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Abstract. Relational presheaves generalize traditional presheaves by
going to the category of sets and relations (as opposed to sets and func-
tions) and by allowing functors which are lax. This added generality is
useful because it intuitively allows one to encode situations where we have
representables without boundaries or with multiple boundaries at once.
In particular, the relational generalization of precubical sets has natural
application to modeling concurrency. In this article, we study categories
of relational presheaves, and construct realization functors for those. We
begin by observing that they form the category of set-based models of a
cartesian theory, which implies in particular that they are locally finitely
presentable categories. By using general results from categorical logic,
we then show that the realization of such presheaves in a cocomplete
category is a model of the theory in the opposite category, which allows
characterizing situations in which we have a realization functor. Finally,
we explain that our work has applications in the semantics of concur-
rency theory. The realization namely allows one to compare syntactic
constructions on relational presheaves and geometric ones. Thanks to
it, we are able to provide a syntactic counterpart of the blowup opera-
tion, which was recently introduced by Haucourt on directed geometric
semantics, as way of turning a directed space into a manifold.
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1 Introduction

Presheaves. The notion of presheaf is omnipresent in modern mathematics and
theoretical computer science. For instance, simplicial sets are at the heart of
modern algebraic topology [27] and higher category theory [24], and cubical sets
are central in modeling truly concurrent processes through the notion of higher
dimensional automaton [12,30] or achieving constructive approaches to univalent
type theory [5] to name a few of the myriad of occurrences of those. Here, we
will be mostly interested in their ability to model transition systems, such as
those arising from computational processes, concurrent ones in particular.
Formally, a presheaf is a functor P : C°? — Set, which can be understood as
encoding algebraically a geometric object. Namely, an object ¢ of C abstractly
describes a shape, the maps of C describe the face operations, and the sets P(c)
encode the elements of shape ¢. Moreover, if we have a functor C — Top which
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describes how to associate an actual topological space to each abstract shape, we
have an induced canonical functor Psh(C) — Top, called the geometric realiza-
tion, which associates a topological space to any presheaf, and this construction
actually generalizes to any cocomplete category in place of Top [26]. Above, the
notation Psh(C) denotes the category of presheaves over C and natural trans-
formations between those. Such a category is always a Grothendieck topos (with
trivial topology), and thus has very nice properties: it is always cocomplete (it is
in fact the free cocompletion of C), complete, cartesian closed, has a subobject
classifier, and so on.

As a simple example, consider the following category G with two objects and

two non-trivial morphisms:
S

G = 0 :t§ 1

A presheaf P : G°? — Set precisely corresponds to a (directed) graph with P(0)
as set of vertices, P(1) as set of edges, the maps P(s), P(t) : P(1) — P(0)
respectively associating to each edge its source and target. Moreover, if one
considers the functor G — Top sending 0 to a point and 1 to an interval, the
image of s and ¢ respectively being the inclusion of the point into the endpoints
of the interval, the geometric realization functor Psh(G) — Top associates to a
graph the corresponding topological graph.

Presheaves to relations. In order to be able to take into account some more
situations, it is natural to generalize presheaves by replacing the category Set by
some other category V [22]. We will refrain ourselves from adopting such a general
point of view here, and will be mostly interested in the case where V = Rel,
which allows accounting for situations where some elements of given shape have
no boundary, or multiple boundaries. For instance, consider the two “graphs”

below:
z1

b
z a ybl/ L>yil/
: ’ Y2
bz\/“z}’ %22

On the left, we have figured a graph G : G°? — Set with G(0) = {z,y, 21, 22},
G1(1) = {a,b1,b2}, G(s)(a) = z, G(t)(a) = y, and so on. By post-composition
with the canonical functor Set — Rel (sending a set to itself and a function to
its graph), this graph can also be seen as functor G°» — Rel. By opposition,
the picture on the right represents a variant of this graph where the edge a
has no vertex as source and two vertices as target. It can be represented as the
presheaf H : G°? — Rel with

H(0) = {y1,y2, 21, 22} H(s)(a) =10 H(s)(bi) = {yi}
H(1) = {a,b1,bo} H(t)(a) = {y1, y2} H(t)(b;) = {2}
1

for i € {0,1} (as customary, we write a relation between H(1) and H(0) as a
Kleisli map, i.e. a function from H(1) to the powerset of H(0)). We can think
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of the edge a as representing a transition in some system which has no starting
point, and makes a choice during the execution of the transition, about whether
it wants to end on y; and y.: depending on this choice, only b; or by can be
executed afterward. As illustrated in the previous example, going to relational
presheaves allows for representing both shapes which are “partial” in the sense
that they are lacking some boundary (a has no source for instance) and “multiple”
in the sense that they have multiple possibilities of boundaries (a has both y;
and ys as target).

Higher dimensional automata. In this article, we will not only be interested
in presheaves over the category G, but rather on the cube category [0 which
generalizes the previous situation, in the sense that G can be recovered as a full
subcategory. The objects of [ are natural numbers, where n € N encodes the
shape of an n-dimensional cube. Morphisms are generated by d;, ; :n — n+1
with € € {—,+}, n,7 € N with 0 < ¢ < n, subject to the relations

= dfz+1,i o dfz,jfl

e’ €
dn+1,j © dn,i

for 0 < i< j<n+1. A morphism dfm encodes the canonical inclusion of the

n-cube into the (n 4 1)-cube as source or target (depending on ¢) in direction i.
For instance, we have the following inclusions of the 1-cube into the 2-cube:

]\ » d;ro ........ .
o |

As expected, we can recover G as the full subcategory of [J on the objects 0
and 1.

Presheaves over [1 are called precubical sets and are
widely used in models of true concurrency. Namely, the pres-
ence of a square can be thought of as encoding a commuta-
tion between the transitions corresponding to its edges, and
n-cubes similarly encode commutations between n transi-
tions at once. This explains why they are at the basis of the
definition of higher-dimensional automata [12,30] (HDA) which generalize tradi-
tional automata, and constitute a very expressive model of true concurrency [13]:
an HDA consists of a precubical set, with a labeling of edges (1-cubes), and
identified initial and final states (0-cubes). For instance, the HDA on the right
encodes a system executing a transition a, followed by two transitions b and ¢
executed in parallel.

Relational presheaves. As indicated above, a relational presheaf on C is a functor
P : C°? — Rel. Our definition is actually slightly more liberal than this: it allows
functors to be lax. By this, we mean that for every composable functions f and g,
we have P(g) o P(f) C P(go f) and id C P(id), i.e. we allow an inclusion where
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an equality would have been required for traditional functors. Let us illustrate
what this extra level of generality brings by illustrating it on HDA, i.e. presheaves
on (0. As explained above, a square as (A) below encodes a situation where we
have two transitions a¢ and b running in parallel:

4 t e 14 a t
/ b b E b b ;a b
(A) (B) (&)

Moreover, an actual interleaving of the two transitions can be figured by a path
such as the one in red in (A), which corresponds to an execution where a starts,
then both a and b run in parallel, b stops and then a stops. In (B), we have
figured a variant of this situation where we require that b cannot start before a
does, which amounts to removing the vertical boundary edge on the left. In (C),
we have figured a third variant where both a and b have to start at the same
time (like in the red diagonal path). This last situation can be encoded as a
precubical relational presheaf H : O —,x Rel with H(0) = {s,t}, H(1) = {a, b}
and H(2) = {a}. The face relations are such that (s,a) € H(dy, o d; ;) but
H(dy () = 0 so that H(dy,o0dy,) & H(dy,) o H(dy ), which illustrates the
need for lax functors: the point s is in the iterated source of the square «a, but
it is not a source of a 1-cell in the source of «.

Realization. The figures (A) — (C') above should be handled formally: it is useful
to associate, to each HDA, a topological space. More precisely, the topological
space we construct should be “directed”, i.e. equipped with a notion of “time
direction”, in such a way that paths which are increasing in time correspond to
actual executions (as for the red paths above), see [8] for a presentation of this
approach based on directed algebraic topology. This process can be encoded by a
functor called geometric realization constructed as follows. We have a canonical
functor M : 0 — Top, sending an object n to the canonical n-cube [0, 1]™. By
left Kan extension along the Yoneda embedding & : O — Psh(0), this functor
induces a continuous functor R : Psh(OJ) — Top called the realization, which
to a presheaf P associates the space obtained by gluing standard cubes as de-
scribed by the presheaf. This process works more generally with any cocomplete
category D instead of Top (such as the category of directed topological spaces).

