
Polynomials in homotopy type theory as a Kleisli category

Elies Harington1 and Samuel Mimram1

1LIX, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120
Palaiseau, France.

March 2024

Abstract

Polynomials in a category have been studied as a generalization of the traditional notion
in mathematics. Their construction have recently been extended (by Finster, Mimram,
Lucas and Seiller) to higher groupoids, as formalized in homotopy type theory, thus resulting
in a cartesian closed bicategory. We refine and extend their work in multiple directions. We
begin by generalizing the construction of the free symmetric monoid monad on types in
order to handle arities in an arbitrary universe. Then, we extend this monad to the (wild)
category of spans of types, and thus to a comonad by self-duality. Finally, we show that the
resulting Kleisli category is equivalent to the traditional category of polynomials. This thus
establishes polynomials as a (homotopical) model of linear logic. In fact, we explain that it
is closely related to a bicategorical model of differential linear logic introduced by Melliès.

1 Introduction

The notion of polynomial functor [8] in category theory generalizes the traditional well-known
notion of polynomial in algebra. Namely, a polynomial functor is an endofunctor of sets of the
form X 7→

∑
b∈B XEb for some family (Eb)b∈B of sets which is called the polynomial inducing

the functor. This formulation should make clear the relationship with traditional polynomials:
such a functor sends an object X to a (categorical) sum of monomials, which are powers of X.
Moreover, those have been generalized in various ways: typed variants can be considered, and
one can make sense of polynomials in any locally cartesian closed category.

The category of polynomial functors over set is cartesian, but the expected closure for the
cartesian product cannot be defined as easily as expected. Firstly, the right adjoint to the
cartesian product does not exist for size issues: in order to have a chance to define it, one has to
restrict to polynomial functors which are finitary, i.e. those which are sums of a finite number
of monomials of finite degree, which are also known as normal functors [10]. If the category of
finitary polynomial functors is indeed cartesian closed, it was observed early on that it is not so in
a satisfactory way [10, 24]: the category of finitary polynomial functors is actually a 2-category,
but the closure fails to extend as a 2-categorical one. Moreover, the 2-categorical structure is
necessary in order to directly consider polynomials (as opposed to polynomial functors): those
form a bicategory (and not a category in any reasonable way). In order to handle this discrepancy,
it was proposed in [5], following ideas from Kock and collaborators [14, 9], that this could be
suitably resolved by considering finitary polynomials over groupoids instead of sets. However,
the constructions cannot performed naively (for instance, it is well-known that the category of
groupoids is not cartesian closed): in order for this definition to make sense, all the constructions,

1

such as the limits involved in the definition of the composition of polynomials, have to be taken
“up to homotopy”. A definition of polynomials along these lines has been performed in the
context of 2-categories [14] and∞-categories [9], at the cost of requiring the use of quite advanced
technical tools [17].

It is advocated in [5] that a good setting to define and study polynomials is the one of
homotopy type theory [25]. In this framework, types are equipped with a structure of ∞-
groupoid [15, 26] and can be interpreted as spaces [13], over which one can perform constructions
which are homotopy invariant by definition. In particular, the notions of finite (co)limits, which
are easy to define, are actually homotopy (co)limits. Following these ideas, polynomials have
then successfully been defined in homotopy type theory and have been shown to bear a structure
of cartesian closed bicategory, when restricting to finitary ones [5] (up to actually truncating the
category, as explained in section 6.1).

In this article, we further study this model and its structure on multiple aspects. First, we
show that the notion of finiteness, which is used in order to define finitary polynomials, can
actually be taken relatively to an arbitrary universe V (which might be taken to be the one of
finite types in order to recover the traditional notion). More importantly, we show here that the
cartesian closed structure of the category of finitary polynomials actually comes from what we
expect to be an ∞-categorical model of linear logic. More precisely, the category of (finitary)
spans can be seen as a subcategory of the category of polynomials, which formalizes the intuition
that spans are “linear” polynomials, and the resulting inclusion functor has a left adjoint:

Poly Span⊥

Moreover, this adjunction is compatible with the monoidal structures of the two categories (in-
duced by the cartesian structure in the case of polynomials). We thus obtain what is known as
a linear-non-linear adjunction [1, 20], a notion which has been established as the standard cate-
gorical model of the multiplicative exponential fragment of linear logic. The adjunction induces
a comonad on the category of spans, which can be understood as the exponential modality !, and
we show here that the category Poly is actually the Kleisli category associated to the comonad:
such a model is known as a Seely category [21, 2].

