) ◦ (γ ⊗ 1⊗ 1) = (γ ⊗ 1⊗ 1) ◦ (1⊗ 1⊗ γ)

in the category C of the above example, which holds because of the exchange
law (5) which is satisfied in any monoidal category, can be shown by continuously
deforming the diagram on the left-hand side below into the diagram on the right-
hand side:

γ

γ
=

γ

γ

All the equalities satisfied in any monoidal category generated by a signature
have a similar geometrical interpretation. And conversely, any deformation of
diagrams corresponds to an equality of morphisms in monoidal categories.

2 Free monoidal 2-categories
2.1 Polygraphs
Polygraphs [Str76, Pow90b, Bur93] were introduced as a way to give finite de-
scriptions of categories, generalizing in particular the notion of presentation of
a monoid. We only briefly recall here their construction. The formulation given
here is inspired of [GM09].

Graphs. An n-graph G is a diagram

G0 G1
s0oo
t0
oo G2

s1oo
t1
oo . . .

s2oo
t2
oo Gn

sn−1oo
tn−1
oo

in Set such that si−1 ◦ si = si−1 ◦ ti and ti−1 ◦ si = ti−1 ◦ ti for every index i
such that 0 < i < n. An element x ∈ Gi is called an i-generator and si−1(x)
and ti−1(x) are called respectively the source and the target of x. The n-graphs
form a category Grphn (of presheaves), a morphism between two n-graphs G
and G′ consisting of a sequence fi : Gi → G′i of functions (with 0 ≤ i < n) such
that s′i−1 ◦ fi = fi−1 ◦ si−1 and t′i−1 ◦ fi = fi−1 ◦ ti−1.
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For every dimension n, there is a forgetful functor Catn → Grphn which
to every n-category C associates the n-graph G such that each Gi is the set of
i-cells of C, and for every i-cell x ∈ Gi, si−1(x) and ti−1(x) are the source and
the target of x in C. This functor admits a left adjoint Grphn → Catn.

Standard disk and sphere. The standard n-sphere is the free n-category
on the n-graph S such that for every index i, Si = {x−i , x

+
i }, si−1(x−i ) =

si−1(x+
i ) = x−i−1 and ti−1(x−i ) = ti−1(x+

i ) = x+
i−1. Graphically, S0, S1 and S2

are respectively

x−0 x+
0 x−0

x−1
((

x+
1

66 x
+
0 x−0

x−1
((

x+
1

66x−2 ⇓⇓x
+
2 x

+
0

The standard n-disk is the free n-category on the n-graph D whose underlying
(n − 1)-graph is Sn−1 and such that Dn = {xn} with sn−1(xn) = x−n−1 and
tn−1(xn) = x+

n−1. Graphically, D0, D1 and D2 are respectively

x0 x−0
x1 // x+

0 x−0

x−1
((

x+
1

66⇓x2 x+
0

We write Sn for standard n-sphere and Tn for the standard n-disk. We also
denote by In : Sn → Tn+1 the inclusion functor and by Jn : Sn → Tn the
functor such that, for i < n and ε ∈ {−,+}, Jn(xεi ) = xεi and Jn(xεn) = xn.

Cellular extension and collapsing. A k-sphere in an n-category C, with
k ≤ n, is a functor α : Sk → C. Such a k-sphere α is characterized by the
two parallel k-cells α(x−k ) and α(x+

k ) in C. Similarly, a k-disk in an n-category,
with k ≤ n, is a functor α : Tk → C. Such a k-disk α is characterized by the
k-cell α(xk) in C.

Suppose that Γ is a set of k-spheres in C. By coproduct, this set canonically
induces an arrow Γ · Sk → C, that we still write Γ, where Γ · Sk denotes the
coproduct

∐
α∈Γ Sk of copies of Sk indexed by Γ. The cellular extension of C

by Γ and the collapsing of C by Γ are the categories C[Γ] and C/Γ respectively
defined as the pushouts

Γ · Sk

Γ·Ik
��

Γ // C

��
Γ · Tk+1 // C[Γ]

and

Γ · Sk

Γ·Jk
��

Γ // C

��
Γ · Tk // C/Γ

(7)

in Catn+1, where the n-categories involved in the diagrams are seen as (n+ 1)-ca-
tegories with only identity (n+1)-cells. By extension, if Γ is a set of n-spheres in
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the n-category C, we write C[Γ] and C/Γ for the cellular extension and collapsing
of C seen as an (n+ 1)-category.

Suppose given a functor F : C → D between two n-categories, a set Γ of
k-spheres in C and a functor φ : Γ · Tk+1 → D (i.e. a set of (k + 1)-disks in D)
such that the diagram

Γ · Sk

Γ·Ik
��

Γ // C

F

��
Γ · Tk+1

φ
// D

commutes. Then the universal property of the pushout amounts to state that
there exists a unique functor F [φ] : C[Γ]→ D such that the diagrams

C

��

F

!!
C[Γ]

F [φ]
// D

and

Γ · Tk+1

��

φ

##
C[Γ]

F [φ]
// D

commute, where the vertical arrows are obtained by the pushout construction.

Polygraphs. Polygraphs formalize the notion of presentation of an n-cate-
gory C, i.e. the description of C as a free category quotiented by relations. In
order to generate free n-categories, one could start from an n-graph G and use
the left adjoint Grphn → Catn to the forgetful functor described above. In
such a description, the source and the target of an i-generator x ∈ Gi would
both be (i− 1)-generators (i.e. elements of Gi−1) and not a composite of those.
Such a description would necessarily be very redundant and thus not satisfac-
tory. This consideration essentially motivates the introduction of the notion of
polygraph.

A 0-polygraph P consists of a set P0 and we write Pol0 = Set for the
category of 0-polygraphs. We also write −∗ : Pol0 → Cat0 for the identity
function: given a 0-polygraph P , P ∗ is the set P seen as the free 0-category
generated by P .

In higher dimensions, given an integer n > 0, the category of n-polygraphs
and the free n-category functor are defined by induction as follows.

– An n-polygraph P = (P̃ , Pn) consists of an (n − 1)-polygraph P̃ and a
set Pn of n-spheres in P ∗, called n-generators.

– A morphism φ : P → Q between two n-polygraphs consists of a mor-
phism φ̃ : P̃ → Q̃ of (n−1)-polygraphs and a function φn : Pn → Qn such
that φn(α) = φ̃ ◦ α for every α ∈ Pn.

– The category of n-polygraphs is denoted by Poln.
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– The free n-category functor −∗ : Poln → Catn is the functor which to
every n-polygraph P associates the n-category P ∗ = P̃ ∗[Pn] and to every
morphism of n-polygraphs φ : P → Q associates the functor φ∗ : P ∗ → Q∗

defined as φ∗ = φ̃∗[ψ], where ψ : Pn · Sn → Q∗ is the morphism defined as

Pn · Sn
φ·Sn // Qn · Sn

Qn·In
��

Qn // Q̃∗

��
Qn · Tn+1 // Q̃∗[Qn] = Q∗

the square being a pushout.
It can be shown that the free n-category functor −∗ : Poln → Catn admits a
right adjoint Catn → Poln, thus justifying its name.

Given a polygraph P = (P̃ , Pn), we often write P ∗n for the set of n-cells
of P ∗. A polygraph P is finite when all its sets Pi of i-generator are. Given
an n-polygraph P and an integer m ≤ n, we write P/m for the underlying
m-polygraph obtained by truncating the polygraph P : P/n = P and P/(m−1)
is the underlying (m− 1)-polygraph of P/m. This operation induces a forgetful
functor Poln → Polm which admits a left adjoint: the canonical inclusion
Polm → Poln.

The n-category P presented by an (n + 1)-polygraph P is defined as the
n-category P = P̃ /Pn+1. More generally, an n-category C is presented by P
when C is isomorphic to P . In this sense, the underlying n-polygraph of a
(n + 1)-polygraph can be thought as a signature generating terms which are
to be considered modulo the relations described by (n + 1)-generators. In the
following, we will be mostly interested in such presentations in dimension n = 2.

A different equivalent presentation is given in [Bur93]. For example, a 3-poly-
graph consists of a diagram

P0

i0

��

P1
s0

~~ t0~~
i1

��

P2
s1

~~ t1~~
i2

��

P3
s2

~~ t2~~
P ∗0 P ∗1

s∗0oo

t∗0

oo P ∗2

s∗1oo

t∗1

oo

(8)

in Set such that

s∗i ◦ si+1 = s∗i ◦ ti+1 and t∗i ◦ si+1 = t∗i ◦ ti+1

for i = 0 and i = 1, together with a structure of 2-category on the 2-graph

E∗0 E∗1

s∗0oo

t∗0

oo E∗2

s∗1oo

t∗1

oo

Here, P ∗i is the set of i-cells of the i-category generated by the underlying
i-polygraph and the morphisms si−1 and ti−1 respectively associate to an i-ge-
nerator α the (i − 1)-cells si−1(α) = α(x−i ) and ti−1(α) = α(x+

i ) called the
source and target of the generator.
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Example 1. The polygraph M corresponding to the theory of monoids has
the following generators (we write f : A → B to indicate that f is a generator
whose source is A and target is B, etc.):

E0 = {∗}
E1 = {1 : ∗ → ∗}
E2 = {µ : 1⊗ 1⇒ 1, η : ∗ ⇒ 1}
E3 = {a : µ ◦ (µ⊗ 1) V µ ◦ (1⊗ µ), l : µ ◦ (η ⊗ 1) V 1, r : (1⊗ η)→ 1}

Graphically, the 3-generators can be pictured as

µ
µ

a
V

µ
µ

η
µ

l
V

r
W

η
µ

This 3-polygraph presents the simplicial category ∆ (it is a monoidal category
and can therefore be seen as a 2-category with only one 0-cell). This category
corresponds to the theory of monoids in the sense that the category of monoidal
functors and monoidal natural transformations from ∆ to a strict monoidal
category C is equivalent to the category of monoids in C.

Example 2. The polygraph S corresponding to the theory of symmetries has
the following generators

E0 = {∗}
E1 = {1 : ∗ → ∗}
E2 = {γ : 1⊗ 1⇒ 1⊗ 1}
E3 = {y : (γ ⊗ 1) ◦ (1⊗ γ) ◦ (γ ⊗ 1) V (1⊗ γ) ◦ (γ ⊗ 1) ◦ (1⊗ γ),

s : γ ◦ γ V 1⊗ 1}

As mentioned in the introduction, this polygraph presents the category Bij.

Weight and size. Suppose that P is an n-polygraph. We write N for the ad-
ditive monoid N seen as an n-category with exactly one i-cell 0 for i < n, whose
set of n-cells is N, whose compositions in all dimensions are given by addition
and whose identities are the i-cells 0. The weight wα : P ∗ = P̃ ∗[Pn]→ N of an
n-generator α is the functor defined by the universal property of the pushout

Pn · Sk

Pn·Ik
��

Pn // P̃ ∗

�� 0

��

Pn · Tk+1 //

χα
,,

P̃ ∗[Pn]
wα

""
N

12



where 0 denotes the constant functor equal to 0 and χα is the functor such that
the image of an n-cell (β, x) ∈ (Pn · Tk+1) is 1 if β = α and 0 otherwise. The
size ‖x‖ of an n-cell x in P ∗ is defined as ‖x‖ =

∑
α∈Pn wα(P ) (the size function

can also be defined by replacing χα by the constant functor equal to 1 on non-
identity (k + 1)-cells in the pushout diagram above). Given an n-cell ϕ of P ∗,
wα(ϕ) counts the number of occurrences of α in ϕ and ‖ϕ‖ is the total number
of generators composing ϕ. We sometimes say that ϕ contains the generator α
whenever wα(ϕ) > 0.