Here, we are interested in realizing relational presheaves, i.e. defining functors
RelPsh(C) — D to some cocomplete category D. It turns out that the situation
is more complicated than above: intuitively, instead of simply specifying how to
realize abstract shapes, i.e. objects of C by the functor M, we also need to specify
the realization of every pair of objects related by a morphism. For example, to
realize relational graphs in RelPsh(G), we still have to choose a realization
of 0 and 1, which we take to be the terminal set and the open interval |0, 1]
respectively, but we also need to specify how to realize an egde with a source or



Realization of relational presheaves 5

with a target endpoint, the natural choices being [0, 1] and ]0, 1] respectively:
M@O)=e M(l)=— MO31)=e— M@OS1)=—

We can then realize every relational graph as before, by gluing these building
blocks together. In general, we should not expect all assignments of this kind to
work (for instance, the realization of an edge and an edge with a target should
be somehow related), and we provide here conditions for this. In particular, we
will see that the natural first try does not satisfy those conditions and has to be
modified so that it is the case.

Blowup. As an application of relational presheaves, we explain here that they
can be used to provide a nice description of the operation of blowup on geometric
realizations of precubical sets introduced in [4,16]. We namely show here that this
operation, which canonically turns such a space into a manifold, can be obtained
as the geometric realization of a combinatorial blowup construction, turning a
precubical set into a relational one. In this way, we obtain a description of the
blowup operation in purely combinatorial terms, which is simpler to define and
study than the topological one.
This construction can be illustrated on graphs. The blowup

of a topological directed graph is a manifold (i.e. a space in a &,
which every point has a neighborhood which looks like a line), ””}V
which behaves like the original graph. The way this is con- o
structed informally consists in replacing every singular point az 3" b,

. . . 22
by as many points as there are ways to traverse the singularity,
equipped with a suitable topology. For instance, in the lower !

graph on the right the point in the middle is replaced by four
points because there are four ways to go from the left to the
right, thus obtaining the space above (and a projection map to "

the original graph). This construction can be described as an ><
operation transforming a precubical set into a relational one. as by

Indeed, the upper graph is the realization of the relational
graph H : G°? — Rel with elements and faces

H(0) = {11,212, %21, 222}  H(t)(a1) = {11,212} H(s)(b1) = {211,721}
H(l) = {a17a27b1,b2} H(t)(ag) = {1'217{,622} H(S)(bg) = {$1271‘22}

and no other boundaries (the point x;; corresponds to passing from a; to b;).

Previous work. The idea of using functors to Rel as semantics of non-determinitic
programs is quite old [2]. The formal theory of relational presheaves was devel-
oped by Rosenthal in connection to nondeterministic automata theory [31,32]
and independently by Ghilardi and Meloni in connection to modal logic [9,10].
Relational presheaves have found several applications in computer science, no-
tably for labelled transition systems (see for example [34] for recent developpe-
ments). The category of relational presheaves over C has been shown to be equiv-
alent to several well-studied categories. In [31], Rosenthal showed that this cat-
egory is equivalent to the category of categories enriched in the free quantaloid
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over C. Then, in [28,29], using an analoguous of the Grothendieck construction,
Niefield established a correspondence between relational presheaves over C and
faithful functors over C, which led to a better understanding of exponentiability
in the category of relational presheaves.

Higher dimensional automata (HDA) have been introduced as models for true
concurrency [12,30] and bear close relationship with geometric models for con-
currency [8]. The variant of partial HDA was studied in [6,7] to model priorities,
and constitutes a subclass of relational presheaves, corresponding to allowing
partial functions for face maps. A way of realizing partial precubical sets (in
topological spaces) was suggested in [6], based on the idea of completing a par-
tial precubical set into an ordinary one. However, this procedure is not satisfying
because it is not cocontinuous (consider for example the pushout square of |6,
§4.1]; in fact we will see that it does not even preserve all colimits of partial
presheaves which are colimits in the category of relational presheaves).

Connections between relational presheaves and categorical logic existed since
the introduction of the former. For example, models of algebraic theories in Rel
where already studied in [32], and the internal logic of relational presheaves was
studied in [11]. However, to the best of our knowledge, the use of categorical logic
in order to study relational presheaves, as well as the definition of their realiza-
tion, and the combinatorial definition of the blowup are original contributions
of this paper.

Plan of the paper. Based on some classical results in categorical logic (Section 2),
we define relational presheaves and show that they are models of a given theory
(Section 3). We then define a notion of realization, show that it can also be
formulated in terms of models of a theory, and that it generalizes the usual
notion of realization (Section 4). Some concrete instances of realizations, such
as in topological spaces, are then provided (Section 5). We briefly introduce
variants of relational presheaves and explain their use (Section 6). Finally, we
show that the blowup construction can be expressed as the realization of one on
relational presheaves (Section 7).

2 Preliminaries: some categorical logic

We begin by recalling some classical definitions and results on categorical logic
that will be used in the following. We refer to [3] for details. Let X be a mul-
tisorted signature, consisting of a set Xy of sorts, X of function symbols with
sorted arities and a set X'p of relation symbols with sorted arities. Recall that
a regular formula is a first order formula built from atomic formulas using the
connectives A and 3. A regular formula in context is a finite tuple of free vari-
ables x together with a regular formula ¢ with free variables in x, noted {x.¢},
and considered up to a-conversion. A regular sequent is a pair of formulas in
context o and v, sharing the same context x, noted ¢ -« . Its interpretation in
full first order logic is Vx.(p = ). A regular theory is a set of regular sequents,
called the axioms of the theory.
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Definition 1. A cartesian formula with respect to a reqular theory T (or T-carte-
sian formula) is a regular formula such that every existential quantification is
provably unique with respect to T. A cartesian theory is a regular theory T such
that its axioms can be well-ordered in such a way that every axiom is cartesian
with respect to the theory consisting of the preceding axioms.

In particular, a theory whose axioms are sequents of formulas built from atomic
ones only using A is cartesian. Now, for every cartesian (i.e. finitely complete)
category C and cartesian theory T, we can define a category T-Mod(C) of models
of T in C. Informally, a model consists in an interpretation of sorts as objects
of C, of function symbols as morphisms, and of relation symbols as subobjects,
in a way which respects the axioms. Writing Lex for the category of cartesian
categories and functors which are left-exact (i.e. product-preserving), we have
that T-Mod(—) defines a functor on Lex and T-Mod(Set) is the usual category
of set-based models of T and homomorphisms between them. We say that a
set-based model M of a cartesian theory T is finitely presented if there is a
T-cartesian formula in context {x.¢} and a tuple a € M such that M = ¢(a)
and for every model NV of T, for every tuple b € N such that N |= ¢(b), there
is a unique homomorphism M — N sending a to b.

Proposition 2. Let T be a cartesian theory. There is a cartesian category Cr,
called the cartesian syntactic category of T, such that there is an equivalence

T-Mod(C) = Lex(Cr, D)

for every cartesian category D, natural in D. Moreover, Ci¥ is equivalent to the
category of finitely presented set-based models of T.

For a detailed study of syntactic categories, see [19, §D1.4]. We mention that Cr
is built in the following way: its objects are formulas in context which are carte-
sian with respect to T, and its morphisms are T-provably functional cartesian
formulas between them (more precisely, equivalence classes of such with respect
to T-provable equivalence). Cartesian theories correspond to essentially algebraic
theories, for which similar theorems are established in [1]. Finally, we mention
that every cartesian category is the syntactic category of some cartesian the-
ory [3, Theorem 1.4.13], so that cartesian theories can actually be defined as
cartesian categories.

3 Relational presheaves as models of a cartesian theory

We now introduce relational presheaves and show that they form the category
of models of a particular cartesian theory. We write Rel is the category whose
objects are sets and whose morphisms are relations. We suppose fixed a small
category C.

Definition 3. A relational presheaf P over C is a lax functor C°? — Rel. A
morphism « : P = Q of relational presheaves is an oplaz natural transformation.
We write RelPsh(C) for the corresponding category.
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A relational presheaf P amounts to the data of a family of sets P(c) indexed
by objects ¢ € C and a family of relations P(f) indexed by morphisms f, with
P(f) C P(c) x P(d) for f:d — ¢, such that

idp(e) € P(idc) P(g)o P(f) S P(fog) (1)

for every c € C and every composable morphisms f and g. We write a —¢ b for
(a,b) € P(f). The first condition states that P(id.) is reflexive for every ¢ € C
and the second condition that if a = b and b —4 ¢ then a — 4o c. Similarly, a
morphism « : P = @ amounts to a family of functions (a. : P(¢) = Q(¢))cec
such that a — b implies a.(a) —f aq(b) for every f:d — c.