To be more precise, the above is the situation that we expect to be holding, but showing
that it is formally the case in homotopy type theory is currently out of reach because there
is no known definition of ∞-categories in homotopy type theory [3]. For this reason, we work
here with wild categories, which can be understood as ∞-categories, without requiring higher
coherences. Our result should however extend to∞-categories provided that we can define those.
We namely expect that the constructions we provide here are actually coherent, and moreover the
constructions defined by universal properties will automatically extend to the coherent setting:
for instance, our result that Span is a cartesian wild category immediately implies that it is a
cartesian ∞-category, provided that we can show that Span is an ∞-category. We also explain
that, by truncation, this wild category induces a (univalent) category which is a model of linear
logic: this model is apparently new and of a very different nature than the traditional ones.
Moreover, we explain that the wild category can be extended into a 2-coherent one, which induces
a bicateogry, thus allowing us to recover the previous construction of [5]. This model of linear
logic we obtain coincides with one constructed by Melliès in order to build a model of differential
linear logic [19]: the observation that the Kleisli category associated to the exponential comonad
is the category of polynomials is however new. Moreover, working in homotopy type theory
allows us to simplify constructions and avoid invoking arguments based on model categories [12].

Plan of the paper. We begin in section 2 by recalling the general setting of homotopy type theory
(section 2.1), as well as the notion of wild category (section 2.2) and classical structures for those

2

(section 2.2.1). In section 3, we define the wild category of spans and equip it with a structure
of symmetric monoidal wild category with finite products and coproducts. We then construct,
in section 4, the free commutative monoid (co)monad on spans, from which we construct a
structure of Seely category (theorem 35) and thus a model of linear logic (theorem 36). Finally,
in section 5, we show that the Kleisli category associated to the comonad is precisely the one
of polynomials (theorem 45). In section 6, we compare with related works: the bicategory of
polynomials of [5] (section 6.1) and template games of [19] (section 6.2). All omitted proofs can
be found in the appendix.

2 Categories in homotopy type theory

In this section, we recall the definition of wild categories in homotopy type theory. We suppose
the reader already familiar with the general setting and refer to the reference book [25] for details.

2.1 Homotopy type theoretic definitions and notations

Constructions on types. We write Ui for the hierarchy of universes, indexed by i ∈ N, and U
for an arbitrary universe. Given a type A, we write x : A to indicate that x is an element of
type A. The initial and terminal types are respectively denoted ∅ and 1. Given two types
A and B, we respectively write A × B, A ⊔ B and A → B for their product, coproduct and
function types. Given b : B, we write cstb : A → B for the constant function whose image
is b. Given a type A and a type family B : A→ U , the corresponding dependent sum and
function types are respectively written

∑
x:A B(x) and

∏
x:A B(x). In the former situation, the

first and second projections are respectively written π1 : ΣAB → A and π2 :
∏

x:ΣAB B(π1(x))
(and similarly for the non-dependent projections π1 : A × B → A and π2 : A × B → B).
Given types A,B, we write ι1 : A → A ⊔ B and ι2 : B → A ⊔ B for the canonical inclusions,
and given a type C and maps f : A → C, g : B → C, we write ⟨f, g⟩ for the induced map
A⊔B → C. Given f : A→ C, g : B → D, we write f ⊔ g for the canonical map A⊔B → C ⊔D
(i.e. f ⊔ g = ⟨ι1 ◦ f, ι2 ◦ g⟩).

Paths. We write x := y to indicate that x is defined to be y, and x ≡ y when x is equal to y by
definition. The type theory also features a propositional notion of equality: given two elements
x and y of a type A, we write x =A y (or x = y) for the corresponding identity type, which
features a distinguished proof reflx : x = x of reflexivity for any element x. Given two identities
p : x = y and q : y = z, we write p · q : x = z for the identity obtained by transitivity. The
elimination principle for paths (known as path induction) roughly states that in order to show
that a property P :

∏
x:A

∏
p:a=x U holds for every possible values of x and p, it is enough to

show it for x := a and p := refla. By using this, it is for instance easy to show that any function
f : A → B induces a function apf : (x = y) → (f(x) = f(y)) defined by apf (reflx) := reflf(x)
witnessing that equality is a congruence.

Univalence. A map f : A→ B is an equivalence when it admits both a left and a right inverse.
We write A ≃ B for the type of equivalences between A and B. An identity is always an
equivalence and thus, by path induction, there is a canonical map (A = B) → (A ≃ B). The
univalence axiom states that this map is an equivalence.

Homotopy levels. A type A is contractible when it satisfies
∑

a:A

∏
x:A a = x, which can be

thought of as the fact that A is a point up to homotopy. The type A is a proposition (resp. a
set, a groupoid) when, for every x, y : A, the type x = y is contractible (resp. a proposition,
a set). Given a type A, we write ∥A∥−1 for its propositional truncation, which is the universal

3

way of turning it into a proposition (and the set truncation ∥A∥0 and groupoid truncation ∥A∥1
are defined similarly), with | − |n : A → ∥A∥n as canonical quotient maps. We write SetU
(resp. GpdU) for the type of sets (resp. groupoids) in the universe U . Those constructions are
detailed in [25, Chapter 7].

Fibered / indexed equivalence. Any function f : A→ B induces a type family fibf : B → U such
that fibf (b) :=

∑
a:A (f(a) = b) is the fiber of f at b. Conversely, any type family F : B → U

induces a function which is the first projection π1 : ΣBF → B from the total space ΣBF . These
two operations form an equivalence between types over B and types families indexed by B [25,
Section 4.8].