2.2 Algebraic construction of a free 2-category
Since our purpose is essentially to manipulate morphisms of the 2-category freely
generated by a 2-polygraph, we need a concrete description of this category.

Free categories. Suppose that we are given a 1-polygraph P , i.e. a graph

P0 = P ∗0 P1
s∗0oo

t∗0

oo

The category generated by this polygraph has the elements A of P0 as objects
and its sets of morphisms are the smallest sets such that

– for every 1-generator f ∈ P1, such that s0(f) = A and t0(f) = B, there is
a morphism f : A→ B,

– for every morphisms f : A → B and g : B → C there is a morphism
f ⊗ g : A→ C,

– for every 0-generator A ∈ P0, there is a morphism idA : A→ A,

quotiented by the smallest congruence (with respect to composition) imposing
that the formal composition is associative and admits the formal identities as
neutral elements. Notice that instead of considering formal composites and iden-
tities modulo a congruence, we could also have simply constructed morphisms
as finite sequences of composable arrows.

Free 2-categories. The 2-category freely generated by a 2-polygraph can be
described by a free algebraic construction in a similar fashion. The construc-
tion above describes the underlying 1-category and its sets of two-cells are the
smallest sets containing the 2-generators and closed under formal horizontal and
vertical composition and identities, quotiented by the smallest congruence (with
respect to both compositions) such that

– horizontal composition is associative and admits horizontal identities as
neutral elements,

– vertical composition is associative and admits vertical identities as neutral
elements,

13



– the exchange laws (5) and (6) between vertical and horizontal composition
are satisfied.

This algebraic construction is however quite difficult to work with, if we want to
manipulate morphisms in such 2-categories and effectively decide their equality.
For example, suppose that A is a 0-cell and α : A⇒ A and β : A⇒ A are two
2-cells in a given 2-category C. The equality

α⊗ β = β ⊗ α

can be deduced from the following sequence of equalities:

α⊗ β = (idA ◦ α)⊗ (β ◦ idA) = (idA ⊗ β) ◦ (α⊗ idA)
= (β ⊗ idA) ◦ (idA ⊗ α) = (β ◦ idA)⊗ (idA ◦ α) = β ⊗ α

which can be pictured graphically by

α β =
α

β
=

α

β
= β α

It requires inserting and removing identities, and using the exchange law in both
directions. So, it seems to be very hard to find a generic way to handle formal
composites of generators modulo the congruence described above. We will there-
fore define an alternative construction of these morphisms which doesn’t require
such a quotienting. The rest of this section is devoted to constructing such a
representation.

2.3 Polygraphic nets
The construction of the 2-category generated by a polygraph given in previous
section is algebraic but requires to consider morphism modulo a congruence
which is difficult to work with. On the other hand, string diagrams are sim-
pler to manipulate but are geometric and thus cannot be directly used for a
manipulation of morphisms with a computer. This lead us to introduce a new
construction of the 2-category generated by a 2-polygraph using what we call
polygraphic nets (or nets for short), based on polygraphs, which combines the
best of both worlds: it is algebraic and does not require working modulo a
complex congruence (only isomorphism). We named it this way because it is
very close in the spirit to the nets often used to represent logical proofs such as
proof-nets [Gir87], interaction nets [Laf90], etc. It is also reminiscent of pasting
schemes [Pow90a].

Polygraphic nets are based on the idea that a term (a morphism) generated
by a particular signature S is itself an object of the same nature as a signature.
For example, consider the 1-polygraph S with

S0 = {A, B} and S1 = {f : A→ B, g : B → A} (9)

14



A0
f0

44 B0

g0

��
A1

f1

44 B1

g1

��
A2

f2

44 B2

��
`

��

A
f

55 B
g

vv

Figure 4: Morphisms are “unfoldings” of the signature.

which can be represented graphically by

A
f

55 B
g

vv

We will see the term t defined as f ◦ g ◦ f ◦ g ◦ f : A → A, which is generated
by the previous signature S, as a polygraph P such that

P0 = {A0, B0, A1, B1, A2, B2}

and

P1 = {f0 : A0 → B0, g0 : B0 → A1, f1 : A1 → B1, g1 : B1 → A2, f2 : A2 → B2}

and such that the Ai, Bi, fi and gi are labeled by A, B, f and g respectively
(formally, these labels are given by a morphism of polygraphs ` : P → S). This
polygraph can be viewed as a particular representation of the term t where each
instance of A, B, f and g involved in the definition of this term has been given
a distinct “name”. It can also be seen as an “unfolding” of the signature S: ge-
ometrically, the relation between signatures and the terms they generate is very
similar to the relation between spaces and their coverings [Hat02], as illustrated
in Figure 4 (the picture on the left represents the circle together with part of
its universal covering, which is an infinite spiral, and the figure on the right
represents the signature with the term). We will not make explicit use of this
parallel with geometry in this paper, but it is nice to keep this picture in mind
in order to build intuitions.
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We now recast the construction of the free 2-category on a 2-polygraph S
given in Section 2.2 as a 2-category NetS2 whose k-cells are themselves k-poly-
graphs. We recall that the categories Poln of n-polygraphs are cocomplete, in
particular pushouts always exist.

2.3.1 Polygraphic 0-nets

First, suppose that we are given a 0-polygraph S (i.e. a set S0). An atomic
0-polygraph is a polygraph which contains only one 0-cell. The category NetS0
of polygraphic 0-nets on this polygraph is the subcategory of Pol0 ↓S, whose ob-
jects are atomic polygraphs over S and whose morphisms are the isomorphisms.
This groupoid should really be thought as an “unicategory”, i.e. a “weak set”
(just like a bicategory is a weak category).

More explicitly, objects of this category are pairs (x,A), where x is an ele-
ment of any set with one element and A is an element of S0 and there is one
morphism between two objects (x,A) and (x′, A′) if and only if A = A′. An
object (x,A) should be thought as an instance of a, where x is the name of
the instance. The objects of this category form a proper class and not a set
(because x can be “anything”). However, in practice, we only need to consider
finitely many instances of A at once since we only consider finite polygraphs
as rewriting systems, so we can suppose without loss of generality that x is an
element of a universe U0, which is a set at least countable, typically N, and we
sometimes write Ai for the pair (i, A) with i ∈ N.

The category of 0-nets on S is equivalent to the set S0, seen as a category
with only identities.

2.3.2 Polygraphic 1-nets

This construction can be generalized to 1-polygraphs as follows. A 1-polygraph
is atomic when it has only one 1-cell f and two 0-cells, which are the source
and the target 0-cells of the 1-cell, which are distinct. Graphically, an atomic
polygraph looks like

x1
y // x2

but not like

x1
y1 // x2

y2 // x3 nor x1

y1
))

y2

55 x2 nor
x1

y1

��

Suppose fixed a 1-polygraph S. The bicategory NetS1 of polygraphic 1-nets
on S has the 0-nets M on S/0 as objects. The inclusion Pol0 ↪→ Pol1 induces
an inclusion functor Pol0 ↓(S/0) ↪→ Pol1 ↓S, enabling us to see 0-nets on S/0 as
elements of Pol1 ↓S. The morphisms N : M1 → M2 of NetS1 are the elements
of the smallest set of cospans

M1
s // N M2

too (10)
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in Pol1 ↓S such that

– every cospan (10) such that M1 and M2 are 0-nets, N is an atomic
1-polygraph with f as unique 1-cell, s(M1) = s0(f) and t(M2) = t0(f) is
a morphism M1 →M2,

– for every two morphisms N1 : M1 →M2 and N2 : M2 →M3, the compos-
ite morphism N2 ◦N1 : M1 →M3, defined as the pushout

N2 ◦N1

N1

99

N2

ee

M1

==

M2

ee 99

M3

aa

is a morphism,

– for every 0-net M , the cospan

M
idM // M M

idMoo

is the identity morphism on N .

Since composition is defined by a pushout construction, it is not a priori strictly
associative, which is why we construct a bicategory (with isomorphisms of poly-
graphs as 2-cells) which is not necessarily a category.

Example 3. Consider the polygraph S defined in (9) and the polygraphs N1
and N2 defined by

(N1)0 = {A0, B0} and (N1)1 = {f0 : A0 → B0}

and
(N2)0 = {B0, A0} and (N2)1 = {g0 : B0 → A0}

These polygraphs are elements of Pol1 ↓S with the obvious labeling morphisms
of polygraphs sending A0, B0, f0 and g0 on A, B, f and g respectively. The
composite of N1 : A0 → B0 and N2 : B0 → A0 is (up to isomorphism) the
polygraph N2 ◦N1 : A0 → A0 defined as

(N2 ◦N1)0 = {A0, B0, A1} and (N2 ◦N1)1 = {f0 : A0 → B0, g0 : B0 → A1}

Graphically, this can be represented as

A0
f0 // B0 ⊗ B0

g0 // A0 = A0
f0 // B0

g0 // A1

Notice that we have to name differently the two instances of A in the composite,
be the choice of their names is of course arbitrary.
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Given a 1-polygraph, we define the horizontal ordering relation <0 be-
tween 1-cells as the smallest transitive relation such that f <0 g whenever
t0(f) = s0(g). Polygraphic 1-nets can be characterized with this relation as
follows.

Property 4. The 1-cells N : M1 → M2 of the bicategory NetS1 are precisely
the cospans M1 M

soo t // M2 in Pol1 ↓S which are

1. linear : a 0-generator x ∈ N0 is the source (resp. the target) of exactly one
1-generator y ∈ N1, excepting for t(M2) (resp. s(M1)) which is the source
(resp. the target) of none,

2. acyclic: the relation <0 is irreflexive.

Such a polygraph M is the same as a linear graph

x0
y1−→ x1

y2−→ x2 · · ·xn−1
yn−→ xn (11)

where xi ∈ E0 and yi ∈ E1 such that for every index i, `(s0(yi+1)) = `(xi) and
`(t0(yi+1)) = `(xi+1), where ` : M → S denotes the labeling functor. We thus
recover the usual construction of the free category on a graph as the category
of paths on this graph:

Property 5. The category on a signature S, obtained from the bicategory
NetS1 by quotienting objects and morphisms by isomorphism of polygraphs, is
isomorphic to the free category generated by the polygraph S.

Remark 6. Suppose that S is a polygraph with one 0-generator A and two
1-generators f, g : A → A and consider the polygraphs P and Q in Pol1 ↓ S
such that

P0 = {A0} P1 = {f0 : A0 → A0} Q0 = {A0} Q1 = {g0 : A0 → A0}

Graphically, P and Q can be respectively pictured as

A0

f0

�� and
A0

g0

��

Notice that by Property 4, these polygraphs are not morphisms in NetS1 (with
obvious source and target). If it was the case, then this bicategory would contain
two morphisms such that Q ◦ P ∼= P ◦Q, which can be both pictured as

A0f0 66
g0ii

thus failing to be isomorphic (when quotiented by isomorphism of polygraphs)
to the free category generated by S. This explains why we need to take care
of which instance of a generator of S is used in a polygraph (we see A0 as an
instance of A).
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2.3.3 Polygraphic 2-nets

A 2-polygraph P is atomic when

– it contains only one 2-generator z,

– the source and target s1(z) and t1(z) are 1-nets,

– P1 = (s1(z))1 ∪ (t1(z))1 and (s1(z))1 ∩ (t1(z))1 = ∅,

– P0 = (s1(z))0 ∪ (t1(z))0 and (s1(z))0 ∩ (s1(z))0 = {s0(s1(z)), t0(t1(z))}.