Definition 4. We write Z‘g“ﬂ for the signature whose sorts are the objects of C,
with a relation symbol Ry C cxd for every morphism f : d — ¢, and no function
symbol. We write ']I‘?el for the theory with

1. for every object c € C, an axiom

=y l_a::c,y:c Ridc (.’L‘, y)

2. for every morphisms f:d —c¢, g:e—d of C, an aziom

Rf (xa y) A Rg (Z/, Z) }_w:c,y:d,z:e Rgof(l‘, Z)
Proposition 5. RelPsh(C) is the category of set-based models of Tee!.

Proof. A model P amounts to the data of a set P(c) for each sort ¢ and a
relation f C P(c)xP(d) for every relation Ry with f : ¢ — d, and the two families
of axioms ensure that the inclusions of (1) are satisfied. This is thus precisely a
relational presheaf in the sense of Definition 3. Similarly, model homomorphisms
correspond to oplax natural transformations. a

Recall that locally finitely presentable categories are exactly the categories of
models of cartesian theories [21, Definition 9.2 and Theorem 9.8].

Corollary 6. For any category C, RelPsh(C) is locally finitely presentable.
Hence, it is complete and cocomplete.

In the following, we write C for the cartesian syntactic category of TR°!. By
Propositions 2 and 5, the category of relational presheaves is precisely Lex(C, Set).
Every object z of C can be seen as a relational presheaf X ., (z).

Ezample 7. Consider the category G of the introduction, whose (relational) pre-
sheaves are (relational) directed graphs. The signature Egel contains two sorts 0

and 1 and two relations Ry, R, C 1 x 0. The category G contains the following
morphisms:

{(z:1,y:0).Rs(z,y)}
N
{y:0).T} +—{(z: 1L,y :0).T} —— {(z:1).T}
T
{(z:1,y:0).R(x,y)}
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In a model G, i.e. a left exact functor G — Set, the object on the left and on
the right are respectively mapped to sets Gy and G1, the object in the middle
is mapped to the product Gg x G1, and the top and bottom object are mapped
to a subsets G4, Gy C Gy x G1. We see that the object {(x : 1,y : 0).Rs(z,y)}
represents the “proofs of relations” between 0 and 1 via s.

Remark 8. If we apply the same procedure to the presheaf category Psh(C),
seeing it as the category of models of a theory T¢ similar to the relational case
but with function symbols instead of relation symbols, the cartesian syntactic
category will just be the free finite limit completion of C°P. In fact, C is also some
kind of completion of (a modified version of) C, see Corollary 14.

4 Realizing relational presheaves

A realization of a category C in a cocomplete category D is a functor C — D
which is cocontinuous, i.e. colimit-preserving. The fact that such a functor pre-
serves colimits can be understood as the fact that the image of a “complex”
element can be obtained by gluing the images of “simpler” elements. We write
coCont(C, D) for the corresponding category. Typically, for a presheaf category
C = Psh(B), one can define a realization Psh(B) — D by starting from a func-
tor F': B — D and taking its left Kan extension F} along the Yoneda embedding
X : B— Psh(B):

D
. F
BT
B ——— Psh(B)

More explicitly, the realization can be computed on a presheaf P € Psh(B5)
as the colimit Fi(P) = colim, e p F(b), where [ P denotes the category of
elements of P [25]. The original notion of geometric realization was essentially
defined in this way with B being the simplicial category and D the category
of topological spaces. Given a small category C and a cocomplete category D,
we explain how to construct a realization functor for the category RelPsh(C)
of relational presheaves and show that the situation is essentially analogous to
the case of presheaves. We begin by observing that constructing a realization
amounts to constructing a model:

Proposition 9. The category of realizations of RelPsh(C) in D is isomorphic
to the category Lex(C,D°P) of models of T&e! in DP.

Proof. We have that relational presheaves form the Ind-completion (whose def-
inition is recalled below) of CP:
RelPsh(C) = TE*-Mod(Set) by Proposition 2
=~ Lex(C, Set) by Proposition 5
= Ind(C°P)
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The last step can be justified as follows. Recall that the ind-completion Ind(C)
of a category C is its free cocompletion by filtered colimits. It can be obtained by
first forming the free cocompletion Psh(C) of C and then taking the full subcat-
egory on presheaves which are filtered colimits of representables, or equivalently
on presheaves whose category of elements is filtered, or equivalently on functors
C°? — Set which are flat [26, Theorem VIL.6.3]. It is a standard fact that if
C°P has all small limits, then flat functors can equivalently be defined as left-
exact functors [26, Corollary VIL.6.4], i.e. Lex(C°, Set) 2 Ind(C). Recall that C
indeed has all finite limits, by Proposition 2.
Finally, from the above sequence of equivalences, we deduce

coCont(RelPsh(C), D) = coCont(Ind(C°?), D) by the above

>~ Rex(C°?, D) by [1, Proposition 1.45 (ii)]
=~ Lex(C, DP) by duality
=~ TR Mod (D) by Proposition 2

This concludes the proof. a

As a consequence, in order to define a realization of RelPsh(C), we need to

construct a model M of TR®! in D°P. This amounts to the following data:

Proposition 10. A model in T?el—Mod(Do”) is uniquely determined by the
following data:

A. for every object c € C, an object M(c) of D,
B. for every morphism f :d — ¢ of C, an object M(Ry) of D and morphisms
L(} :M(c) - M(Ry) and L} : M(d) - M(Ry),

such that for every f:d —cand g:e—d:

0. vp:= (t9,0}) : M(c)UM(d) — M(Ry) is an epimorphism,

1. the codiagonal M(c) U M(c) — M/(c) factors (uniquely) through tia,,

2. the obvious morphism M (e) U M (c) U M(d) = M(Ry)Upay M(Ry) factors
(uniquely) through tsoq Uidps(qy-

Proof. The data of M(c) and M (Ry) is precisely the interpretation of the sorts
and relation symbols of the signature (there is no function symbol). The condi-
tions can be explained as follows, see [3, §1.3.3] for details. Condition 0 ensures
that M is a YRelstructure. Indeed, M(c) is the object of elements of sort c,
and M(Ry) represents {(x,y) € M(c) x M(d) | x — y}, so it should be a
subobject of M(c) x M(d) in D°P, which becomes an epimorphism out of the
coproduct in D, which by universal property of the coproduct has to be char-
acterized by a pair of morphisms L(J)c and L}. The other two conditions ensure
that M satisfies the axioms of TR®l. Every formula in context {x.p} gives rise
to a subobject M ({x.¢}). An axiom ¢ by v is satisfied in a structure if and only
if the subobject corresponding to ¢ factors through the one corresponding to v,
and we should again write this in the opposite category,. This gives conditions 1
and 2 respectively associated to the two families of axioms of Definition 4 (which,
in turn, correspond to the two conditions of (1)). O



Realization of relational presheaves 11

We define Crel as the full subcategory of C on the objects of the form
{(z : ¢).T} and {(z : ¢,y : d).Ry(x,y)} for every f : d — c. This category
is interesting because functors out of it encode precisely the data needed to
describe a model:

Lemma 11. The data of A and B in Proposition 10 amounts precisely to defin-
ing a functor M : Crel — D°P.

Proof. Since C° is the category of finitely presented models of TRl this cate-
gory is just the category C where we have replaced every morphlsrn by a span.
More precisely, Ob(Cre1) = Ob(C) UMor(C), and there is exactly one morphism
lec : f — dom(f) and one morphism Wjoc : f — cod(f) for every f € Mor(C). In
particular, we do not have to close by composition, because no two such mor-
phisms are composable. ad

By precomposition with the inclusion functor I : Crel — C, we obtain a
functor Fp : Lex(é, D°P) — Fun(Crel, D°?) sending a model M (i.e. a real-
ization, by Proposition 9) to the functor M o I. In particular, we simply write
F Lex(é, Set) — Psh(Cg.,) for Fset. We write Funyiod (Crel, D7) for the
image of the functor Fp: its objects consist of functors M : Cre1 — D (i.e. in-
terpretations of the signature by Lemma 11) satisfying conditions 1, 2 and 3 of
Proposition 10.

Lemma 12. The functor F' preserves filtered colimits.