2.2 Wild categories

The notion of wild category [4] can be understood as a “non-coherent” variant of the notion
of ∞-category, where we do not require the expected coherences in dimension n > 1. In this
way, wild categories can be understood as a first step toward∞-categories. They also constitute
the right axiomatization when the objects of morphisms are sets [25, Chapter 9]. As of today,
coherences can also be written for n = 2, i.e. we can define bicategories, we expect that it might
be possible to define tricategories following the traditional categorical definition [11] but not
much more, and other approaches based on complete semi-segal spaces allow writing definitions
which are coherent up to an arbitrary dimension. However, whether∞-categories can be defined
in full generality in homotopy type theory is still an open question, and perhaps one of the most
important ones [3]. We first recall the notion of wild precategory, which is then refined into the
one of wild category by further imposing a univalence property.

Definition 1. A wild precategory C consists of type families

ObC : U HomC : ObC ×ObC → U

for objects and morphisms (we omit the indices in the following), together with composition and
identity operations

− ◦ − :
∏

x,y,z:Ob

Hom(y, z)×Hom(x, y)→ Hom(x, z) id :
∏
x:Ob

Hom(x, x)

and coherence identities witnessing for associativity

α :
∏

x,y,z,t:Ob

∏
h:Hom(z,t)

∏
g:Hom(y,z)

∏
f :Hom(x,y)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

as well as left and right unitality

λ :
∏

x,y:Ob

∏
f :Hom(x,y)

f ◦ idx = f ρ :
∏

x,y:Ob

∏
f :Hom(x,y)

idy ◦ f = f

For convenience, we write x : C for x : Ob and C(x, y) for Hom(x, y).

Given a morphism f : C(x, y) for some objects x, y : C, we say that f is an isomorphism when
it admits both a left and a right inverse [4]. We write

isIso(f) :=
(∑
g:C(y,x)

g ◦ f = idx
)
×

(∑
g:C(y,x)

f ◦ g = idy
)

for the corresponding predicate. We also write x ∼= y for the type of isomorphisms in C(x, y).

4

Lemma 2. Being an isomorphism is a proposition.

Given a wild precategory C, the identity idx on an arbitrary object x is always an isomorphism.
We can thus define a map

∏
x,y:C (x = y)→ (x ∼= y) by path induction such that, for x : C, the

image of (x, x, reflx) is idx.

Definition 3. A wild precategory is univalent when the canonical map (x = y)→ (x ∼= y) is an
equivalence of types for all x, y : C. A wild category is a univalent wild precategory.

Note that since being an equivalence is a proposition, being univalent for a wild precategory is
also a proposition.

The notion of (pre)category can be recovered as a specialization of the previous notion [25,
Definitions 9.1.1 and 9.1.6]:

Definition 4. A precategory (resp. category) C is a wild precategory (resp. category) such that
C(x, y) is a set for every objects x, y : C.

Given a universe U , there is a wild category TypeU whose objects are types in U , morphisms are
maps of types, composition and identities are the usual ones, and unitality and associativity hold
definitionally. Because of this, the above constructions generalize, to wild categories, traditional
ones for types (for instance, the notion of univalence for wild precategories coincides with the
usual one for types).

The following construction ensures that one can always formally turn a wild category into a
regular one. Note that, by univalence, the type of objects in a category has to be a groupoid [25,
Lemma 9.1.8].

Definition 5. Given a wild precategory C, we write ∥C∥1 for the precategory whose type of
objects is ∥ObC∥1, whose type of morphisms is the map Hom : (x, y : ∥ObC∥1) → SetU induced
by HomC (using the fact that SetU is a groupoid [25, Theorem 7.1.11]), and composition, identities
and coherence laws are induced similarly by those of C by truncation elimination.

Proposition 6. The precategory ∥C∥1 is univalent when C is.

We expect that the above map is a left adjoint to the forgetful functor from wild (pre)categories
to (pre)categories, we leave the proof of this fact for future work.

2.2.1 Structure in wild categories

Most of the usual categorical structures related to categories extend in the expected way to wild
categories. In fact, many of those are developed in [25, Chapter 9] in the setting of homotopy type
theory for categories, but immediately generalize to wild categories. Let us list a few instances
of this which will be used in the following.

– The cartesian product C×D of wild categories C and D is the wild category with ObC×D :=
ObC × ObD and (C × D)((x, x′), (y, y′)) := C(x, y) × D(x′, y′) with expected composition
and identities.

– A functor F : C → D between wild categories consists of a function F : ObC → ObD
between the respective types of objects, together with functions Fx,y : C(x, y)→ D(Fx, Fy)
for x, y : C as well as identities Fxidx = idFx for x : C and F (g◦f) = Fg◦Ff for composable
f and g. We can define identity and composite functors.

– A natural transformation α : F → G between functors F,G : C → D is a family αx :
D(Fx,Gx) of morphisms indexed by x : C, equipped with equalities witnessing for the
commutation of the expected diagrams.

5

– A monad T : C → C is an endofunctor equipped with natural transformations µ : T ◦T ⇒ T
and η : idC ⇒ T together with equalities witnessing for the commutation of the expected
diagrams (and comonads are defined dually).