Graphically, an atomic 2-polygraph looks like

x2
y2 // x3 . . . xm−1

ym−1// xm
ym

##
x1

y1 >>

y′1
��

z ⇓ x′n

x′1
y′2

// x′2 . . . x
′
n−2

y′n−1

// x′n−1
y′n

<< or

y1 y2 ym−1 ym
x2

. . .
xm

x1 z x′n

x′1 . . . x′n−1
y′1 y′2 y′m−1 y′m

in diagrammatic and in string-diagrammatic notations, where the yi and y′i are
all distinct and the xi and x′i are all distinct.

Suppose that we are given a 2-polygraph S. The weak 2-category NetS2
of 2-nets on S is defined by a generalization of the previous construction. Its
underlying category is the category NetS/11 of 1-nets on the polygraph S/1.
Again, such 1-nets can be seen as objects in the 2-category Pol2 ↓S. The 2-cells
P : N1 ⇒ N2 : M1 →M2 of NetS2 will be cospans

N1
s // P N2

too (12)

in the category Pol2 ↓S such that N1 and N2 are both 1-nets from M1 to M2,
thus inducing diagrams of the form

N1

��
M1

==

!!

P M2

}}

aa

N2

OO

Vertical composition of two morphisms

P : N1 ⇒ N2 : M1 →M2 and Q : N2 ⇒ N3 : M1 →M2

is given by the pushout of consecutive cospans of the form (12) as shown in the
left of Figure 5 and composition P ⊗Q of two morphisms

P : N1 ⇒ N2 : M1 →M2 and Q : N3 ⇒ N4 : M2 →M3
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N1

��
P

zz
M1

::

##

//Q ◦ P N2

OO

��

M2oo

YY

��

Q

cc

N3

OO

N1 ⊗N3

��
N1

��

99

P ⊗Q N3

ee

��
M1

==

!!

P

99

M2oo

yy

ee 99

%%

// Q

ee

M3

}}

aa

N2

OO

%%

N4

yy

OO

N2 ⊗N4

OO

Figure 5: Composition by pushouts.

is given by the sequence of pushouts shown in the right of Figure 5 (horizontal
arrows are obtained by composition and vertical dotted arrows are obtained
by the universal property of the pushouts). We define the set of 2-cells of the
2-category NetS2 as the smallest set of 2-cells containing atomic 2-polygraphs
over S and moreover closed under both vertical and horizontal composition and
identities. Since NetS/11 is a bicategory and composition of spans is not strictly
associative, we have defined a weak 2-category. However, in the following we
will consider 2-nets up to isomorphism (which corresponds to injective renaming
of cells) and these form a (strict) 2-category.

Example 7. The morphism µ◦ (µ⊗ (µ◦ (1⊗η))) in the theory of monoids (see
Example 1) whose string-diagrammatic notation is

η
µ µ

µ

can be represented by the polygraph M whose generators are

M0 = {∗0, ∗1, ∗2, ∗3}
M1 = {10 : ∗0 ⇒ ∗1, 11 : ∗1 ⇒ ∗2, 12 : ∗2 ⇒ ∗3,

13 : ∗3 ⇒ ∗3, 14 : ∗0 ⇒ ∗2, 15 : ∗2 ⇒ ∗3, 16 : ∗0 ⇒ ∗3}
M2 = {η0 : ∗3 V 13, µ0 : 10 ⊗ 11 V 14,

µ1 : 12 ⊗ 13 V 15, µ2 : 14 ⊗ 15 V 16}

Graphically, this corresponds to giving a different label to each instance of
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generator of the signature occurring in the morphism:

10 11 12
∗1 η0

13
µ0 ∗2 µ1

14 15
µ2

∗0 ∗3
16

(13)

There is no obvious canonical choice for those labels in the general case, which
explains why we have to consider nets modulo isomorphism (i.e. injective re-
naming of those labels).

Since the definition of the category NetS2 is given as generated by suitable
pushouts of nets, it can easily be shown that

Theorem 8. The 2-category NetS2 on a signature S is equivalent to the free
2-category generated by the polygraph S.

Proof. Given a 2-generator α ∈ S2, there exists, up to isomorphism of nets,
exactly one atomic net Aα whose source and target are respectively α(x−1 )
and α(x+

1 ) and whose 2-generator is labeled by α. From this, we can construct
maps making the diagram

S2 · S1

S2·I1

��

S2 // NetS/11

v

��
S2 · T2

h
// NetS2

commute in Cat2: the vertical v arrow sends a 2-generator α ∈ S2 to Aα
(it is the inclusion of the source and target 1-sphere of Aα into Aα) and the
horizontal arrow h sends a 2-generator α ∈ S2 to Aα seen as a 2-disk in NetS2 .
Now, suppose that D is a 2-category, F : NetS/11 → D is a 2-functor, and
φ : S2 · T2 → D is a family of 2-disks in D such that the diagram

S2 · S1

S2·I1

��

S2 // NetS/11

F

��
S2 · T2

φ
// D

commutes in Cat2. Because of the inductive definition of NetS2 , there exists
an unique 2-functor f : NetS2 → D such that for every 2-generator α, we have
f(Aα) = φα(x2). This functor satisfies f ◦ v = F and f ◦ h = φ, and moreover
it is the only one satisfying these equalities because of the property mentioned
at the beginning of the proof.
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Property 9. The vertical ordering relation <1 is the smallest transitive re-
lation on 2-generators P2 of a 2-polygraph P such that z <1 z′ whenever
(t1(z))1 ∩ (s1(z′))1 6= ∅. The 2-polygraphs

P : N ⇒ N ′ : M →M ′

in NetS2 are

– linear : a 1-generator y ∈ P1 is in the source (resp. in the target) of
exactly one 2-generator z ∈ P2, i.e. y ∈ (s1(z))1 (resp. y ∈ (t1(z))1),
excepting for the elements of (t(P ))0 (resp. (s(P ))0) which are in the
source (resp. target) of none,

– acyclic: the relation <1 is irreflexive.

Remark 10. In Example 7, the cell 13 : ∗3 → ∗3 has the same source and
target, showing that 2-nets are not acyclic in the sense of Property 4 (i.e. the
horizontal ordering <0 is not irreflexive).

Remark 11. Property 9 does not give a characterization of 2-polygraphs which
are 1-nets. For example, the polygraph

E0 = {∗0, ∗1}
E1 = {10 : ∗0 → ∗1, 11 : ∗1 → ∗0, 12 : ∗0 → ∗0}
E2 = {µ0 : 10 ⊗ 11 →2}

10 ∗1 11

∗0
µ0

∗0
12

is not a 2-net over the signature of monoids M , intuitively because two distinct
portion of the plane have been given the same name ∗0. It seems difficult to
give a direct characterization of 2-nets amongst 2-polygraphs.

3 Confluence for 3-polygraphs
3.1 The multicategory of contexts
We introduce here the notion of context in a 2-category. These contexts should
be thought as morphisms in which typed variables (or holes) occur. Since we
consider contexts which can have multiple holes those are naturally structured
as a multicategory (also sometimes called “colored operad”). A detailed intro-
duction to multicategories can be found in [Lei04], we only recall the definition
here.

Definition 12 (Multicategory). A multicategory M is given by

– a classM0 of objects,

– a classM1(A1, . . . , An;A) of operations for every objectsA1, . . . , An andA,
we write f : A1, . . . , An → A to indicate that f ∈M1(A1, . . . , An;A),
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– a composition function which to every operations fi : A1
i , . . . , A

ki
i → Ai,

for 1 ≤ i ≤ n, and f : A1, . . . , An → A, associates a composite operation

f ◦ (f1, . . . , fn) : A1
1, . . . , A

k1
1 , . . . , A

1
n, . . . , A

kn
n → A

that we often simply write f(f1, . . . , fn),

– an operation idA : A→ A, called identity, for every object A,

such that

– the composition is associative:

f ◦
(
f1 ◦ (f1

1 , . . . , f
k1
1 ), . . . , fn ◦ (f1

n, . . . , f
kn
n )
)

= (f ◦ (f1, . . . , fn)) ◦ (f1, . . . , f
k1
1 , . . . , f1

n, . . . , f
kn
n )

for every operations f , fi and f ji for which compositions make sense,

– the composition admits identities as neutral elements: for every operation
f : A1, . . . , An → A, we have f ◦ (idA, . . . , idA) = f .

A symmetric multicategory is a multicategory M together with a bijection
between M(A1, . . . , An;A) and M(Aσ(1), . . . , Aσ(n);A), for every permutation
σ : n→ n, satisfying coherence axioms.

The multicategory of contexts of a 2-category is defined as follows:

Definition 13 (Multicategory of contexts of a 2-category). Suppose that C is
a 2-category. The symmetric multicategory of contexts of C, written KC is the
multicategory defined as follows. Its objects pairs of parallel 1-cells f, g : A→ B
of C, written f ⇒ g : A → B or simply f ⇒ g when there is no ambiguity on
their source and target. Its morphisms

K : f1 ⇒ g1, . . . , fn ⇒ gn V f ⇒ g

are the morphisms K : f → g in C[f1 ⇒ g1, . . . , fn ⇒ gn] such that for every
index i, wfi⇒gi(K) = 1 (i.e. variables occur exactly once) and composition is
induced by substitution in the obvious way. Notice that an object of KC can be
considered as a 1-sphere in C, so in the notation above we identify fi ⇒ gi with
the corresponding sphere.

When we restrict to unary morphisms, we get a category of contexts which
acts on the 2-category C. If K : f1 ⇒ g1 V f ⇒ g is a unary context and
α : f1 ⇒ g1 is a 2-cell of C, we write K(α) : f ⇒ g for the corresponding mor-
phism: the context K is a morphism K : f → g in C[f1 ⇒ g1] and K(α)
denotes K[φ] where φ : T2 → C is the functor which sends the 2-cell x2 of stan-
dard 2-disk to α. Similarly, if C is the underlying 2-category of a 3-category D,
K : f1 ⇒ g1 V f ⇒ g, and r : α V β : f1 ⇒ g1 is a 3-cell in D, we write
K(r) : KαV Kβ : f → g for the obvious 3-cell of D.
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Remark 14. Given a 2-polygraph P , a generator α occurs in a 2-cell β of P ∗
(i.e. wα(β) > 0) if and only if there exists a unary context K of P ∗ such
that β = K(α).

Remark 15. Given a 2-polygraph P , a 2-cell α : f1 ⇒ g1 and a 2-cell β : f ⇒ g,
there exists a unary context K : f1 ⇒ g1 V f ⇒ g such that β = K(α) if and
only if there exists a morphism i : α→ β of polygraphs over P , where α and β
are seen as 2-nets in NetP2 .