Proof. The functor F is the composite Ind(C®?) — Psh(C?) — Psh(C{Z,)
where the first functor is the inclusion (see the proof of Proposition 9) and pre-
serves filtered colimits by [20, Theorem 6.1.8], and the second is precomposition
and preserves small colimits since it admits a right adjoint [15, §5]. a

We can now give an explicit way of going from Lex(é, Set) to the category
of realizations coCont(RelPsh(C), D). In fact, we can show that this realiza-
tion is essentially a left Kan extension, in the following sense. Consider a model
M € LeX(C De°P). As we have seen in Proposition 9, M corresponds to a re-
alization M : Lex(C,Set) — D. On the other hand, by left Kan extension
of Fp(M) along the Yoneda embedding & : C&.; — Psh(CRel) we obtain a
functor Fp(M), : Psh(C4,;) — D which is cocontinuous. Now M can be com-
pared to Fp(M), o F: we show that in fact both coincide.

M

Lex(C, Set) m

elF(M
TA

op
Rel C

Proposition 13. For every M € Lex(C, DP), we have Fp(M), o F = M, i.e.

M(P) = colim(, )¢  p(p) M(z)
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Proof. By [19, Lemma D1.4.4(ii)], any object of C is isomorphic to a formula in
context which is a conjunction of atomic formulas. We first see that in fact any
object of C is isomorphic to a conjunction of formulas of the form Ry, and no
equalities. Indeed, we have

{(z1: ¢, 0,%).(x1 =22) Np} 2 {(2: ¢, X).p[x1 = 2,22 = ]}

(where p[z1 = 2,29 = 2] is the formula ¢ where we have substituted the vari-
ables x; and x5 by the variable z), because the “function” from left to right
sending x; and x5 to z is in fact functional in both directions (see [19, Lemma
D1.4.4(i)]). Repeating this procedure a finite number of times, we get a formula
with no equalities: we say that such a formula in context is normalized. Since cop
is the category of finitely presented models of ']I‘cRel, the morphisms between two
such formulas are just maps of contexts which preserve the relations. First note
that F' sends objects of Crel to representable presheaves, since Cre is a full
subcategory of C. Now we show that the functors coincide on C, by explicit com-
parison. This is enough to conclude, by Lemma 12 and the fact that IIld(éOp)
is the free completion of C° by filtered colimits. Let {x.¢} be an normalized
object of C. Then {x.¢} is a pullback over {x.T} of all the {x.Rf(z;,2;)} such
that ¢ Fx Ry(z;,2;) is provable in T&®! by definition of the pullback in syn-
tactic categories. Now, {x.T} is the product of the {x;. T}, so we have a colimit
in (C)°P:
{X(p} = COlim(z’a)EI F({x.¢}) T

Indeed, let D : [ F({x.¢}) — (C)° be the corresponding diagram. For an-
other finitely presented model N, a morphism {x.p} — N is equivalent to
a tuple y such that N | ¢(y), equivalently a family of elements (y;)i1<i<n
with n the length of x, such that ¢ Fx Ryf(x;,x;) implies N = Rf(ys,y;),
which in turn is exactly a morphism of diagrams from D to the constant di-
agram at N. Now this colimit is sent by M to a colimit, so we exactly get
M({x.p}) = Fp(M)(F({x.¢})). The proof extends to morphisms of C, so we
are done. ad

This is the formalization of the intuition we started with: we realize a relational
presheaf by glueing the building blocks chosen for objects and for pairs of objects
related by a morphism. We can sum up the previous propositions as:

Corollary 14. A functor M : Cre1 — D°P with D cocomplete induces a cocon-
tinuous functor RelPsh(C) — D if and only if it satisfies conditions 0, 1 and 2
of Proposition 10.

Now it is easy to see that the geometric realization of relational graphs suggested
in the introduction is indeed a realization. We will give a more general and
detailed construction, for precubical sets, in section 5.2 below.

Remark 15. One could also consider, instead of relational presheaves, the cate-
gory Pseudo(C°P, Span(Set)) of pseudofunctors from C°? to the category whose
objects are sets and whose morphisms are spans of functions: namely spans of
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sets can be seen as a “quantitative” variant of relations, where two elements
have a set of relations between them (instead of simply being in relation or not).
It is proven in [18,29] that, under some condition (called CFI in [18] and IG in
[29]), this is a Grothendieck topos, whose site can be obtained by putting a (non-
trivial) Grothendieck topology on the twisted arrows category Cy,, of C. The idea
is similar to what we just presented: going from C to Cy,, essentially replaces ev-
ery morphism of C by a “formal” span. But Cy,, additionalyy contains coherence
data for composition of morphisms in C. The twisted arrow category approach
can also be used to realize relational (more precisely span-valued) presheaves by
Kan extension. However, in the cases that interest us, mainly those related to
precubical sets, the condition IG is not satisfied, and in fact taking pseudofunc-
tors instead of lax functors would significantly reduce the situations which we
would be able to capture, as argued in the introduction.

We end this section by explaining the relationship between presheaves and
relational ones on a fixed category C, and the relationship between their re-
alizations. There is a comparison functor U : Psh(C) — RelPsh(C), induced
by post-composition with the canonical functor Set — Rel sending a func-
tion to the corresponding functional relation. Since both categories are locally
presentable (Corollary 6), we can use the special adjoint functor theorem to
construct adjoints, see Appendix B for a full proof.

Theorem 16. The comparison functor U : Psh(C) — RelPsh(C) is full and
faithful and admits right and left adjoint.

We deduce that Psh(C) is a full subcategory of RelPsh(C) which is reflective
and coreflective, hence closed under limits and colimits. In particular:

Theorem 17. Every realization RelPsh(C) — D induces, by precomposition
with U, a realization Psh(C) — D.

For instance, it is not difficult to see that the geometric realization of relational
graphs induces the usual geometric realization of graphs. Again, the more general
case of precubical sets is treated below.

5 Realizations of relational precubical sets

In this section we extend some standard operations on precubical sets to rela-
tional precubical sets, and in particular define a first notion of realization.

5.1 Barycentric subdivision

As a first application of previous work, let us define the
barycentric subdivision of relational precubical sets. Let
I be the graph -—- with one edge, and J be -— - —-| its
barycentric subdivision (the graph with two consecutive
edges). Recall that the category of precubical sets can be
equipped with a tensor product [8, §3.4.1], noted ®. The e
classical barycentric subdivision functor % can be defined
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as a realization functor on Psh(0J), by n + J®". In par-
ticular, J®" is the barycentric subdivision of I®€". For a

precubical set P, we can see the elements of %P as pairs (o, (1/2} 1, 2))
(x, (t1,...,tm)) with € P(m) and t; € {1/4,1/2,3/4}.
The dimension of (z, (t1,...,ty)) is given by the number fop (/a1

of indices j such that ¢; # 1/2. See [4, §5.1] for details.
We say that (x, (t1,...,tm)) belongs to x.

By Corollary 14, defining a subdivision realization functor amounts to defin-
ing a model M of TRl in RelPsh(0), which we now do. To an object n € [,
we associate the relational precubical subset of J®" consisting of the cubes be-
longing to the unique n-cube of I®™, so that this is the subdivision of the open
n-cube Xz, ({(z :n).T}). We also set M(Riq,) := M(n). Any other morphism
f:n — n+kin O can be seen as an inclusion of an n-cube into an (n + k)-cube,
and we define M (Ry) to be the subdivision of the open (n + k)-cube together
with the corresponding subdivided open n-cube in its boundary. More precisely,
Kop({(x :n+Fk,y:n).Rs(x,y)}) is canonically a subobject of the representable
(n + k)-cube I®™ seen as a relational precubical set. We then define M(Ry) to
be the relational precubical bubset of 1[ ®n consisting of the cubes wich belong
to Kgop({(x: ¢,y d).Ry(x,y)}). For example

-2 % gy - -

We can check without difficulty that this indeed defines a model, thus a re-
alization. In addition, the induced realization on Psh(0) is exactly the usual
barycentric subdivision.