– A monoidal wild precategory is a wild precategory C equipped with an object 1 : C and
a functor ⊗ : C × C → C together with expected natural isomorphisms (witnessing for
associativity, and left and right unitality) and identities witnessing for the commutation of
the two expected diagrams.

Given a comonad (T, δ, ε) on a wild precategory C, we write CT for the Kleisli wild precategory
whose objects are the same as C and morphisms are CT (x, y) = C(Tx, y) with the usual notion
of composition and identities [18, Section VI.5].

Structures specified by universal properties can of course also be translated to the setting of
wild categories. For instance, an object x of a wild category C is terminal when for every y : C the
type C(x, y) is contractible. Following the usual categorical proof, two terminal objects are always
isomorphic. When C is univalent the terminal object is unique: the previous isomorphism implies
that any two terminal objects are equal, i.e. that the type of terminal objects is a proposition.
The notion of cartesian product of two objects x, y : C can be defined as a terminal object in the
wild precategory of spans x z y in C. We write π1 : x× y → x and π2 : x× y → y for the
two projections. Similarly, one can define the notion of pullback of two cofinal morphisms in a
wild precategory. Finally, the dual of previous notions (initial objects, coproducts, etc.) can also
be defined. Any wild category with finite products is canonically equipped with a symmetric
monoidal structure, called the cartesian symmetric monoidal structure, with the tensor product
induced by cartesian product and distinguished object being the terminal object.

Our aim in this article is to show that the wild category of spans has the structure of a wild
Seely category. This notion generalizes to wild categories the notion of Seely category, in the
same way as above. It was introduced in [21] and then refined by Bierman [2] who added a
missing axiom, in order to provide a notion of categorical model of intuitionistic linear logic. A
detailed presentation, as well as relationship with other categorical models of linear logic, can be
found in [20].

Definition 7. A wild Seely category is a symmetric monoidal closed wild category (C,⊗,1),
which is moreover cartesian, with binary product and unit respectively denoted by & and ⊤,
together with a comonad (!, δ, ε) on C called the exponential which is symmetric monoidal, with
structural natural isomorphisms m2

A,B : !(A&B) → !A ⊗ !B and m0
⊤ : !⊤ → 1 making ! :

(C,⊗,1) → (C,&,⊤) into a symmetric monoidal functor, and such that moreover the following
diagram commutes:

!(A&B) !!(A&B) !(!A&!B)

!A⊗ !B !!A⊗ !!B

δA&B

δA⊗δB

!(!π1,!π2)

m2
A,B m2

!A,!B

The morphisms m2
A,B and m0 are often called Seely isomorphisms.

Any Seely category induces a linear-non-linear adjunction between itself and its Kleisli cate-
gory [20].

6

3 Wild categories of spans

Definition 8. Given a wild category C with pullbacks, its wild category of spans, noted Span(C)
or SpanC , is the wild category whose objects are the same as for C and whose morphisms are

spans a x bs t , written (s, t) : a −7−→ b. The identities are a a a
ida ida and composition is

induced by pullback:
x×b y

x y

a b c

π1 ⌟ π2

s t u v
(1)

Unitality, associativity (and eventual higher coherences) of Span(C) follow from the universal
properties of iterated pullbacks and the univalence of C (as for terminal objects, see section 2.2.1).
Univalence of Span(C) follows from the following fact:

Lemma 9. A span (s, t) : a −7−→ b is an isomorphism in Span(C) if and only if the morphisms s
and t are isomorphisms in C.
Proposition 10. Given a wild category C, the wild precategory Span(C) is univalent.

Remark 11. As evident from the definition, the category Span(C) is self-dual: there is an in-
volutive contravariant functor Span(C)op → Span(C) acting as the identity on morphisms and
switching the two legs of morphisms.

3.1 Functoriality of the Span construction

The goal of this subsection is to address general question of the form: “given some structure on
C, does it lift to Span(C)?” An ∞-categorical statement that would imply all of the results we
prove in this section would be along the lines of

Conjecture 12. The Span construction underlies a limit-preserving (∞, 2)-functor from the
(∞, 2)-category of categories with pullbacks, functors preserving pullbacks, and cartesian natural
transformations, to the (∞, 2)-category of categories. Propositions 13 to 15 together with the
fact that we have the obvious equivalence Span(C × D) ≃ Span(C)× Span(D) form a 2-categorical
approximation to this conjecture.

However, since we cannot state this result in full generality in homotopy type theory, let alone
prove it, we detail how the span construction acts on low-dimensional cells, namely functors and
natural transformations.

Proposition 13. Let C and D be wild categories with pullbacks and F : C → D be a functor. If
F preserves pullbacks, then it lifts to a functor Span(F) : Span(C)→ Span(D). Span(F) acts as
the identity on objects, and given a span (f, g) : a −7−→ b, we have F (f, g) := (Ff, Fg) : Fa −7−→ Fb.