3.2 Critical pairs
A 3-polygraph S freely generates a 3-category S∗. Two coinitial 3-cells

r1 : αV β1 : f ⇒ g : A→ B and r2 : αV β2 : f ⇒ g : A→ B

of this 3-category are joinable when there exists a 2-cell β : f ⇒ g and two
3-cells s1 : β1 V β and s2 : β2 V β such that s1 ◦2 r1 = s2 ◦2 r2 (where ◦2
denotes the composition in dimension 2). Given a 3-generator r : α V β and
2-cells α′ and β′, we write αVK,r β (or sometimes simply αVr β), when there
exists a unary context K such that K(α) = α′ and K(β) = β′. A polygraph is
locally confluent when for every cells such that α VK1,r1 β1 and α VK2,r2 β2,
the two 3-cells K1(r1) and K2(r2) are joinable. It is terminating when there is
no infinite sequence α1 VK1,r1 α2 VK2,r2 . . ..

The Newman’s lemma is still valid in this framework [GM09]:

Lemma 16. A terminating polygraph is confluent if and only if it is locally
confluent.

We have seen in Section 2.3.3, that the 2-cells of the 3-category generated
by a 3-polygraph S can be seen as polygraphic 2-nets. In some simple cases,
termination of polygraphs can be deduced from the following lemma:

Lemma 17. A 3-polygraph S such that for every 3-generator r : α V β we
have ‖α‖ > ‖β‖ is terminating.

This simple criterion for showing the termination of a polygraph is often too
weak. More elaborate termination orders for 3-polygraphs have been studied
by Guiraud [Gui06a]. In this paper, we are mostly interested in studying local
confluence of polygraphs.

The usual notion of critical pair can be extended to the setting of 3-polygraphs
as follows.

Definition 18 (Unifier). A unifier of a two 2-cells

α1 : f1 ⇒ g1 and α2 : f2 ⇒ g2

in a 2-category C is a pair of cofinal unary contexts

K1 : f1 ⇒ g1 V f ⇒ g and K2 : f2 ⇒ g2 V f ⇒ g

such that K1(α1) = K2(α2). A unifier is a most general unifier when it is
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– non-trivial: there is no binary context

K : f1 ⇒ g1, f2 ⇒ g2 V f ⇒ h

such that

K1 = K ◦ (idf1⇒g1 , α2) and K2 = K ◦ (α1, idf1⇒g1)

– minimal: for every unifier (K ′1,K ′2) of α1 and α2 such that K1 = K ′′1 ◦K ′1
and K2 = K ′′2 ◦K ′2 for some contexts K ′′1 and K ′′2 , the unary contexts K ′′1
and K ′′2 are invertible.

Definition 19 (Critical pair). A critical pair (K1, r1,K2, r2) in a 3-polygraph S
consists of two 3-generators

r1 : α1 V β1 : f1 ⇒ g1 and r2 : α2 V β2 : f2 ⇒ g2

and a unifier

K1 : f1 ⇒ g1 V f ⇒ g and K2 : f2 ⇒ g2 V f ⇒ g

of α1 and α2. We sometimes say that the 2-cell α = K1(α) = K2(α2) is a critical
pair, by abuse of language.

We have seen in Section 2.3.3 that the morphisms of the free 2-category
generated by a polygraph S can be seen as 2-nets, i.e. (cospans of) 2-polygraphs
over S, allowing us to consider morphisms of polygraphs between nets over S.
By Remark 15, a 2-nets β of the form β = K(α) can be seen as a 2-net β
together with a morphism i : α V β of 2-polygraphs over S. This allows us to
characterize concretely some critical pairs in nets. Namely, suppose that we are
given two 2-nets α1 : f1 ⇒ g1 and α2 : f2 ⇒ g2 in NetS2 . An unifier of these
two nets can be equivalently defined as a 2-net α : f ⇒ g in NetS2 together with
two morphisms i1 : α1 → α and i2 : α2 → α of 2-polygraphs over S. This unifier
is non-trivial in the sense of Definition 19 if and only if the 2-net α′ defined as
the pullback

α′

}} !!
α1

i1 ""

α2

i2||
α

contains at least one 2-generator. Moreover, if we write + for the coproduct
of polygraphs, when the morphism i1 + i2 : α1 + α2 → α is epi, the unifier is
also minimal – but a critical pair does not necessarily satisfy this condition, for
example it is not the case for the critical pairs of Example (21).
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Example 20. Consider the theory of monoids given in Example 1. The net on
the left of

10 11

η0 ∗0
12

µ0

13 ∗2
µ1

∗1
14

10 11 15

η0 ∗0
12

µ0

13 ∗1
µ1

16 ∗2
µ2

∗3
14

10

η0 ∗0
12

µ0 η1
13 ∗1 11

µ1

14

is a unifier of the rules a and l. However the two nets on the right are not
because they are respectively trivial and not minimal.

Example 21. Consider the 3-polygraph S of symmetries (Example 2). We
write γn : 1 ⊗ 1 → 1 ⊗ 1 for the morphism defined by induction on the integer
n by γ0 = 1⊗ 1 and γn+1 = γ ◦ γn. Then for every integer n, the morphism

γ

γ

γ γn

γ

γ

is a critical pair, since the source of the 3-generator y appears on the upper-
left part and on the lower-left part of the morphism, and both share one
2-generator γ.

The usual property of critical pairs extends to our framework [GM09]:

Property 22. A 3-polygraph S is locally confluent if and only if for each of its
critical pair (K1, r1,K2, r2), the 3-cells K1(r1) and K2(r2) are joinable.

4 Free compact 2-categories
Example 21 shows that a finite 3-polygraph can give rise to an infinite number
of critical pairs. As explained in the introduction, this is not the case anymore
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if we allow ourselves to consider diagrams such as the one depicted on the
center of Figure 2. We formalize these kind of intuitive diagrams by formally
adding adjoints to the 2-categories generated by 2-polygraphs. Graphically, this
corresponds to adding the possibility of “bending” wires.

4.1 Compact 2-categories
The notion of adjunction can be formalized between 1-cells in a 2-category as
follows [KS72], generalizing the situation in Cat.

Definition 23 (Adjoint). Given a 2-category C, a 1-cell f : A → B is left
adjoint to a 1-cell g : B → A, what we write

A

f
++⊥ B

g

kk

when there exists two 2-cells η : A→ f ⊗ g and ε : g ⊗ f → B such that

(f ⊗ ε) ◦ (η ⊗ f) = f and (ε⊗ g) ◦ (g ⊗ η) = g

The 1-cell g is then said to be right adjoint to f .

The notion of 2-category with adjoints was studied in the case of symmetric
monoidal categories [KL80] (where they are called compact closed categories),
monoidal categories [JS93] (where they are called autonomous categories), as
well as other variants such as spherical categories [BW99]; see [Sel08] for a
concise presentation of those.

Definition 24 (Compact 2-category). A 2-category is compact when every
1-cell admits both a left and a right adjoint.

A strictly compact 2-category is a compact 2-category in which every 1-cell
f : A→ B has an assigned left adjoint f−1 : B → A and an assigned right ad-
joint f+1 : B → A. We write η+

f and ε+
f (resp. η−f and ε−f ) for the unit and

the counit of the adjunction f a f+1 (resp. f−1 a f). The following coherence
axioms should moreover be satisfied:

– for every pair of composable 1-cells f and g,

(f ⊗ g)−1 = g−1 ⊗ f−1 and (f ⊗ g)+1 = g+1 ⊗ f+1

and

η+
f⊗g = (f ⊗ η+

g ⊗ f+) ◦ η+
f and ε+

f⊗g = ε+
f ◦ (f+1 ⊗ ε+

g ⊗ f)

and

η−f⊗g = (f−1 ⊗ η−g ⊗ f) ◦ η−f and ε−f⊗g = ε−f ◦ (f ⊗ ε−g ⊗ f−1)
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– for every 0-cell A,
id−1
A = idA = id+1

A

and
η+

idA = idA = ε+
idA and η−idA = idA = ε−idA

– for every 1-cell f ,
(f+1)−1 = f = (f−1)+1

and
η+
f−1 = η−f and ε+

f−1 = ε−f

and
η−f+1 = η+

f and ε−f+1 = ε+
f

For any 1-cell f : A → B in a strictly compact 2-category and integer n,
the morphism fn denotes the morphism defined by f0 = f , fn+1 = (fn)+1

and fn−1 = (fn)−1. We also simply write ηf : B ⇒ f−1⊗f and εf : f ⊗ f−1 ⇒ A
for the unit and the counit of the adjunction between f−1 and f .

In the following, we suppose for simplicity that all the compact categories
we consider are equipped with a structure of strictly compact category. This is
not restrictive since every compact 2-category can be shown to be equivalent to
a strict one using an argument similar to the coherence theorem for compact
closed categories [KL80].

4.2 Embedding 2-categories into compact 2-categories
There is an obvious forgetful functor from the category of compact 2-categories
to the category of 2-categories, and this forgetful functor admits a left ad-
joint. We write A(C) for the free compact 2-category on a 2-category C (the A
here stands for “adjoints”). The construction of this free 2-category is detailed
in [PL07] and consists essentially in adapting the work of Kelly and Laplaza on
compact closed categories [KL80] to monoidal categories which are not supposed
to be symmetric. We recall briefly this construction here.

Every compact 2-category has an underlying category with formal adjoints
in the following sense:

Definition 25 (Category with formal adjoints). A category with formal ad-
joints (C, (−)−1, (−)+1) is a category together with two functors

(−)−1 : C → Cop and (−)+1 : Cop → C

such that ((−)−1)+1 = idC and ((−)+1)−1 = idCop .

Given a 2-category C with underlying category C/1, the underlying category
of A(C) is the free category with formal adjoints on C/1. More concretely, this
category is the free category on the graph whose objects are the objects of C/1
as objects and whose arrows fn : A → B are pairs constituted of an integer
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n ∈ Z, called winding number, and a morphism f : A → B in C if n is even
(resp. a morphism f : B → C in C if n is odd), quotiented by the following
equalities:

– for every pair of composable morphisms fn and gn,

fn ⊗ gn =
{

(f ⊗ g)n if n is even
(g ⊗ f)n if n is odd

– for every object A,
(idA)n = idA

The 2-cells of A(C) are formal vertical and horizontal composites of:

– α0 : f0 ⇒ g0, where α : f ⇒ g is a 2-cell of C,

– ηfn : B ⇒ fn−1 ⊗ fn, for every 1-cell fn : A→ B,

– εfn : fn ⊗ fn−1 ⇒ A, for every 1-cell fn : A→ B,

quotiented by

– the axioms of 2-categories (see Section 2.2),

– for every pair of vertically composable 2-cells α0 and β0,

β0 ◦ α0 = (β ◦ α)0

– for every 1-cell f0,
idf0 = (idf )0

– for every pair of horizontally composable 2-cells α0 and β0,

α0 ⊗ β0 = (α⊗ β)0

– for every 1-cell fn,

(fn−1 ⊗ εfn) ◦ (ηfn ⊗ fn) = fn−1 and (εfn ⊗ fn) ◦ (fn ⊗ ηfn) = fn

Graphically, if we write respectively

f0

A α B

g0

B B
A

fn−1 fn
fn fn−1

B
B A

for α0 : f0 ⇒ g0 : A → B, ηfn and εfn (where fn : A → B), the four last
equalities can be pictured as in Figure 6.
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f0

α

A B
β

h0

=

f0

A β ◦ α B

h0

f0

A idfB

f0

=

f0

A B

f0

f0 h0

A α B β C

g0 i0

=
f0 h0

A α⊗ β C

g0 i0

fn−1

B A

fn−1

=
fn−1

B A

fn−1

fn

A B

fn

=
fn

A B

fn

Figure 6: Axioms for free compact categories.