(e,1/4) (e,3/4)

5.2 Sequential geometric realization

Now, let us define a geometric realization functor for relational precubical sets:
we will see that the situation there is quite subtle. Again, we do it by defining a
model M of TR in Top®”. Following the idea of [6] for realizing partial precu-
bical sets, it is natural to start by trying the following construction. To an object
n € O, we associate the topological open n-cube M (n) :=]0,1[". A morphism
f:n — n+kin O can be seen as an inclusion of an n-cube into an (n + k)-cube
and M (Ry) is defined as an (n+k)-cube together with the corresponding n-cube
in its boundary. More precisely, such a morphism decomposes uniquely as

f - dflk—i-k 1,25 - © dn+l 12 delzl
with 0 < i1 < iy < ... < i < n+k, see [14]. We define M(Ry) to be the
subspace of [0,1]™ consisting of points (x1,...,2,) such that either all the z;
belong to ]0,1[, or for every index i we have x; = 0 (resp. ; = 1) if i = i,
for some j with ¢; = — (resp. €; = +) and x; € |0, 1] otherwise. In particular,

M (Riq, ) = M(n). For instance,

M(2) = M(R,-) = M(Ry+) = M(Rdjdg) =

1
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However, this construction does not work, because M is not a model of TRe.
For instance, the condition 2 of Proposition 10 is not satisfied. Indeed, consider
the obvious inclusion f : M(Rd;do‘) — M(R,-) Unrq) M(Rde_):

0

f : / —

This map is not continuous, since the space in the target has more open sets
than the one in the source. For instance, on the space in the source we have
a diagonal path (drawn in red) starting from the lower-left corner and going
inside the square, but its image in the space in the target is not continuous. In
fact, the image of f is topologically equivalent to the space M (0) LI M(1), see
Corollary 41. There are essentially two solutions to this problem, we provide a
first one here, and another one in next section.

A first solution is to slightly modify the above definition in the following
way. We consider a model M of ']I‘PD“91 in Top®?, which is defined as above on
objects and on morphisms of the form Riq, and Rg: . However, for any other
morphism f : m — n, we define M(Ry) := M(m) U M(n), as suggested by the
above observation. This indeed satisfies condition 2 of Proposition 10, because
the topology on M(Rj.4) for f, g # id will now always be the coproduct topol-
ogy, i.e. the topology with the most possible open sets, so that no continuity
problems can occur. This solution is interesting, because we get a space where
continuous paths can only go from (the realization of) a cube to an adjacent
cube of dimension +1 or —1. This is coherent with the combinatorial definition
of paths of partial HDAs in [6,7], where one is only allowed to go from a cube
to an adjacent cube of dimension +1 or —1, which in turn is crucial for the
interpretation of partial HDAs in formalizing priorities. Indeed, going directly
from a vertex to a square means starting two transitions at the same time, so
it is impossible to force one of them to start strictly before the other if this is
allowed. Since in a path, the creation of multiple processes has do be done in a
sequential way, we introduce the following terminology:

Definition 18. The sequential geometric realization is the functor induced by
the above model.

6 Variants of relational presheaves

Many variants of the notion of precubical relation can be thought of. For instance,
one could take colax functors instead of lax ones, i.e. we reverse the inclusions
of (1) in the definition. In this section, we will be mostly interested in another
variant that we call relational families, which is the variant of Definition 3 where
we simply drop both conditions (1): a relational family on a category C consists
in a family of sets indexed by objects of C and a family of relations indexed by
morphisms of C. We still keep oplax natural transformations as morphisms and
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write RelFam(C) for the resulting category. All the results of the paper hold for
the variants of relational presheaves if we modify appropriately the conditions,
see Appendix A for a detailed study. In particular, for relational families, one
should remove both families of axioms in Definition 4 and both conditions 1 and
2 in Proposition 10 in order to have the above theorems holding for relational
families instead of relational presheaves.

The category of relational families is interesting for the seman- a_,
tics of concurrency. For example, consider the square on the right.
We can now allow a path in an HDA to jump from a cube to b b

some adjacent cube of arbitrary dimension, which is more stan- se——*
dard. Namely, since there are no conditions on composites, we can

choose whether s should be or not the O-face of the square, which amounts to
determining whether the transitions a and b can or cannot start exactly at the
same time. The EDRel—structure M defined at the beginning of Section 5.2 (before
modifications) is a model in this new setting, and therefore defines a realization
RelFam([J) — Top.

Definition 19. The geometric realization |—|rop : RelFam(O) — Top is the
functor induced by the above model.

We use the same notation and terminology for the functor RelPsh((J) — Top
obtained by precomposing |—|1op with RelPsh(0) — RelFam(O) the canoni-
cal inclusion. By Remark 37, this realization induces a (cocontinuous) realization
of precubical sets Psh(d) — Top. The following result, showing that the geo-
metric realization extends the traditional one, is proved in Appendix C.

Proposition 20. |—|rop o U is the geometric realization of precubical sets.

7 The blowup commutes with the realization

Suppose fixed n € N. The blowup of a (locally ordered) space is a best approxi-
mation of it by an n-euclidean space:

Definition 21. Given a locally ordered space X, a blowup is

an n-euclidean locally ordered space X equipped with a local : X
embedding Bx : X — X such that for every n-euclidean local Jj/’z lﬁx
order E and every local embedding f : E — X, there is a E % X
unique continuous lift f such that Bx o f: f

The blowup of a locally ordered space always exists and is unique up to iso-
morphism [4]. A combinatorial description of the blowup is given in [4, section
5], in the case where X is the realization of a precubical set P. In this section,
we show how this description can be expressed as a relational precubical set P
over P, and then we prove that the realization of P as defined here is exactly
the underlying topological space of X, see Appendix D for proofs and details.

Definition 22. Let P be a relational precubical set, ¢ a cube of P. The neighbor-
hood N(c) of ¢ is the relational precubical subset of P consisting of the cubes ¢
such that there exists f with ¢ — c.
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Recall that I is the graph -—- with one edge, and J is -— - —- the
graph with two consecutive edges, and write I ,,, := I®* @ J®™.
Recall that a symmetric precubical set is a precubical set P such
that each P(k) is endowed with an action of the symmetric group
Sk, such that the face maps are compatible with these actions, see [14, §6].
Every precubical set can canonically be seen as a symmetric precubical set, by
freely adding the images of these actions. Intuitively, a k-cube of a symmetric
precubical set P is represented by the orbit of an element of P(k), formalizing
the idea that the order on the dimensions does not matter. For example, I; 1 is
not isomorphic to the precubical set on the right. However, they are isomorphic
as symmetric precubical sets.

Definition 23. A (n, k)-euclidean brick is the neighborhood of the minimal cube
of some precubical set which is isomorphic to Iy, i, as symmetric precubical sets.

For example:

N(min(l50)) = N(min(l1,1)) = —— N(min(lo2)) = +

Definition 24. A morphism of relational precubical sets o : P — @Q is a local
embedding if a —f ¢ and b — ¢ ¢ implies a(a) # a(b) for cubes a, b and ¢ of P.

Euclidean bricks are typically precubical sets whose geometric realization is iso-
morphic to R™, and the realization of a local embedding is a local embedding.
Note that I, ,, has a unique cube of dimension k, and so does any euclidean brick
B: we write min(B) for this cube, since all other cubes of B have dimension > k.

Definition 25. Let P be a precubical set of mazimum dimension n. The blowup P
of P is the relational precubical set P given by

P(k)={S C P|3a: B — S surjective local embedding,
for some (n, k)-euclidean brick B}

P(f) ={(S,8")|3a: B — S, 3’ : B" = S'as above, 3. : B — B’ monic
such that a(min(B)) = o/ (min(B’)) and o' o v = a}

The blowup map Bp : P — P is 8p(S) := a(min(B)) for a : B — S as above.

This corresponds to the combinatorial blowup of [4]. More precisely, the combi-
natorial blowup of a precubical set P is expressed there as a pointwise subset
of a presheaf Combp : ([ P)°? — Set on the opposite of the category of ele-
ments [ P of P. And this corresponds to a relational presheaf, because we have
an equivalence between this category of presheaves and a subcategory of rela-
tional presheaves over P, which generalizes the classical equivalence between
presheaves and discrete fibrations [23, Theorem 2.1.2]. Namely, define the cate-
gory DFib(P) of discrete fibrations over P as the full subcategory of the slice
category RelPsh(C)/P whose objects have the unique right lifting property with
respect to the inclusions X, ({(y : d).T}) = Koo, ({(z : ¢,y : d).Ry(z,y)}).
We then have,
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Theorem 26. Let P be a relational presheaf over a category C. There is an
equivalence of categories ¢ : Psh(([ P)°P) = DFib(P).

Transforming Combp into a relational presheaf over P by ¢ and taking the rela-
tional precubical subset corresponding to the combinatorial blowup, we get P.

Now, given F' € Psh(([ P)°P), there is a procedure defined in [4] which can be
described as a geometric realization. First, we transform F' into a sheaf on | P|rop,
using the fact that this space has a basis consisting of open sets “centered” at a
cube of minimal dimension. Then, we use the correspondence between sheaves
on a space and local homeomorphisms over this space |26, §I1.6] to get a space
over | P|rop. Writing | F| for this space, we can prove the following.