Before explaining how to lift natural transformations to categories of spans, we explain how
to lift morphisms. Given objects a, b : C, any morphism f : a→ b canonically induces two spans

Lf : a −7−→ b := a a b
ida f

and Rf : b −7−→ a := b a a
f ida

Moreover, we have L(g ◦ f) = Lg ◦ Lf since the center square in the following diagram is a
pullback square:

a

a b

a b c

idA

f idB

g

idA f⌟

7

This makes L into a covariant functor L : C → Span(C). Similarly, R extends to a contravariant
functor R : Cop → Span(C). Actually, R is just L precomposed to the self-duality functor of
remark 11.

Proposition 14. Let F,G : C → D be pullback-preserving functors between categories with
pullbacks, and α : F ⇒ G be a cartesian natural transformation. Then α extends as a natural
transformation Span(α) : Span(F)⇒ Span(G).

Proof. The natural transformation Span(α) is given on objects by Span(α)a := Lαa : Fa −7−→ Ga

for a in Span(C). Now let a x b
f g

be a morphism in Span(C). The corresponding naturality
square is the following square of spans:

Fa Fx Fb

Fa Fa×Ga Gx Fx Fb

Ga Gx Gb

(1)

(2) αx
(3)

Ff

idFa

αa

idFb

αb

Fg

Gf Gg

idFx

⌟

⌟

h

where the dotted squares are pullbacks, the middle arrow h is induced by universal property of
the pullback Fa×Ga Gx from the naturality square

Fa Fx

Ga Gx

αa

Ff

αx

Gf

thus making the triangles (1) and (2) commute, and the square (3) commutes by naturality
of α (with respect to g). This can be thought of as showing that the natural transformation
Span(α) : Span(F) → Span(G) is oplax. Moreover, since α is supposed to be cartesian, the
above naturality square is a pullback and thus h is an isomorphism. We can thus conclude that
Span(α) is a natural transformation.

Proposition 15. The action on cartesian natural transformations α 7→ Span(α) respects vertical
and horizontal composition.

Let C be a wild category with pullbacks and a terminal object 1. In particular, C admits
finite products, since they are pullbacks over 1. Those finite products endow C with a symmetric
monoidal structure.

Proposition 16. The cartesian symmetric monoidal structure on C lifts to a symmetric monoidal
structure on Span(C).

Proof. The cartesian product functor − × − : C × C → C commutes with pullbacks since limits
commute with limits. By proposition 13, it therefore lifts to a functor Span(C × C)→ Span(C).
Moreover, there is a canonical equivalence of wild categories Span(C × C) ≃ Span(C)× Span(C).
Composing Span(− × −) with this equivalence, we obtain a tensor product − ⊗ − : Span(C) ×
Span(C)→ Span(C). The unit object of the monoidal structure is 1, seen as an object of Span(C).
The unitality, associativity, braiding, symmetry and all higher coherences for the tensor and unit
are lifted from the coherences induced by the universal properties of the cartesian product in
C.

8

Remark 17. From the point of view of conjecture 12, we are using the following idea: a symmetric
monoidal ∞-category is a commutative monoid object in the ∞-category of ∞-categories [16,
Remark 2.4.2.6]. We expect that finite products on C should induce a structure of commutative
monoid object on C in the ∞-category of ∞-categories with pullbacks and pullback-preserving
functors. By conjecture 12, the ∞-functor Span should be cartesian, and thus preserves com-
mutative monoid objects. Hence it should lift the cartesian symmetric monoidal structure on C
to a symmetric monoidal structure on Span(C). This idea tells us even more: any symmetric
monoidal structure on C that is compatible with pullbacks should lift to a symmetric monoidal
structure on Span(C).

Proposition 18. The symmetric monoidal wild category (Span(C),⊗,1) is monoidal closed. For
any objects A,B in C, the internal hom in Span(C) is given by A ⊸ B := A⊗B.

Remark 19. The wild symmetric monoidal category of spans is actually compact closed, with
each object being self-dual, which can be shown following the categorical proof [22]. As such it
is monoidal closed with internal hom being given by A ⊸ B := A∗ ⊗ B ≡ A ⊗ B. Note that it
also implies that it is ∗-autonomous.

3.2 Finite products in spans of types

We now focus our attention to the case C = U and show that the category SpanU has finite
products.

Proposition 20. The wild category SpanU admits finite products, and they are computed as
coproducts in C, i.e. we have π1 = Rι1 : A ⊔B −7−→ A and π2 = Rι2 : A ⊔B −7−→ B.

Remark 21. The proof of proposition 20 could be more generally performed for any category C
which is lextensive, but our main focus will be on C := U here.

Remark 22. By self-duality (see remark 11), proposition 20 implies that SpanU also has coprod-
ucts.

We now have a symmetric monoidal closed category Span(U), which is furthermore cartesian
(i.e. it admits finite products). To enhance it to a model of linear logic following definition 7,
we need to equip it with a comonad whose underlying functor is symmetric monoidal from the
cartesian structure to the monoidal structure.

4 The exponential comonad

Remember that our goal is to define a comonad on Span(U). By self duality (remark 11), this
amounts to defining a monad on spans. We begin by defining a monad on TypeU , and then show
that it lifts to spans.