Remark 26. In particular, if C is the 2-category P ∗ generated by a 2-polygraph P ,
the compact 2-category A(C) is presented by the 3-polygraph Q such that

– Q0 = P0

– Q1 = { fn | f ∈ P1, n ∈ Z | }

– Q2 = { α0 | α ∈ P2 | ] }{ ηfn , εfn | fn ∈ Q1 | }

– Q3 = { lfn , rfn | fn ∈ Q1 | }

with
lfn : (fn−1 ⊗ εfn) ◦ (ηfn ⊗ fn) V fn−1

rfn : (εfn ⊗ fn) ◦ (fn ⊗ ηfn) V fn

and other cells have the obvious source and target. By Lemma 17, the poly-
graph Q is terminating and by Lemma 16 it is confluent since all its critical
pairs, which are of the form

B B

fn−1 A fn
and

fn B fn−1

A A

for some 1-cell fn, are joinable.

Lemma 27. With the notations of the preceding remark, if f1, . . . , fm and
g1, . . . , gn are parallel lists of composable morphisms of P ∗, then the 2-cells

α : f0
1 ⊗ . . .⊗ f0

m ⇒ g0
1 ⊗ . . .⊗ g0

n (14)
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in the underlying 2-category of Q which are normal forms (with respect to the
rewriting rules of Q) do not contain any 2-generator ηfk or εfk .

Proof. It is easy to show that a 2-cell α in Q∗ can be written as a composite
of morphisms of the form idf ⊗ β ⊗ idg where β is either a 2-cell of C or a
morphism of the form ηhk or εhk (see for example [Laf03]). Suppose that α
contains a 2-generator of the form εfk with k > 0. It can therefore be written
as a composite of the form

0 0. . .
α1

. . .
fk fk−1

. . .εfk

α2

. . .
0 0

The 2-cells α1 and α2 are noted with boxes for clarity and 0 stands for a 1-cell
whose winding number is 0. Since the only generators whose target contain a
1-cell of the form fk are ηk and ηk+1, the 2-cell α1 is necessarily of one of the
following forms:

0 0 fk 0 0. . . . . .
α2 α3

. . . . . .
fk

or

0 0. . .
α4

. . . ηfk . . .

fk−1

α2 α3

. . . . . .
fk

or

0 0. . .
α4

. . . ηfk+1 . . .

fk+1

α2 α3

. . . . . .
fk

The first case is impossible since we have supposed that all the winding numbers
of the 1-generators occurring in the source of α are 0 and k > 0. The second case
is not possible either since the morphism α would not be a normal form (the
rule lfk−1 could be applied). Therefore the 2-cell α contains a 2-generator ηfk+1 .
By using a similar argument, α also contains the 2-generator εfk+2 . So, by
induction, the 2-cell α would contain all the 2-generators εfk+2i with i ∈ N
and would therefore be a composite of an infinite number of generators. This
is absurd since the 2-cells in Q∗ are inductively generated. We deduce that α
does not contain a 2-generator of the form εfk with k > 0. Similarly, it does
not contain a 2-generator ηfk with k > 0. And the cases where k ≤ 0 are also
similar (we construct an infinite sequence of generators that α would contain,
with strictly decreasing winding numbers).

From this, we can deduce that the 2-cells (14) in bijection with the 2-cells

α : f1 ⊗ . . .⊗ fm ⇒ g1 ⊗ . . .⊗ gn
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of C, which shows that the embedding of P ∗ into Q∗ is full and faithful. More-
over, the argument can easily be generalized to any category C, not necessarily
generated by a 2-polygraph (but we will only make use of the case proved in
previous lemma):
Property 28. The components ηC : C → A(C) of the unit of the adjunction
between 2-categories and compact 2-categories are full and faithful.
This property formally explains why we can manipulate the cells of a 2-cate-
gory C into the “larger space” A(C).

4.3 Rotative 2-categories
The following property shows that the distinction between the source and the
target of a 1-cell in a compact 2-category is artificial.
Property 29. If C is a compact 2-category, the sets

Hom(f ⊗ g, h) ∼= Hom(g, f−1 ⊗ h)

are naturally isomorphic by the function

α 7→ (f−1 ⊗ α) ◦ (ηf ⊗ g)

Graphically,

f
B

g

A α C

h

7→

B g

A α C

f−1 h

And similarly, the sets

Hom(f ⊗ g, h) ∼= Hom(f, h⊗ g1)

are naturally isomorphic by the function

α 7→ (α⊗ g1) ◦ (f ⊗ ηg1)

In particular, for any pair of 1-cells f, g : A → B, the set Hom(f, g) is
isomorphic to Hom(B, f−1 ⊗ g). This shows that the notion of “input” and
“output” of 2-cells is fairly artificial in compact 2-categories. We investigate
here an alternative axiomatization of compact 2-categories, where 2-cells have
one “border” instead of having both a source and a target.

Given two 1-cells f : A → B and g : B → A in a compact 2-category C,
we write ρf,g for the canonical isomorphism, given by Property 29 and called
rotation, between Hom(A, f ⊗ g) and Hom(B, g ⊗ f2). Graphically,

ρf,g(

A
α

f
B
g

) =
α

B
g
A
f2
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(we sometimes simply write ρf when g is clear from the context). We also write

νf,hg : Hom(A, f ⊗ g ⊗ g−1 ⊗ h)→ Hom(A, f ⊗ h)

for the function, called hiding, which to every 2-cell α : A ⇒ f ⊗ g ⊗ g−1 ⊗ h
associates

νf,hg α = (f ⊗ εg ⊗ h) ◦ α

(we sometimes simply write νg when f and h are clear from the context). Graph-
ically,

νf,hg (

A
α

f
B
g
C
g−1
B
h

) =

A
α

f
B C B

h

Together with these functions, every compact 2-category C induces a struc-
ture of what we call a rotative 2-category consisting of

1. a category with formal adjoints: the underlying category with formal ad-
joints of C,

2. for every object A and endomorphism f : A → A of the category a set
R(f) of 2-cells, defined as R(f) = Hom(A, f) – we sometimes write α : f
to indicate that α ∈ R(f) and call f the border of the 2-cell α,

3. for every morphism f : A → B a distinguished 2-cell ηf : f−1 ⊗ f , called
the identity on f ,

4. an invertible function ρf,g : R(f⊗g)→ R(g⊗f2) called rotation for every
pair of composable arrows f and g,

5. a function ⊗A : R(f) × R(g) → R(f ⊗ g) called parallel composition for
every 1-cells f, g : A→ A,

6. a function νf,hg : R(f⊗g⊗g−1⊗h) called hiding for every 1-cells f : A→ B,
g : B → C and h : B → A

Moreover, these data are enough to recover the original compact 2-category:

Property 30. Given a rotative 2-categoryR induced by a compact 2-category C,
we define a compact 2-category D as follows:

– its underlying category with formal adjoints is the one of R,

– the 2-cells α : f ⇒ g are the elements of R(f−1 ⊗ g),

– vertical composition is given on two 2-cells α : f ⇒ g and β : g ⇒ h by

β ◦ α = νf
−1,h

g (α⊗ β)

– vertical identities are identity 2-cells of R,
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– horizontal composition of two 2-cells

α : f ⇒ g : A→ B and β : h⇒ i : B → C

is given by
α⊗ β = ρ−1

h−1,f−1⊗g⊗i(α⊗B (ρh−1,iβ))

– for any 1-cell f : A → B the units and counits ηf : B ⇒ f−1 ⊗ f and
εf : f ⊗ f−1 ⇒ A of the adjunctions are given by identities:

ηf = idf and εf = idf−1

The compact 2-category D defined as above is isomorphic to the compact
2-category C.

The notion of rotative 2-category can be axiomatized directly in a way such
that the category of rotative categories is equivalent to the category of com-
pact 2-categories. The notion of compact 2-category is conceptually nice since
it reformulates the concept of compact 2-category using operations which are
familiar to concurrency theory and game semantics, decomposing composition
in more atomic operations. It is also closely related to the concept of cyclic
operad [GK95]. For the lack of space, we did not include the full axiomatiza-
tion, the only thing we need to know here is that this concept is “equivalent”
to compact 2-categories, in the sense explained above. Its use is moreover not
fundamental in this work (we could have simply used compact 2-categories) but
it simplifies the algorithm for computing critical pairs given in Section 5.1 since
we do not have to handle both the source and target of 2-cells, but only their
border.

Remark 31. Suppose that C is a rotative 2-category. To every pair of two cells

α : f ⊗ g ⊗ h and β : i⊗ g−1 ⊗ j

we can associate a 2-cell α⊗f,h,i,jg β : h−2 ⊗ f ⊗ j ⊗ i2 defined by

α⊗f,h,i,jg β = νg((ρ−1
h−2,f⊗gα)⊗ (ρi,g−1⊗jβ))

Graphically,

α

f g h

⊗f,h,i,jg

β

i g−1 j

=
α β

h−2f j i2

The operations of rotation, composition and hiding can be recovered from this
operation as follows:
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– rotation: for every 1-cells f : A→ B and g : B → A and 2-cell α : f ⊗ g,

ρf,g(α) = ididB ⊗
B,B,f,g
B α

– composition: for every pair of 2-cells α : f : A→ A and β : g : A→ A,

α⊗A β = α⊗f,A,A,gA β

– hiding: for every 2-cell α : f ⊗ g ⊗ g−1 ⊗ h with f : A → B, g : B → C
and h : B → A,

νg(α) = α⊗f,h,A,Ag⊗g−1 idg−1

and moreover, we could have equivalently formalized the notion of rotative ca-
tegory using only this generalized composition operation instead of rotation,
composition and hiding. It is more concise, which is why we use it in the fol-
lowing, but leads to a less nice axiomatics.

Remark 32. Given a rotative 2-category R generated by a compact 2-cate-
gory C, the multicategory of contexts of R can be defined similarly to Defini-
tion 13, with the 1-cells of R as objects. Alternatively, this construction can
be recovered by restricting the multicategory of contexts of C to objects of the
form A⇒ f : A→ A for some 1-cell f : A→ A.

4.4 Compact polygraphs
A compact 2-polygraph P can be defined as in (8), where P ∗1 (and s∗0 and t∗0)
is generated by a free category with formal adjoints construction on the un-
derlying graph. However, since compact 2-categories are equivalent to rotative
2-categories, it will prove simpler to define a compact 2-polygraph as follows.

A compact 1-polygraph is a diagram

P0

i0

��

P1
s0

~~ t0~~
P ?0

in Set, where P ?0 = P0 and i0 is the identity (a compact 1-polygraph is therefore
the same as a 1-polygraph). Every such (poly)graph freely generates a category
with formal adjoints. We write P ?1 for the set of its morphisms, i1 : P1 → P ?1 for
the canonical injection and s?0 and t?0 for the morphisms such that s?0 ◦ i1 = s0
and t?0 ◦ i1 = t0.

Remark 33. The category (with formal duals) thus generated is isomorphic to
the category generated by the polygraph

P0

i0

��

(P1 × Z)
s′0

{{ t′0{{
P ∗0
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with

(s′0(f, n), t′0(f, n)) =
{

(s0(f), t0(f)) if n is even,
(t0(f), s0(f)) if n is odd.