Theorem 27. Let P be a relational precubical set, F € Psh(([ P)°). Then we
have |F| = |o(F)|Top as spaces over |P|rop.

The idea is to first establish a set-theoretic bijection over |P|rop. Since both
bundles are local homeomorphisms, we directly get that this bijection is in fact
a homeomorphism. Finally, we can prove the desired theorem.

Theorem 28. Let P be a precubical set of mazimum dimension n. The geomet-
ric realization of the blowup P of P is the underlying space of the blowup X of
the locally ordered realization X of P.

Proof. First, we need to complete P in order to get a discrete fibration pt
over P. We set Pt (k) := P(k)UP(k) (the elements coming from P (k) correspond
to the elements | of Combp), and (a,b) € P*(f) if and only if (a,b) € P(f) or
(a, Bp(b)) € P(f) and there are no a’ such that (a’,b) € P(f). Now, by Theo-
rem 26, we can transform P* into a presheaf ¢~ '(P*) on ([ P)°P. Simple but
tedious calculations (see Lemmas 50 and 51 and the discussion before them) give
¢~ (P*t) = Combp. In [4, Theorem 5.17], it is proven that the underlying space
of the blowup X is a well-characterized subspace of |~ (P1)]|, corresponding
to the elements coming from P. Theorem 27 concludes. a

8 Conclusion

This paper is a first exploration of relational presheaves in concurrency the-
ory from the point of view of their realizations. Since the category of relational
presheaves on a fixed category is well-behaved (finitely locally presentable), it is
a good setting to categorically and homotopically study some objects of interest,
especially (higher dimensional) automata, which will be the subject of a future
work. In particular, a link should be made between relational automata and au-
tomata with e-transitions [33, §1.1.4], since they can both represent “internal” or
“spontaneous” choices. The simple combinatorial expression of the blowup also
suggests to study directly this construction in relational precubical sets, and a
homotopical (in the sense of Quillen) definition of euclidean relational precubi-
cal sets seems plausible. Finally, on an abstract level, it would be interesting
to develop furthur the theory of relational presheaves, for example by adding
a Grothendieck topology on the base category and trying to define relational
sheaves.
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A Variants of relational presheaves

We write Par for the category of sets and partial functions. There is a canon-
ical functor Par — Rel sending a partial function to its graph, allowing us to
consider Par as a subcategory of Rel.

A quiver map F : C — D between two categories C and D is a morphism of
directed graphs between the underlying graphs of C and D.

Definition 29. We introduce the following variants of relational presheaves.

(i) A relational family P over C is a quiver map C°? — Rel. We use the same
notation as for relational presheaves.

(i) A partial presheaf P over C is a lax functor C°? — Par, i.e. a collection
of sets (P(c))ceon(cy and partial functions (P(f))temor(c), subject to the
following:

P(id.) =idp), P(f)o P(g) = P(fog) when both are defined

Obviously every relational presheaf is a relational family. Note that a partial
presheaf P is exactly a relational presheaves such that P(f) is a partial function
for all morphisms f of C.

Definition 30. We have the following categories associated to the previous vari-
ants.

(i) A morphism of relational families o : P = F is an oplax natural trans-
formation, i.e. a collection of functions (P(c) =% F(c))ceon(c) such that
a — 5 b implies ac(a) = aq(b) for every f:d — c.
(i) The category of relational families and morphisms of relational families
over C is noted RelFam(C).
(i4i) The full subcategory of RelPsh(C) consisting of partial presheaves in noted
ParPsh(C).

Definition 31. We define the theory ']I‘(lz)"’lr on E?EI as an extension of 'ﬂ‘?el
with the following axiom:

Rf(fE, Z) A Rf(y, Z) '_:c:c,y:c,z:d r=y
for every morphism f :d — c.
The following is straightforward:

Proposition 32. RelFam(C) is the category of set-based del-stmctures, and
ParPsh(C) is the category of set-based models of Tgar.

For the realization, everything essentially works the same with relational fam-
ilies or partial presheaves instead of relational presheaves. A model correspond-
ing to a relational family does not have to satisfy conditions 1 and 2 of Proposi-
tion 10, and a model M corresponding to a partial presheaf has to satisfy an addi-
tional condition: the obvious functor M (c)UM (c)UM (d) — M(Rjy)UpzayM (Ry)
factors through the codiagonal M (c) U M(c) U M(d) — M(c) U M(d). We also
have a version of Proposition 13, with essentially the same proof:
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Proposition 33. For every E?el—structure M : Crel — D°P in D°P, the corre-
sponding realization M : RelFam(C) — D is given by:

M(P) = colim(y e  p(p) M(z)
We end this section by a useful lemma:

Lemma 34. The inclusion functor U’ : RelPsh(C) — RelFam(C) admits a
left adjoint.

Proof. Let M be a Zg‘el-structure, N a model of T?el. We build a model M¢omp
of TE®! by induction:

1. My is the structure having same values as M on sorts and non-identity
morphisms, and with Mo (id.) := Apz) U M(id.) for every object c;

2. given M,, M, is the structure whose value on sorts is the same as M,,
and such that

My 41(Ry) : U My(Rg) X a1, (dom(g)) Mn(Rn)
=goh

(as subobjects of M, (dom(f)) x M, (cod(f)));
3. Mcomp = colimpen M.

To see that Meomp is a model of TR®! consider a situation f = gohinC,z —, y
and y —p, z in Mcomp. Then there is some n € N such that ¢ —, y and y =, 2
in M,. But then  —4on 2z in M, by definition, so it is true in Mcomp. Now
we prove by induction that Hom gre (M, N) = Hom gre (My, N) for all n € N.
It is true for n = 0. Suppose it is true for some n. Take a: M,, = N, f = goh,
T —4 Y,y = 2z in M,. Then a(r) —, a(y) and a(y) — a(z), but then
a(r) —rgon a(2) because N is a model of TE®!. This concludes the induction.
Now by a similar argument, functoriality of thls construction is clear (the action
on morphisms is the identity). This finishes the proof because

Hongel (Mcompa N) = hrn HOmE(l;tel (Mn, N)
= hm Hom grei (M, N)

neN
= Hongel (M7 N)

O

With the notation of the previous proof, Mc¢omp Will be called the closure under
composition of M. Note that the inclusion is full and faithful, so the counit of
the adjunction is an isomorphism by Theorem IV.3.1 of [25], i.e. if we close a
relational presheaf under composition, we get the same relational presheaf. This
is also obvious by construction.
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B Presheaves as relational presheaves

First we give a proof of Theorem 16

Proposition 35. U is full and faithful.

Proof. Faithfulness follows immediately from the fact that the inclusion functor
Set — Rel is faithful. Consider a morphism « : U(P) — U(Q): it consists in a
family of functions a. : P(c) — Q(c) indexed by objects ¢ € C which preserve
the relations. So for all f:d — cin C, z € P(c), y € P(d), we have

y=u.f e (x,y) € UP)(f)
= (aa(z), ac(y)) € UQ)(S)
& aely) = aa(z).f

where z.f is a notation of P(f)(x). Therefore, a.(x.f) = a.(x).f for all f and z,
which proves fullness. ad

Proposition 36. U has a right adjoint.

Proof. By the special adjoint functor theorem ([25, Corollary §V.8] and [1, The-
orem 1.58]), it is enough to show that U preserves colimits, which we do by
computing explicitly colimits in relational presheaves and observing that they
coincide with ones in presheaves. Since coproducts and coequalizers generate all
colimits, it is enough to handle those two particular cases.

For coproducts, consider a family (P;);c; of presheaves indexed by a set I.
We define a relational presheaf P by setting P(c) = | |,.; Pi(c) for every ¢ € C
and

iel

P(f)=A{(z,y)|3i eI, x € P(c), y € Fi(d), (z,y) € P(f)}

for all f:c— d. It is straightforward to check that this is indeed the coproduct
in RelPsh(C), and that it coincides with the usual coprroduct in Psh(C).

For coequalizers, consider a diagram P = (), with morphisms « and 5. Now
define a relational presheaf R by setting R(c) to be the quotient of Q(c) be the
equivalence relation generated by «(z) ~ B(x) for all © € P(c), for all ¢, and
[x] —¢ [y] if there are 2’ ~ x and y' ~ y such that 2’ —; 3. However, this
does not necessarily define a relational presheaf, so we need moreover to close
relations under composition (see Lemma 34). Now it is easy to check that R is
the coequalizer of the diagram, and that it is the usual coequalizer for presheaves
(we do not need to close under composition in this case). O

Remark 37. Since we do not need to close under composition for presheaves in
the previous proof, the inclusion Psh(C) — RelFam(C) also preserves colimits,
since colimits in RelFam(C) are computed the same way, but without closing
by composition.