4.1 The exponential as a monad on TypeU

In order to axiomatize the notion of “small type”, we suppose fixed a type V : U , whose elements
are codes for “small” types, together with an embedding (i.e. a fully faithful function) El : V → U
which to every code associates an actual type. In the following, for simplicity, given A : V, we
simply write x : A instead of x : ElA for an element x of a small type A. Because El is an
embedding, the property for A : U of being equal to ElA′ for some A′ : V is a proposition,

and we say that A is V-small when this is the case. We write A
V−→ U for the type of families

F : A → U whose total space is V-small. In the following, we always suppose that V is closed

9

under dependent sums (i.e. for every A : V and B : A→ V, we have ΣAB : V), finite coproducts
(in U) and contains the terminal type. (Note: this axiomatization is close to the one of a regular
cardinal in set theory).

Example 23. In the case where U := Uj , we can take V := Ui for i < j as universe of small types
(the closure properties are immediate and we take El to be the identity).

Example 24. Given a natural number n : N, we write Finn for a type with n elements. We define
the type of finite types as Fin :=

∑
A:U

∑
n:N ∥A = Finn∥−1: an element of this type is a type

together with the mere proof that it has a finite cardinal. We can then can take V := Fin as
universe of small types, with El being the first projection.

Definition 25. Given a type A, its exponential !VA (read “bang A”) relative to V is defined to
be

!VA :=
∑
E:V

E → A

We often simply write !A, omitting V when it is obvious from the context. The exponential acts
on morphisms by postcomposition: given a map f : A → B, the induced map !f : !A → !B is
defined by !f(E, p) := (E, f ◦ p). This makes ! into an endofunctor on TypeU .

Remark 26. Consider the case V ≡ Fin of example 24. Then !A is the homotopical analogue
of the multiset construction. In ordinary set theory, multisets on a set A are usually defined
as maps A → N with finite support. In other words, a multiset on A is a finite collection of
elements of A, with possible repetitions. Another way to think of a multiset X on A is simply
as a finite set X whose elements are colored by elements of A. This intuition is implemented
formally by alternatively defining a multiset on A to be the data of a finite set X together with
a map c : X → A. It is this latter intuition that we chose as 25 here.

Under the fibered/indexed equivalence (section 2.1), we could have also adapted the “map

with finite support” point of view, defining a multiset on A to be a map F : A
V−→ U , i.e. a map

F : A → U such that its total space
∑

x:A F (x) is a V-small type (notice how “finite support”
has to be replaced with “finite total space” to make sense for an arbitrary base type A).

We say that !A is a homotopical version of multisets in the sense that, contrary to its set-
theoretic version, it remembers more symmetries. For instance, consider the set A = {a, b},
and the multiset X = [a, a, b]. Seen as an element of !A, X has two self-identifications: the
identity, and the one that swaps the two elements colored by a. Hence the type X =!A X has
two elements, and !A is a groupoid that is not a set, even though A was.

Remark 27. Consider still V ≡ Fin. Given a set A, the set of multisets on A is the free
commutative monoid on A. Similarly, given a type A seen as an ∞-groupoid, we expect that !A
is the free symmetric monoidal ∞-groupoid on A (and similarly we expect !VA to be the free
symmetric monoid with V-small sums).

In order to explore the monad laws of !, we can first informally use the analogy with multisets.
Writing Mul(A) for the multiset on a set A, we expect the unit ηA : A→ Mul(A) to be the map
sending a to the multiset with a (once) as only element. Similarly, we expect the multiplication
µA : Mul(Mul(A))→ Mul(A) to take a multiset of multisets to the multiset of its elements. This
suggests defining the following natural transformations

ηA : A→ !A µA : !!A→ !A

a 7→ (1, csta) (E, p) 7→
((∑

e:E

π1(p(e))
)
, ((e, e′) 7→ π2(p(e)))

)
Note that the above definitions use the fact that V contains the terminal object and is closed
under dependent sums.

10

Remark 28. By definition, we have !!A ≡
∑

E:V (E →
∑

E′:V (E′ → A)), so an element in !!A
consists of a V-small type E, and a family E′ of V-small types indexed by E, together with
a map associating to each pair (e, e′) :

∑
e:E E′(e) a “color” in A. In other words, !!A ≃∑

E:V
∑

E′:E→V ΣEE′ → A. Under this equivalence, the multiplication map µ : !!A→ !A simply
sends the triplet (E,E′, p) to the total space ΣEE′ colored by p. Throughout the rest of this
text, we will often abuse notation by writing (E,E′, p) : !!A, implicitly using this equivalence.

Lemma 29. The transformations η and µ defined above are natural.

Proposition 30. The triple (!, µ, η) is a monad on U .
We finally construct two isomorphisms in U that will become the Seely isomorphisms for Span(U)
in the next section.

Proposition 31. We have natural isomorphisms l2A,B : !A×!B ∼−→ !(A⊔B) for all types A,B : U ,
and an isomorphism l0 : 1

∼−→ !∅. The former is defined by l2A,B((E, p), (F, q)) := (E ⊔ F, p ⊔ q).