A compact 2-polygraph is a diagram

P0

i0

��

P1
s0

~~ t0~~
i1

��

P2
b1

~~
P ?0 P ?1

s?0oo

t?0

oo

(15)

in Set, consisting of a compact 1-polygraph together with the category with
formal duals it generates, along with a set P2 and a function b1 : P2 → P ?1 such
that s?0 ◦ b1 = t?0 ◦ b1. Every such polygraph generates a rotative 2-category
whose set of 2-cells is written P ?2 . We write i2 : P2 → P ?2 for the canonical
injection and b?1 for the morphism such that b?1 ◦ i2 = b1. A compact 3-polygraph
is a diagram

P0

i0

��

P1
s0

~~ t0~~
i1

��

P2
b1

~~
i2

��

P3
s2

~~ t2~~
P ?0 P ?1

s?0oo

t?0

oo P ?2
b?1oo

in Set, consisting of a compact 2-polygraph together with the rotative 2-category
it generates, along with a set P3 and two functions s2, t2 : P3 → P ?2 such that
s2 ◦ b?1 = t2 ◦ b?1.

We write cPoln for the category of compact n-polygraphs (for n = 0, 1, 2, 3).

4.5 The multicategory of contexts of a compact 2-category
4.5.1 Concrete representation of compact nets

The construction of polygraphic nets can be adapted to the setting of rota-
tive 2-categories (and compact 2-categories). As explained in Remark 32, a
multicategory of contexts of a compact 2-category can be defined and it can
be constructed concretely using nets. We give here a variant of this construc-
tion which is suitable for algorithmically manipulating morphisms in compact
2-categories and will be used in Section 5.1 to give an algorithm for computing
critical pairs. In particular, composition being done by a pushout construction,
there is no need to keep track of winding numbers of inner 1-generators (those
which do not belong to any border). Moreover, instead of allowing renaming
of generators we define composition as a partial operation (a similar situation
occurs in λ-calculus if we don’t allow α-conversion: the β-reduction of the term
(λx.M)N is defined only if x does not occur as a free variable in N , and usual
composition can be recovered by quotienting terms modulo α-conversion later
on).
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We suppose fixed throughout the section signature which a compact 2-poly-
graph S of the form (15) that we call the signature. We also suppose that we
are given three denumerable sets whose elements are called respectively 0-, 1-
and 2-generators.

Borders. A winding path p is a list of odd length of the form

p = x0, (y1, w1), x1, (y2, w2), x2 . . . , xn−1, (yn, wn), xn (16)

where xi are 0-generators, yi are 1-generators, and wi ∈ Z are winding numbers,
together with a function τp which to every xi associates an element τp(xi) of S0
and to every yi associates an element τp(xi) of S1, their types, such that for
every index i > 0

τp(xi−1) = s0 ◦ τp(yi) and τp(xi) = t0 ◦ τp(yi)

By extension, for any winding path p, we write τ(p) for the 1-cell of S defined
by τ(x0) = idτp(x0) and

τ(x0, (y1, w1), x1, . . . , (yn, wn), xn) = τp(y1)w1 ⊗ . . .⊗ τp(yn)wn

The 0-generators xi−1 and xi are called respectively the source and the target
of the 1-generator yi; the 0-generators x0 and xn are also called respectively
the source and the target of the path. We write respectively p0 = {xi} and
p1 = {yi} for the set of 0- and 1-generators occurring in a winding path p. A
path p is a list of odd length of the form

p = x0, y1, x1, y2, x2 . . . , xn−1, yn, xn

where xi are 0-generators and yi are 1-generators, together with a type func-
tion τp defined similarly to winding paths. Given two (winding) paths p1 and p2
such that the target of p1 is equal to the source of p2, we write p1 · p2 for
their concatenation. Given a winding path p, we write W (p) for the path ob-
tained from p by forgetting the winding numbers in p. Similarly, given a 1-cell
f = fw1

1 ⊗ . . . ⊗ fwnn of S, we write W (f) for the 1-cell f1 ⊗ . . . ⊗ fn. Given a
winding path p of the form (16), we write pw, with w ∈ Z, for the winding path

pw = x0, (y1, w1 + w), x1, (y2, w2 + w), x2 . . . , xn−1, (yn, wn + w), xn
A (winding) border b is a (winding) path whose source and target are equal.
A (winding) border of the form (16) is linear when all the 0-cells and all the
1-cells occurring in it are distinct (excepting the first and last 0-cells which are
required to be equal): for every index i such that 0 < i < n, xi 6= xi+1 and
yi 6= yi+1.

Compact nets. A compact net N is a finite set N of 2-generators together
with a function τN which to every element z of N associates a type τN (z) ∈ S2
and a function bN which to every element z of N associates a (non-winding)
border bN (z) such that τ(bN (z)) = W (b1(τN (z))). A 1-cell y in the border of a
2-cell z is an input of z if the winding number associated to the corresponding
1-cell in b1(τN (z)) is odd and an output otherwise.
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The multicategory of nets. We define the multicategory KS as the smallest
multicategory, whose objects are winding borders and whose operations are nets,
such that

– for every 2-generator α : f in the signature, every linear winding border b
such that τ(b) = f and every net Kα = {z} with bKα(z) = W (b) and
τKα(z) = α, the border b is an object of KS and the net Kα is an operation
of KS(; b),

– for every object b, the empty net, written idb, is an operation of KS(b; b),

– for every objects b1 = p1 · p · p2 and b2 = p3 · p · p4, such that the sets

(p1)0 ∩ (p3)0 (p1)0 ∩ (p4)0 (p2)0 ∩ (p3)0 (p2)0 ∩ (p4)0

are all included in (p)0 and the sets

(p1)1 ∩ (p3)1 (p1)1 ∩ (p4)1 (p2)1 ∩ (p3)1 (p2)1 ∩ (p4)1

are all included in (p)1 (i.e. all unbound 0- and 1-generators in b1, in the
sense defined below, are distinct from those in b2), the empty net, written
⊗p1,p2,p3,p4
p , is an operation of KS(b1, b2; p−2

2 · p1 · p4 · p2
3).

Given an operation K : b1, . . . , bn V b, a k-generator (with k = 0, 1) is bound
when it is in (bi)k ∩ (b)k for some index i and unbound otherwise. Suppose that
we are moreover given n operations

Ki : b11, . . . , b
ki
n V bi

such that the unbound generators of the borders bi (with respect to K) and the
unbound variables of the bij (with respect to Ki) are all pairwise distinct, and
moreover the 2-generators of K and of the Ki are all pairwise distinct. Their
composition K ◦ (K1, . . . ,Kn) is defined on 2-cells as

K ◦ (K1, . . . ,Kn) = K ∪K1 ∪ . . . ∪Kn

and by a coproduct for τK◦(K1,...,Kn) and bK◦(K1,...,Kn).
A renaming of generators r is an function mapping 0-, 1- and 2-generators

to 0-, 1- and 2-generators respectively. Every renaming induces an obvious
morphism on borders and nets that we still write r. Given two i-generators x
and x′, we sometimes write x 7→ x′ for the renaming r which is the identity
excepting on x where r(x) = x′. Two operations borders b and b′ are α-equivalent
when there exists an injective renaming r such that b′ = r(b) and two operations
K : b1, . . . , bn V b and K ′ : b′1, . . . , b′n V b′ are α-equivalent when there exists
an injective renaming r such that K ′ = r(K), b′ = r(b) and b′i = r(bi) for
every index i. These relations are equivalence relations and we consider objects
and operations of KS modulo these equivalence relations. It is simple to check
that composition is a well-defined total operation. In particular, it is total
because the nets we consider involve a finite number of generators and the sets
of generators are supposed to be denumerable, so we can always generate “fresh”
generators.
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Example 34. Consider the signature of symmetries defined in the Example 2
(seen as a compact 2-polygraph). We consider the net N representing the mor-
phism γ ◦ γ whose graphical representation is

10
∗0

11

γ0

∗1 12 ∗2 13 ∗3
γ1

14

∗4
15

which is defined by

N2 = {γ0, γ1} N1 = {10, 11, . . . , 15} N0 = {∗0, ∗1, . . . , ∗4}

with τN (γi) = γ, τN (1i) = 1, τN (∗i) = ∗,

bN (γ0) = ∗3, 11, ∗0, 10, ∗1, 12, ∗2, 13, ∗3 bN (γ1) = ∗3, 13, ∗2, 12, ∗1, 14, ∗4, 15, ∗3

The following are operations in KS :

N : V ∗3, (11,−1), ∗0, (10,−1), ∗1, (14, 0), ∗4, (15, 0), ∗3 (17)

N : V ∗0, (10,−1), ∗1, (14, 0), ∗4, (15, 0), ∗3, (11, 1), ∗0 (18)

N : ∗2 V ∗3, (11,−1), ∗0, (10,−1), ∗1, (14, 0), ∗4, (15, 0), ∗3 (19)

Suppose that we are given a net N : b1, . . . , bn V b. A 1-generator of this
net is an input if it occurs in one of the bi (resp. in b) with an even (resp. odd)
winding number and an output if it occurs in one of the bi (resp. in b) with
an odd (resp. even) winding number. It can be shown that a 1-generator of N
occurs at most twice in the bi or b, once as an input and once as an output.

Remark 35. A 1-generator can occur twice in the border of a net (apart from
being both at the beginning and at the end of the border), i.e. the multicate-
gory KS may contain operations with non-linear winding borders. For example,
consider the theory of monoids given in Example 1. The morphism η ⊗ η can
be represented by the net N pictured as

η0 η1∗0
10 11

with type N : V ∗0, (10, 0), ∗0, (11, 0), ∗0.
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Given an operation N : b1, . . . , bn V b, we sometimes write N2 for the set of
2-cells of N , and N1 and N0 for the sets of 1- and 0-cells respectively occurring
either in the border bN (z) of a 2-generator z of N or in b or in one of the bi.
A net M is distinct from a net N if Mi ∩ Ni = ∅, with i = 0, 1 or 2. A
net M is included in a net N , what we write M ⊆ N , when Mi ⊆ Ni, for every
cell x ∈ Mi, τM (x) = τN (x), with i = 0, 1 or 2, and for every 2-cell z ∈ M2,
bM (z) = bN (z).

Connected nets. Two 2-cells of a net N are immediately connected whenever
they share 1-generators on their border, i.e. (bN (z1))1∩(bN (z2))1 6= ∅. They are
connected when they are transitively immediately connected. The equivalence
classes of 2-generators of N with respect to this relation are called connected
components. A net N : b1, . . . , bn V b is connected when all its 2-generators are
in the same connected component and moreover every 0-generator of N occurs
in exactly one of the bi or b (this implies in particular that the bi and b are linear
winding paths). For instance, in Example 34, the net (17) is not connected but
the net (19) is.