Proposition 38. U has a left adjoint.
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Proof. By the special adjoint functor theorem, U has a left adjoint if and only
if it is acessible and preserves small limits [1, Theorem 1.66]. By Proposition 36,
U is accessible. By Corollary 3.2 of 28], limits in RelPsh(C) are computed
pointwise, which implies that U preserves them, since limits in Psh(C) are also
computed pointwise. m]

Remark 39. In fact, we can give an explicit construction of the left adjoint. Let
P be a relational presheaf. First set

Bo(e) == A{(z, f)[ f : ¢ = cod(f), x € P(cod(f))}

for all ¢,

Po(f) ={((z,1dc), (y,ida)) | (w,y) € P(f)}
Ui((@,9),(z,90f))|g:¢c—d, xecPld)}

for all f : b — c. In the example of relational precubical sets, P is the result
of freely adjoining faces to the existing cubes. Now let P; be the closure of P
under composition. Finally, let P, be defined in the following way: P2(c) is the
quotient of Pj(c) by the equivalence relation generated by: x ~ y if and only if
thereis f : ¢ = d and z € P;(d) such that z —f « and z = y. Two equivalence
classes blong to a relation if there are representatives of each which belong to
this relation. It is not hard to check that this indeed is a relational presheaf
whose relations are functional, and that it defines a left adjoint to U (essentially
because free constructions, quotients and closure under composition are all left
adjoints). Let us just explain why we do not need to close by composition again.
Suppose given [z] = [y] and [y] =4 [2] in P,. We can suppose that © —f 3/,
y — z and there is e and h such that e —, y and e —, y’. Note that by
construction, there is 2’ such that y' —, 2’. But since P is already closed under
composition, we have e —go, 2z and e —4op, 2/, or in other words 2’ € [z]. Now
T —gof 2, 80 [x] —gor [2].

For example, applying respectively the left and right adjoints on the central
relational graph below gives the left and right graphs respectively.

z 2 yr. by 2
by by a ’ ’
r a_, Y / x a Y1 / g /
bg\ 2 v bg\ “ "

We can also compare these categories to the category of partial presheaves.
The inclusion U : Psh(C) — RelPsh(C) factors through the category of partial
presheaves ParPsh(C), so the inclusion Psh(C) — ParPsh(C) has right and
left adjoints, which are the restrictions of the ones defined above. We can also
prove that the inclusion ParPsh(C) — RelPsh(C) has a left adjoint. Indeed,
it is accessible by functoriality of the point construction (see [17, §2.1]), and
it is easy to see that it preserves limits, i.e. that the additional axiom is still
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valid when we take the limit in relational presheaves, because this axiom can
itself be expressed using limits, and limits are computed pointwise. Concretely,
it is similar to the left adjoint defined in Remark 39, without the first step
where we freely add faces. However, it does not have a right adjoint, since it
does not preserve pushouts (e.g. the pushout square of [6, §4.1]). This means
that a realization of relational presheaves does not induce a realization of partial
presheaves.

C Topology proofs

Proposition 40. Let X be the pushout in the following cocartesian square:

.

(where c is the open square). For any connected compact space K, for any con-
tinuous map f : K — X such that f(K) C cU{s}, either f is the contant map
at s, or f(K) Cc.

Proof. The first step is to prove that f=1({s}) = f~1(X \ fF(K \ f~1({s}))).

v € [THXNFENFT({s)) = fl@) & FIEN 1 ({s})
= v ¢ K\ f7({s})
= z € f7'({s})

Conversely, just notice that s ¢ f(K \ f~1({s})). Now we prove that f~!({s})
is open. By the first step, it is enough to prove that Z := X \ f(K \ f~1({s}))
is open. The topology on X is the pushout topology, so we just need to prove
that 17 (Z) is open for i = 1, 2. But f(K\ f~'({s})) C ¢ s0 13 '(Z) is the whole
space, thus open, and
5 H(Z) = (X fK))

which is open because f(K) is closed, because K is compact and f is continuous
so it sends compact spaces to compact spaces, and compact spaces are closed.
This is enough to conclude, since now K is covered by two disjoint open sets
f~1{s} and f~1(c), and K is connected so one of them is empty. O

Corollary 41. The subspace ¢ U {s} C X of the previous proposition has the
same homotopy type as the coproduct space ¢l {s}.
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Proof. Homotopy types are entirely determined by continuous functions whose
domain is [0,1]"™ for every natural number n, which are compact connected
spaces. O

Now we want to prove Proposition 20. We have to go through a concrete
description of the geometric realization, at leat for a subclass of relational pre-
cubical sets.

Definition 42. Let P be a relational presheaf, ¢ a cube of P. The combinatorial
positive neighborhood of ¢ is given by

N*(e):=={(a, f)|a—y c}
Recall that a morphism f : n — n + k in [ decomposes uniquely as

f=d* ..od? od}!

ntk—1,i, ©* n+1,ia © Pn iy

with 0 < iy < iy < ... < iy < n+k,soit can be seen as a word w € {—1,0, 1}"**
with exactly k non-zero components, where w;, = €; and w; = 0 for the other
indices (where w; denotes the ith letter of w). We use this notation for the
remaining of this section. Using Proposition 33, we see that the underlying set
of the geometric realization of a relational precubical set P is | | - P(n)x]0, 1[™.

Lemma 43. Let P be a relational precubical set, ¢ an n-cube of P, n € N, = a
point of | Plrep belonging to ¢, i.e. to {c} x]0,1[™. Suppose that N (c) is finite.
Then a basis of neighborhoods of x is given by:

Ug(x) :== U {a} x H I, i()

neN

(a,w)ENT(c) 1<i<dim(a)
where we define Iy _1(x) = 10,2/k[, Iro0:(x) = |ope) — 1/k,xpu) + 1/K[
and Iy (x) = |1 — 2/k, 1] with p(i) == |{j € [1,i]|w; = 0}|, for every

i € [1,dim(a)] and every big enough k > 0.

Proof. From the definition of the realization as an inclusion followed by a Kan
extension (Proposition 33), we immediately get that an open set of |P|rop is a
subset which is open in every {a}x]0, 1[4™(®) and every

{a} x10,1[1™(@) U {a} x |0, 1[dm(e) C [0, 1]dim(e)

with the induced topology, for a —,, @’ (for any a, a’/, w), where the inclusion
sends {a’} x ]0,1[%™(@) to the corresponding face with respect to w (see the
beginning of section 5.2). The remaining of the proof is topological routine,
using the finiteness of N7 (c) to find a big enough k. O

For example, in the closed 2-cube, we represent an open neighborhood (in dark
gray) for the points z, y and z respectively:
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As a corollary, we finally have
Proposition 20. |—|rop o U is the geometric realization of precubical sets.

Proof. This is a cocontinuous functor, so we just need to show that it coincides
with the geometric realization on [J. But this is straightforward from Lemma 43.
O

Remark 44. In fact we can prove that this geometric realization coincides with [6]
on partial presheaves. For this it suffices to show that the geometric realiza-
tion of relational precubical families preserves equalizers. Indeed, recall that a
monomorphism is regular if it is the equalizer of some pair of morphisms. In
RelFam((), a partial precubical set P is a regular subobject of its “comple-
tion” P’ as defined in [6] (which is just the result of applying the left adjoint of
Appendix B), so this regular monomorphism P < P’ would be sent to a regular
monomorphism in Top, in other words |P|rop would be a subspace of |P’|top
(which is, as we just saw, the standard geometric realization of the precubical
set P'), which is exactly how the geometric realization is defined in [6]. The proof
of the fact that |—|rop preserves equalizers again just follows from the concrete
description of the realization given by Proposition 33. Note that |—|1op does not
send all monomorphisms to subspace inclusions, for example just consider the
monomorphism:
o] — — —

The key property of regular monomorphisms 7 : P < P’ that is implicitely used
here is that if + —; y in P’ and = and y are in P then ¢ —; y in P; in other
words, 7 is an embedding, in the model-theoretic sense.

D Combinatorial blowup

There is a classical equivalence between the category Psh(C) of presheaves over
a category C and discrete fibrations, see [23, Theorem 2.1.2] for instance. This
generalizes to the relational setting as follows.