4.2 Lifting the exponential monad to spans

We now show that the monad ! on U lifts to a monad on Span(U).
Proposition 32. The functor ! : U → U preserves pullbacks and therefore, by proposition 13,
lifts to a functor Span(!) : SpanU → SpanU .

In the following, to make notations more readable, we will still denote by ! its lifting Span(!).
Our aim is now to show that this functor inherits monad laws from the ones of the monad

constructed on spans in section 4.1. Using propositions 14 and 15, we only need to show that
the natural transformations η and µ are cartesian.

Proposition 33. The natural transformation η : idU ⇒ ! is cartesian.

Proposition 34. The natural transformation µ : !!⇒ ! is cartesian.

Since η and µ are cartesian, they lift to natural transformations in spans, making ! into a
monad on Span(U). By remark 11, they also make bang into a comonad on Span(U). We write ε
and δ respectively for the counit and comultiplication of the comonad !. Unfolding the definition,
we have

εA : !A −7−→ A δA : !A −7−→ !!A

εA := R(ηA) = !A
ηA←−− A

idA−−→ A δA := R(µA) = !A
µA←−− !!A

id!!A−−−→ !!A

Similarly, l2 being a natural isomorphism, its naturality squares are cartesian so that, under
the equivalence Span(U × U) ≃ Span(U) × Span(U) and by selfduality (remark 11), it lifts to a
natural isomorphism m2

A,B := R(l2A,B) : !(A ⊔ B) −7−→ !A × !B. The morphism l0 also lifts to a

morphism m0 := R(l0) : !∅ −7−→ 1.

Theorem 35. The symmetric monoidal closed, cartesian wild category (Span(U),⊗,1,⊔,∅),
equipped with the comonad (!, δ, ε) and the morphisms m2,m0, is a wild Seely category.

Proof. We need to check that (!,m2,m0) : (Span(U),⊔,∅) → (Span(U),⊗,1) is symmetric
monoidal, and that for all A,B : U the following diagram commutes

!(A ⊔B) !!(A ⊔B) !(!A ⊔ !B)

!A× !B !!A× !!B
δA×δB

p

δA⊔Bp !(!π1,!π2)p

m2
A,B m2

!A,!B

11

But this diagram is precisely the image by the functor R : Uop → Span(U) of the diagram

!(A ⊔B) !!(A ⊔B) !(!A ⊔ !B)

!A× !B !!A× !!B
µA×µB

!(!ι1,!ι2)µA⊔B

l2A,B l2!A,!B

Let E := (E,E′, p) : !!A and F := (F, F ′, q) : !!B (under the equivalence of remark 28). We have

l2A,B((µA × µB)(E,F)) = l2A,B((ΣEE′, p), (ΣFF ′, q)) = (ΣEE′ ⊔ ΣFF ′, p ⊔ q)

and

!!A× !!B !(!A ⊔ !B) !!(A ⊔B) !(A ⊔B)

(E,F) (E ⊔ F, (E′, p) ⊔ (F ′, q)) (E ⊔ F, ⟨E′, F ′⟩, p ⊔ q) (
∑

x:E⊔F

∑
y:⟨E′,F ′⟩(x)(p ⊔ q)(x, y))

!⟨!ι1,!ι2⟩ µA⊔B
l2!A,!B

Those two elements of !(A ⊔ B) are equal by virtue of Σ-types distributing over disjoint sums.
We defer the proof that ! is symmetric monoidal to the appendix.

The above theorem can be interpreted as the fact that Span(U) is a “wild model” of intuitionistic
linear logic. Since it is ∗-autonomous (remark 19), it also extends to a model of classical linear
logic and the presence of products (proposition 20) and coproducts (remark 22) allow for modeling
additives.

It is not difficult to show that the categorical structures are preserved by truncation (defini-
tion 5), and preservation of univalence was shown in proposition 6. We thus have:

Theorem 36. The category ∥Span(U)∥1 is a Seely category and thus a model of linear logic.

Note that the model we obtain, which is apparently new, is of a very different nature than
the usual ones for linear logic (relational model, coherence spaces, etc.). Namely, the category
∥TypeU∥1 of types and homotopy classes of functions embeds, via the functor induced by L, into
∥Span(U)∥1. This former category can be interpreted as the homotopy category of spaces, and it
is known that it is not concrete [7], i.e. cannot be recovered as a subcategory of Set, thus neither
can be our model. We leave for future work the investigation of possible more direct descriptions
of this model.

5 The exponential modality and polynomials

We show here that the wild Kleisli category associated to our comonad on Span(U) is the well-
known category of polynomials (up to homotopy).

Definition 37. Let I, J be types. A polynomial from I to J is a diagram of the shape

I E B Js p t (2)

In other words, the type of polynomials with source I and target J is

Poly(I, J) :=
∑
E:U

∑
B:U

(E → I)× (E → B)× (B → J)

To make sense of this definition, one must understand what the data of a polynomial represents,
namely, a polynomial functor.