4.5.2 Operations on nets

Tensoring. Suppose that M : b1, . . . , bn V b and N : c1, . . . , cn V c are two
disjoint nets, with the winding paths b and c respectively of the form

b = x0, (y1, w1), x1, (y2, w2), x2 . . . , xn−1, (yn, wn), xn
and

c = x′0, (y′1, w′1), x′1, (y′2, w′2), x′2 . . . , x′n′−1, (y′n′ , w′n′), x′n′
Given two indices i and j such that w′j = wi − 1, we write

M ⊗
yi=y′j

N : b1, . . . , bn, c1, . . . , cn V d

where
d = b′′−2 · b′ · c′′ · c′2

with

b = b′ · (xi−1, (yi, wi), xi) · b′′ and c = c′ · (x′j−1, (y′j , w′j), x′j) · c′′

for the net obtained as the image of the (necessarily disjoint) union of the netsM
and N under the renaming r defined by

x′j−1 7→ xi−1 y′j 7→ yi x′j 7→ xi

Graphically, this corresponds to the extended form of composition of morphisms
which was introduced in Remark 31:

M

b′
xi−1

ywi
i

xi

b′′

⊗
yi=y′j

N

c′
x′j−1

y′j
w′

j

x′i
c′′

=
M M

b′′−2b′ xi−1

xi

c′ c′′2
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Remark 36. This operation can easily be extended in a similar way to the case
where yi occurs in one of the bi instead of b (and we still use the same notation
for this operation).

Rotating. Suppose that N : b1, . . . bn V b is a net with b of the form

b = x0, (y1, w1), x1, (y2, w2), x2, . . . , xn−1, (yn, wn), xn
We write ρ1(N) : b1, . . . bn V b′ for the net N (in which only the border has
been changed) with

b′ = x1, (y2, w2), x2, . . . , xn−1, (yn, wn), xn, (y1, w1 + 2), x1

and ρ−1(N) : b1, . . . bn V b′ for the net N (in which only the border has been
changed) with

b′ = xn−1, (yn, wn), xn, (y1, w1), x1, . . . , xn−2, (yn−1, wn−1), xn−1

Graphically,

ρ1(
N

y1 y2 . . . yn

) =
N

y2 . . . yn y1

More generally, we write ρ0(N) = N and for every n ∈ Z, ρn+1(N) = ρ1(ρn(N))
and ρn−1(N) = ρ−1(ρn(N)). Again a similar rotation operation can be defined
on internal borders and we write ρni (N) for the net N where the border bi has
been rotated n times (with n ∈ Z).

Hiding. Suppose that N : b1, . . . bn V b is a net with b of the form

b = b′ · (xi−1, (yi, wj), xi) · b′′ · (xj−1, (yj , wj), xj) · b′′′

with wj = wi − 1. We write

ν
yi=yj

(N) : b1, . . . bn, b
′′−1 V b′ · b′′′

for the image of the net under the renaming defined by

xj−1 7→ xi−1 yj 7→ yi xj 7→ yi

Graphically,

ν
yi=yj

(
N

b′
xi−1

yi

xi

b′′
xj−1

yj

xj

b′′
) =

N

b′
xi−1 b′′ xj

b′′

This operation can easily be extended in a similar way to the case where both yi
and yj occur in some internal border bk of the net instead of the external border b
(and we still use the same notation for this operation).
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Remark 37. The notation for the previous operations is a bit imprecise because
a same 1-generator might occur multiple times (actually at most twice) in the
borders of a net. So, in order to be really precise we would have to distinguish
between occurrences of a 1-generator in the border. This can be done but it
would complicate very much the notations which is why we chose not to handle
this precisely here.

4.5.3 Critical pairs

A critical pair between two nets is defined by adapting Definition 19 to this
framework (we see the two nets as left members of two rewriting rules).

Definition 38 (Critical pair). A critical pair between two nets

M : b1, . . . , bn V b and N : c1, . . . , cn V c

is a net
P : d1, . . . , dn V d

satisfying

– inclusion:
M ⊆ P and N ⊆ P

– non-triviality:
M2 ∩N2 6= ∅

– minimality: for i = 0, 1 or 2,

Mi ∪Ni = Pi

Notice that if P is a critical pair of two nets M and N , then every rotation
of P is also a critical pair of those. Our algorithm will compute all the critical
pairs of the two nets up to α-equivalence and rotation (there are a finite number
of equivalence classes up to theses equivalences).

5 Computing critical pairs
We now sketch the unification algorithm, which computes critical pairs for
3-polygraphs. In order to keep the paper with a reasonable size, we have de-
cided to postpone the precise description of the algorithm along with a proof of
correctness in future works. However, we felt that it was important to give a
rough idea of how the algorithm works because it motivates the introduction of
the previous theoretical setting.

It is first important to understand what this algorithm computes exactly.
Suppose given a 3-polygraph P containing two 3-generators r1 : αV α′ : f ⇒ g
and r2 : β V β′ : h⇒ i from which we want to compute the generated critical
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pairs. It’s underlying 2-polygraph S generates a 2-category C = S∗, contain-
ing α and β as 2-cells. The canonical full and faithful embedding C → A(C) of C
into the free compact 2-category A(C) it generates (see Section 4) enables us to
see α and β as 2-cells α0 : f0 ⇒ g0 and β0 : h0 ⇒ g0 of A(C). In turn, these mor-
phisms can be seen as nullary contexts Kα : V f−1⊗g0 and Kβ : V h−1 ⊗ i0 in
the multicategory KA(C) of compact contexts in C. Our algorithm will therefore
compute the “critical pairs” between α and β in the multicategory KA(C): it
computes a finite number of contexts Ci, which generate all the critical pairs
induced by α and β, and are minimal such. More explicitly, given a critical
pair γ : k ⇒ l of α and β, the corresponding compact context Kγ : V k−1 ⊗ l0
is of the form

K ◦ Ci ◦ (K1, . . . ,Kn) : V k−1 ⊗ l0 (20)

for some computed critical pair Ci, and conversely, every context of the form (20)
corresponds to a 2-cell γ : k ⇒ l of C, which is a non-trivial unifier of α and β.

5.1 A unification algorithm
5.1.1 Auxiliary functions

In this section, we introduce some operations which will be used by the unifica-
tion algorithm.

It is easy to remark that nets N occurring in KS are such that if a 0- or
1-generator occurs in the border of two 2-generators z1 and z2 then their types
with respect to both 2-generators coincide (but not their winding numbers in
general) and write τN (x) and τN (y) for the type of such a 0- or 1-generator x
or y. Moreover, given a 1-cell y occurring in such a net N , it occurs in the
border of at most two 2-cells z1 and z2, once as an input and once as an output.
We write fatherN (y) (resp. sonN (y)) for the 2-cell z such that y occurs in its
border as an output (resp. as an input); by convention we write fatherN (y) = ⊥
(resp. sonN (y) = ⊥) if there is no such 2-cell. If N : b1, . . . , bn V b is a net
and y is a 1-generator such that fatherN (y) = ⊥ (resp. sonN (y) = ⊥) then it
can be shown that y occurs in some bi with an even (resp. odd) winding number
of in b with an odd (resp. even) winding number.

In order to describe the algorithm, some other simple auxiliary functions
will be needed.

– Given a 2-generator α of the signature, the function fresh_atomic(α) re-
turns an atomic 2-net (in a sense similar to the definition of Section 2.3.3)
whose only 2-generator is of type α and whose generators are fresh.

– The function border_index(b, y) gives the index of a 2-generator y in a
border b.

– The function border_ith(b, i) gives the i-th 2-generator of a border b.

– The functionM⊗y1=y2 N returns the net which is the disjoint union ofM
and N together with the renaming described in Section 4.5.2.
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– The function put_first(M,y) rotates the borders of M in order to put the
2-generator y in first position when it occurs in a border.

– The function winding(b, y) gives the winding number associated to a 2-ge-
nerator y in a border b.

– The function merging(M,y1, y2) gives the renaming r described in Sec-
tion 4.5.2, so that r(M) = νy1=y2(M).

5.1.2 The algorithm

Suppose that we are given two connected nets

M : b1, . . . , bn V b and N : c1, . . . , cn V c

for which we want to compute the unifiers. An unification position of is a
pair (z1, z2) ∈ N ×M of pairs of 2-cells of N and M , often written z1

?= z2.

States of the algorithm. We now describe our unification algorithm. A
state

S = S0, S1, S2, U
M
0 , UM1 , UM2 , UN0 , U

N
1 , U

N
2 , (P : d1, . . . , dn V d)

of the algorithm is a tuple of lists such that the elements of Si and Ui are
elements of Ni × Pi, P is a net and the di and d are borders (notice that P
doesn’t always need to be a proper context). Informally, P is the critical pair
which is being constructed, the Si are the i-generators to unify (called unification
targets, constituted of a pair of i-generators of N and P ) and the UMi (resp. UNi )
are the i-generators already unified inM (resp. in N) – they encode the injection
of M (resp. N) into P by a pair of i-generators of M (resp. N) and P . We
write ∅ of the empty list and Si = (x1

?= x2) :: S′i (resp. Ui = (x1 = x2) :: U ′i)
to indicate that the list Si (resp. Ui) is not empty with (x1, x2) as head and S′i
(resp. U ′i) as tail. Given a renaming r, we write S[r] for the for the state where
every generator x has been replaced by r(x), excepting in the first component
of the elements of Si and the Ui which are left unchanged (i.e. we rename the
cells of P ). An initial state of the algorithm is a state of the form

S = ∅, ∅, (z1
?= z2) :: ∅, UM0 , UM1 , UM2 , ∅, ∅, ∅, (M : b1, . . . , bn V b)

where (z1, z2) is a unification position of M and N and UMi is a list whose
elements are the couples (x = x) for some i-generator x occurring in M .

The algorithm. Our algorithm consists of an iteration of rules which modify
the components of S (starting from an initial state). We write Si := S′i to
indicate that the next iteration will be done with the state where Si has been
replaced by S′i (the other elements of the state remaining unchanged), etc. The
execution is non-deterministic, a failure of a branch is indicated by Failure, and
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the result is the set of results given by non-failed branches (non-deterministic
executions are indicated by “either . . . or” or “some” constructions). The
algorithm proceeds by executing the first rule which applies and iterating until
either a value is returned (by rule Success) or a Failure is triggered. A semi-
formal description of the algorithm is as follows:

1. Duplicate-0:
if S0 = (x1

?= x2) :: S′0 and (x1 = x′2) ∈ UN0 then
if x′2 = x2 then S0 := S′0 else Failure

2. Duplicate-1:
if S1 = (y1

?= y2) :: S′1 and (y1 = y′2) ∈ UN1 then
if y′2 = y2 then S1 := S′1 else Failure

3. Duplicate-2:
if S2 = (z1

?= z2) :: S′2 and (z1 = z′2) ∈ UN2 then
if z′2 = z2 then S2 := S′2 else Failure

4. Typecheck-2:
if S2 = (z1

?= z2) :: S′2 then
if τP (z1) = τP (z2) then S2 := S′2 else Failure

5. Propagate-0:
if S0 = (x1

?= x2) :: S′0 then
S0 := S′0

6. Propagate-1:
if S1 = (y1

?= y2) :: S′1 then
S1 := S′1
if fatherN (y1) 6= ⊥ then

let z1 = fatherN (y1) in
if fatherP (y2) 6= ⊥ then

let z2 = fatherP (y2) in
U1 := (y1 = y2) :: U1

S2 := (z1
?= z2) :: S2

else
either
let (A : V b′) = fresh_atomic(τN (z1)) in
let z2 = the unique 2-generator of A in
let i = border_index(bN (z1), y1) in
let y′2 = border_ith(bA(z2), i) in

(P : b1, . . . , bn V b), r := P ⊗y2=y′2 A
S := S[r]

or
(P : b1, . . . , bn V b) := put_first(P, y2)
let e = the border bi or b in which y2 occurs in
let y′2 = some element of e in
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if winding(e, y′2) 6= winding(e, y2)− 1 then Failure
let r = merging(P, y2, y

′
2) in

S := S[r]
if sonN (y1) 6= ⊥ then
similar to the previous case

7. Propagate-2:
if S2 = (z1

?= z2) :: S′2 then
let x0, y1, x1, . . . , xn−1, yn, xn = bN (z1) in
let x′0, y′1, x′1, . . . , x′n−1, y

′
n, x
′
n = bP (z2) in

S2 := S′2
UN2 := (z1 = z2) :: UN2
S1 := (y1

?= y′1) :: . . . :: (yn
?= y′n) :: S1

S0 := (x1
?= x′1) :: . . . :: (xn

?= x′n) :: S0

8. Success

In the end of the algorithm, every resulting state S obtained as a result
contains a net P : d1, . . . , dn V d which is a unifier of M and N . In these
states, the lists UMi = (xi1 = xi1

′) :: . . . :: (xin = xin
′) induces a morphism of

nets iM : M V P which to every i-generator xik associates xik
′ which is the

injection of M into P (the injection iN : N V P is defined similarly using the
lists UNi ).