Definition 45. Let P be a relational presheaf over a category C. A morphism
«: P — P over P is a discrete fibration if for every morphism f:d — ¢ of C,
for every x — ¢y of P, for everyy' € aj'(y), there is a unique 2’ € a7 (x) such
that ' — 5 y' in P. The full subcategory of RelPsh(C)/P whose objects are the
fibrations over P is noted DFib(P).

Definition 46. Let P be a relational presheaf over a category C. The category
of elements of P, noted [ P, is defined as the category whose

— objects are the couples (c,x) with ¢ an object of C and z € P(c),
— morphisms (d,y) = (c,x) are the morphisms f : d — ¢ such that x —¢ y.

Theorem 26. Let P be a relational presheaf over a category C. There is an
equivalence of categories ¢ : Psh(([ P)°P) = DFib(P).
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Proof. First, we define the map ¢ : DFib(P) — Psh(([ P)°?). Given a fibration
a: P — P, we define
P(a)(e,z) = a7 ()

for any object (¢,z) of [ P. Now given a morphism f : (d,y) — (¢, z), for an
element z € ¢(a)(d,y), there is a unique 2z’ € ¥(a)(c, x) such that 2/ —; z. We
then set 9 (a)(w)(z) = 2’. This indeed defines a presheaf by the uniqueness of
the lift.

In the other direction, we define ¢ : Psh(([ P)°?) — DFib(P). Take a
presheaf . We start by defining a relational presheaf P, in the following way:

P(c) = |_| F(c,x)

(c,x)e[ P
P(f) ={(a,b)|3z,y, a € F(c,z), be F(d,y), z =5y, F(w)(b) =a}

for every c € C, f : d — ¢. Now we can define p(F)) : P — P to be the projection
a € F(c,x) — x. It is a morphism of relational presheaves by construction, and
checking that it is a fibration is a simple calculation.

To finish the proof, we need to check that ¢ and 1 are inverse to each other.
Again, this is a simple calculation. a

Now we explain how to realize a presheaf F' € Psh(([ P)°). Let P be a
relational precubical set. As discussed in the proof of Lemma 43, the underlying
set of |P|rop is ||,y P(n) x ]0,1[", and that an open set of |P|rop is a subset
which is open in every {a} x |0, 1[4™() and every

{a} x )0, 1[4m(@ U {a’} x ]0, 1[4m(@) C [0, 1]dim(@)

with the induced topology, for a —; o’ (for any a, o', f). We say that such an
open set contains a cube ¢ of P if {c} x]0, 1[4 N +# . From this we deduce
that there is a basis B of open sets of |P|1op such that every U € B contains
exactly one cube of minimal dimension. We note min(U) the minimal cube of
such U. Now we can transform F' into a presheaf F’ over the poset category B
by setting

F'(U) := F(dim(min(U)), min(U))

For the action on morphisms, we have that if U,V € B and U C V, then
either min(V') —; min(U) for some f, or min(U) = min(V'). We can then define
F'(U C V) := F(f) in the first case, F/(U C V) := id in the second. Now we
can extend F’ to a presheaf on | P|rop without changing its germs, by right Kan
extension along the inclusion B — O(|P|1op) the poset of open sets of | P|rop,
i.e. we get a presheaf
F":Uw lim F'(U)
B>BCU

with obvious action on morphisms. Finally, using the correspondance between
sheaves on a space and local homeomorphisms over this space [26, §I1.6], we get
a space |F| corresponding to F. All this was already done in [4] to prove that
the combinatorial blowup is indeed equivalent to the topological blowup.
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Definition 47. Let P be a relational precubical set and F € Psh(([ P)°P). The
geometric realization |F| of F over |P|rop is the space defined by the above
procedure.

Lemma 48. Let o : P/ — P be a discrete fibration. For every cube ¢’ of P’,
there is a canonical bijection NT(c) = NT(a(c)) induced by a.

Proof. By definition of a discrete fibration. a

Lemma 49. Let o : P’ — P be a discrete fibration. Then |o|rop s a local
homeomorphism.

Proof. By Lemma 48 and the fact that the realization locally only depends
on NT.

Theorem 27. Let P be a relational precubical set, F € Psh(([ P)°). Then we
have |F| = |o(F)|Top as spaces over |P|rop.

Proof. With the notations of Section 7, for every z € |P|rop, there is some
cube ¢ of P such that z € {z} x ]0,1[%™(), The germ of F’ at x is given by
F! = F(dim(c), c¢), because B forms a basis of the topology of |P|rop. So we
have a set-theoretic bijection over |P|rop:

Fl= || E

€| P|Top
= |_| F(dim(c), c)
(e;t)€len P(n)x]0,1["
~ ||  F(dim(c),c) x J0, 1[1m()
c€llnen P(n)
((F) " (e) x J0, L[
c€lnen P(n)

1%

LI L @)@ ] <o

neN \ ceP(n)

= || p(F)(n) x J0, 1"
neN

=[(F)|Top

(we write @(F') both for the morphism and its domain). Now it suffices to notice
that |F| = |P|top and |p(F)|Top are both local homeomorphisms, by [26, §11.6]
and Lemma 49 respectively, so this bijection is in fact a local homeomorphism,
thus a homeomorphism. O

We still need to make the link between the combinatorial blowups of [4] and
Definition 25. Fix n € N; a relational precubical set P of maximal dimension n,
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k <n, c € P(k). Let m(c) be the vertex (c, (1/2,...,1/2)) of 3P, i.e. the vertex
added at the center of the cube c. Define Z° := I, Z' := J. Note that in [4],
the combinatorial blowup of P is expressed in terms of the precubical subsets
of the 6-subdivision of P which are isomorphic to Iy ,. We have to subdivise
that much essentially because of boundary issues, to ensure that we have iso-
morphisms. Working with relational precubical subsets which are isomorphic to
N(Iy,,) instead immediately simplifies the situation, and just requires to look
at the barycentric subdivision of P. Now we want an expression which does not
use any subdivision at all, so we need to replace isomorphisms by surjective local
embeddings. The following two results are enough, since it is easy to see that
they are true “up to permutation of the dimensions of the cubes”.

Lemma 50. For every monomorphism i : N(lp,) — 3P centered at m(c)
(i.e. such that i(min(N(Iy,))) = m(c)), there is a tuple w € {0,1}" with ex-
actly k zeros, such that i factors through the inclusion N(Iy,) < $N(Q, Z)
sending min(N (Io,,)) to min(N(Q), Z*%)), via a morphism of the form 3 f for
[ N(Q, Z"M) = P. Moreover, w and f are unique.

Proof. We have to prove that we can “extend” i in exactly 2(n — k) dimensions.
There are exactly 2(n — k) edges in the image of ¢ which are of the form (c,t)
where c¢ is of dimension k+ 1. Indeed, all the n-cubes with are adjacent to m(c) in
%P have exactly n —k edges adjacent to m(c) with are of this form, by definition
of the subdivision; one edge is shared by 2" ~! n-cubes, and there are 2" n-cubes,
so the total number of such edges is 2(n—k). These edges represent the directions
in which we can extend i. Now we just add all the cubes (e,s) such that there
is some cube (e, s’) € Im(7). Details are easily checked.

Lemma 51. Let p: N(Iyn—r) = P. The induced morphism
, 1 1
p: N(IO,TL) — 5N(Ik;7n_k) — §P

18 a monomorphism if and only if p is a local embedding.

Proof. Notice that p is a local embedding if and only if p is a local embedding at
min(Iy ,,—), in the sense that a — min(Iy ,—x) and b —; min(fy ,—x) implies
p(a) # p(b). Indeed, on direction is straightforward. For the other one, suppose
that there is some e such that a — e and b — ¢ e for some a, b, f. By definition
of NI n—#), there is g such that e =, min(Jy n—x), 50 @ =40 min(Iy ,,—) and
b —gor min(Ly pn—r)-

Now suppose that p is a local embedding and take two cubes (a,t) and
(b,s) of N(Io,n) € 5N(Ixn—k) such that p'((a,t)) = p'((b,s)). Necessarily
p(a) = p(b) =: e. But then p/'((a,t)) = (e, t) and p'((b,s)) = (e,s), so s = t.
But this means that min(x ,—x) is in the same position relatively to a and b,
otherwise we would not have (a,t), (b,t) € N(lo ). In other words, there is f
such that a — 5 min(ly %) and b —¢ min(Iy ,—x). But p is a local embedding,
so a = b. The converse is similar, using the above characterisation of local em-
beddings. ad
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