The purpose of this paper was to introduce the structures necessary to ma-
nipulate morphisms in categories generated by polygraphs. We will detail the
algorithm in future works and prove that

Claim 39. The algorithm terminates on every pair of two nets M and N and
every unifier of the two nets is computed by the algorithm (up to isomorphism
and rotation).

5.1.3 An example

The way our algorithm works is best understood by an example. We suppose
fixed a signature consisting of

– one 0-generator ∗,

– one 1-generator 1,

– three 2-generators

δ : 1→ 1⊗ 1 µ : 1⊗ 1→ 1 σ : 1→ 1

respectively depicted as

δ µ σ
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10∗0 ∗2
δ0

11 12
σ0 ∗1 σ1

13 14

10∗0 ∗2
δ0

11 12
σ0

∗1

σ1

13
14
110

µ1

∗6
111

10∗0 ∗2
δ0

11 12
σ0

∗1

σ1

13
14
112

σ4

110
µ1

∗6
111

10∗0 ∗2
δ0

11 12
σ0

∗1
σ1

13 14
µ1

111

(1) (2) (3) (4)

Figure 7: Various states of the unifier during the execution.

Suppose moreover that we want to unify two morphisms corresponding respec-
tively to the nets M and N whose graphical representation are respectively

10∗0 ∗2
δ0

11 12
σ0 ∗1 σ1

13 14

and

15 16

σ2 σ3

17
∗3

18
µ0

∗4 ∗5
19

We now describe the main steps during the execution of the algorithm starting
from the unification position σ0

?= σ2. We write D-1 as a short notation for the
rule Duplicate-1, etc.

We start from the “unifier” P , pictured as in (1) of Figure 7 which is equal
to M . There is a trivial injection iM : M V P (the identity) and our algorithm
will “grow” it until there is also an injection iN : N V P . The rule T-2
first checks that the types of σ0 and σ2 coincide, which is the case (they are
both equal to σ). Then, the rule P-2 sets iN (σ2) = σ0 and propagates the
unification by creating two new unification targets 15

?= 11 and 17
?= 13. The

unification target 15
?= 11 leads by P-1 to setting iN (15) = 11, and iN (∗4) = ∗0

and iN (∗3) = ∗1 by P-0. Since sonN (17) = µ0, the unification target 17
?= 13

leads to adjoining a fresh atomic 2-net of type µ to P by P-1 and the state now
contains the “unifier” P , pictured in (2) of Figure 7, together with the unification
target µ0

?= µ1. By P-2, this leads to setting iN (µ0) = µ1 and creates two new
unification targets 19

?= 111 and 18
?= 110. The first unification target will

eventually lead to setting iN (19) = 111 by P-1, and iN (∗5) = ∗6 by P-0. The
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unification target 18
?= 110 is more subtle since it will nondeterministically lead

to two scenarios by rule P-1 because fatherN (18) = σ3 and fatherP (110) = ⊥:

1. A fresh atomic 2-net of type σ is adjoined to P which becomes (3) of
Figure 7 and the unification target remains iN (18) = 110. By the P-i rules,
this eventually leads to setting iN (18) = 110, iN (σ3) = σ4 and iN (16) =
112. And the P thus computed is a unifier of M and N .

2. The “unifier” P becomes ν14=110(P ), that is (4) of Figure 7 and the uni-
fication target becomes 18

?= 14. By the P-i rules, this eventually leads
to setting iN (18) = 14, iN (σ3) = σ1 and iN (16) = 12. And the P thus
computed is a unifier of M and N .

The other unifiers of M and N are

δ
σ σ σ

µ

δ
σ

σ

σ

δ
σ σ σ

µ

and are computed by starting the algorithm on the unification positions σ3
?= σ0,

σ3
?= σ1 and σ2

?= σ1 respectively.

5.1.4 Remarks

In this section we give a few remarks about our algorithm.

The need for contexts. The example given in Section 5.1.3 is simple enough
not to really need the structure of multicategory. However, the example given
in Figure 3 illustrates why we need it in the general case.

The restriction to connected nets. For simplicity, we have restricted the
algorithm to the case where both nets are connected. This is necessary in order
for the propagation steps to explore the whole net N . We believe that it can
be extended to the general case by using more general unification positions
with multiple unification targets. Moreover, this extension does not seem really
necessary for now since all the polygraphic rewriting systems the author is aware
of can be expressed using only connected nets in the left member of the rules.

Confluence on metaterms. As explained before, in order to compute the
unifier of two morphisms in a 2-category C, we embed this category into a “bigger
universe” – the multicategory of compact contexts KA(C) – and compute the
critical pairs in KA(C). The formal justification for this is that the embedding
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of C into A(C) is full and faithful, so we can recover all the critical pairs in C
from the critical pairs in KA(C), which are in finite number. For example, the
morphism on the right of Figure 2 in the free compact 2-category can be used
to generate all the morphisms on the form depicted on the left of the figure. In
this sense, they can be thought as generating families of critical pairs.

In order study local confluence of rewriting systems, it would be tempting
to study the joinability of critical pairs directly in the free compact 2-category.
Unfortunately, the joinability of all critical pairs in the 2-category does not imply
the joinability of critical pairs in the free compact 2-category. For example,
consider the polygraph corresponding to the theory of symmetrie described in
the introduction and in Example 2. It can be shown to be confluent [Laf03],
however the critical pair shown on the right of Figure 2 is not joinable in the
multicategory of compact contexts (however all the critical pairs it generates
which are depicted on the left are joinable). This is very similar to the situation
in the rewriting systems of calculi for explicit substutions [Kes07]: some of
those systems are confluent on terms, but not confluent if we consider terms
with meta-variables.

Recovering the usual unification algorithm. Burroni has shown [Bur93]
that there is a forgetful functor U from equational term-theories to polygraphic
theories, which to equational theory on a term-signature (Σn) associates a poly-
graph S containing: one 0-generator ∗, one 1-generator 1 : ∗ → ∗, a 2-genera-
tor αni : n→ 1 for every element αni of Σn and two 2-generators

δ : 1→ 2 and ε : 1→ 0 and γ : 2→ 2 (21)

(which should be seen as explicit duplication, erasure and swapping of variables)
with the relations corresponding to the relations of the equational term-theory,
equations expressing that the generators (21) satisfy the laws of commutative
comonoids, and equations expressing the compatibility of the generators (21)
with operations coming from the (Σn). The generators (21) are usually respec-
tively pictured as

Example 40. Suppose that (Σn) is the signature of monoids with multiplica-
tion m ∈ Σ2. In a context with two variables x0 and x1, a morphism in the
polygraphic theory corresponding to the term m(m(x1, x0), x0) is

m
m
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and for example, the relation expressing compatibility of µ with m is

m
V

m m

(which is the usual bialgebra law).

This construction allows us to embed term rewriting systems into poly-
graphic rewriting systems and thus to compare the usual unification algorithm
for terms [BN99] with our algorithm on polygraphic nets. We conjecture that
our algorithm can be seen in this case as a “small step” simulation of a variation
of the usual unification algorithm.

5.2 Toy implementation
We have made a toy implementation of the algorithm described in Section 5.1.2
in less than 2000 lines of OCaml. It has been used to successfully recover the
unifiers of many rewriting systems defined in [Laf03] and, even though we did
not particularly focus on efficiency, the execution times are good (typically less
than a second on a desktop computer and negligible compared to the compilation
time of the produced LATEX file) because the morphisms involved in typical
polygraphic rewriting systems are usually small, even though they can generate
a large number of critical pairs.

6 Further directions
We have introduced a representation of morphisms generated by 2-polygraphs
which is suitable to manipulate them with a computer and have proposed an
algorithm to compute the unifiers of two morphisms in such categories.

We believe that there are many open research tracks left out in this paper,
the most obvious one being the proof of correctness and termination of the
unification algorithm: our focus here was mainly to establish the main struc-
tures necessary to formulate it and we plan to address seriously this topic on
subsequent works.

Compact rewriting systems. The use of compact 2-categories seems to be
very promising, since it provides a bigger world in which unification is simple
to handle (there a finite number of critical pairs in particular). Moreover, left
and right members of rules in polygraphic rewriting systems are morphisms
in 2-categories, but we can extend the framework to have “compact rewriting
rules” whose left and right members are morphisms in compact 2-categories.
There is no known finite convergent polygraphic rewriting system presenting
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the category Rel of finite sets and relations [Laf03] (which corresponds to the
theory of qualitative bicommutative bialgebras [Mim09]). We conjecture that
such a system does not exist. However, we believe that it would be possible to
have a finite convergent compact polygraphic rewriting system containing rules
such as

γ

δ

µ

γ

V

δ

γ

γ

µ

where γ is the generator for the symmetry, δ is the comultiplication and µ is
the multiplication. We plan to use our unification algorithm in order to de-
fine and study such a rewriting system. It would also be interesting to adapt
the techniques developed by Guiraud to show termination of polygraphic sys-
tems [Gui06a] .

Parametric polygraphs. In order to describe those free compact 2-catego-
ries, we had to modify the definition of the notion of polygraph by replacing the
free category construction by a free category with formal adjoints construction,
and the free 2-category construction by a free compact 2-category construction.
This suggest that it might be interesting to investigate a more modular notion
of polygraph, parametrized by a series of adjunctions, which could be used to
generate free n-categories with properties (e.g. compact categories, groupoids,
etc.).

Towards higher dimensions. Since the notion of polygraphic rewriting sys-
tem can be generalized to any dimension, we would like to also have a gene-
ralization of rewriting theory to higher dimensions using polygraphic rewriting
systems. This would require a more abstract and general formulation of the
unification techniques that are used here, in order to be able to extend them
easily to higher dimensions.

A practical use of this work. In some sense, our work can be considered
as an algebraic study of the notion of a bunch of operators linked by planar
wires. We believe that this point of view should be taken seriously and we plan
to investigate a possible application of the polygraphic rewriting techniques to
electronic circuits. This could namely provide a nice theoretical framework in
which we could express and study optimization of integrated circuits.
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Thanks. I would like to thank John Baez, Albert Burroni, Jonas Frey, Yves
Guiraud, Martin Hyland, Yves Lafont, Paul-André Melliès and François Métayer
for all the enlightening discussions we had on the subject of this paper.
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