12

5.1 The functor associated to a polynomial

In the following, given a map f : A → B and b : B, we write Ab for fibf (b), the function being
often implicit from the context. A polynomial as in definition 37 can be thought of as the data
describing a (colored) polynomial functor in the following sense. Given j : J , Bj is the type of
monomials colored by j; given b : Bj , the arity of the monomial b is Eb; finally, the function
t : Eb → I associates, to each variable e : Eb a color in I. This interpretation suggests associating
to any polynomial a function, following the now classical definition of a polynomial functor [8].

Definition 38. Any polynomial P = (E,B, s, t, p) as in (2) induces a map FP : UI → UJ ,
defined by

F (X)(j) :=
∑
b:Bj

∏
e∈Eb

X(s(i))

called the polynomial functor induced by P .

Above, we abusively use the term “functor” following the traditional terminology which comes
from the fact that, in category theory, a polynomial in a locally cartesian closed category C
between objects x and y induces a functor C/x → C/y. Here, we have C := U , and under the
fibered/indexed equivalence the slice category U/X is equivalent to UX .

Definition 39. A polynomial P = (E,B, s, p, t) is said to be linear if the map p is an equivalence.
This is precisely equivalent to asking the fibers Eb := fibp(b) to be contractible for all b : B, in
which case the products in the expression of FP are indexed over singleton types, hence the name
linear.

Remark 40. Any span A X B
f g

induces a linear polynomial (X,X, f, idX , g). Moreover this
map is an equivalence: every linear polynomial is equivalent (and thus, by univalence, equal) to
one of this form.

We can generalize definition 39 by weakening the requirements on the fibers of p, i.e. by selecting
which arities are allowed for the products appearing the associated polynomial functor.

Definition 41. A polynomial (E,B, s, p, t) is said to be V-ary if the fibers of the map p are
V-small. We write PolyV(I, J) for the type of V-ary polynomials between I and J , in other
words:

PolyV(I, J) :=
∑
E:U

∑
B:U

(E → I)× (E →V B)× (B → J)

(where E →V B denotes the type of maps f : E → B whose fibers are V-small).

Example 42. Here are some examples of universes and the corresponding notions of polynomials:

– if V is the universe of contractible types, the V-ary polynomials are the linear ones, hence
the spans by remark 40,

– if V is the universe of propositions (i.e. subsingletons), the V-ary polynomials could be
called affine polynomials,

– if V ≡ Fin is the universe of finite types, then we talk about finitary polynomial functors
(those correspond to the ones of [5], which are further detailed in section 6.1).

Note that those notions make sense even for choices of V that do not satisfy all the axioms asked
at the beginning of section 4.

13

Proposition 43. There is a wild category PolyV whose objects are types in U and morphisms
are V-ary polynomials. Identities are given by identity spans seen as polynomials: IdA :=

A A A A
idA idA idA . The composition of two polynomials P = (I E B Js p t) and Q =

(J F C Ku q v) is given by

I
∑

(c,α):D

∑
x:Fc

Eα(x) D K
π1s◦π3 v◦π1

where D :=
∑

c:C

∏
x:Fc

Bu(x).

Proof. We do not prove that composition is unital and associative since it will follow from
theorem 45. The fact that PolyV is univalent was claimed in [5] without proof. Here is a sketch

of proof: suppose that a polynomial P = (I E B Js p t) has a left and right inverse, we
can prove that p has to be an isomorphism in V, so that P is actually a span, and similarly for
its two-sided inverses. Then univalence of PolyV follows from proposition 10.

5.2 Polynomials are Kleisli morphisms

Proposition 44. Let I, J be types. There is an equivalence

poly-to-span : PolyV(I, J) ≃ Span(!VI, J)

which maps a polynomial I
s←− E

p−→V B
t−→ J to !VI

s←− B
t−→ J where s(b) :=

(
Eb, s|Eb

)
(where

s|Eb
is the restriction of s to Eb).

Proof. Fix B : U .∑
E:U

(E → I)× (E →V B) ≃
∑

F :B→V
(ΣBF → I) ≃ B →

∑
F :V

(F → I) ≡ (B → !VI) (3)

Thus, we have the following chain of equivalences:

PolyV(I, J) ≡
∑
E:U

∑
B:U

(E → I)× (E →V B)× (B → J)

≃
∑
B:U

(∑
E:U

(E → I)× (E →V B)
)
× (B → J) (reordering of terms)

≃
∑
B:U

(B → !VI)× (B → J) (by (3))

≡ Span(!VI, J)

which concludes the proof.

Now, the interesting point is that this equivalence respects composition and identities: as
we will show, there is an equivalence of categories between Poly and the Kleisli category for
the comonad ! on Span. The intuition one should have here is that spans correspond to linear
polynomials and ! allows for using variables many times, we thus expect a linear map which is
allowed to use its arguments multiple times to be the same as a polynomial.

Theorem 45. The Kleisli wild category Span(U)!V associated to the comonad !V on Span(U) is
equivalent to the wild category PolyV of polynomials.

14

Proof. The wild categories Span(U)!V and PolyV have the same type of objects, namely U , so we
can take the identity as the mapping on objects PolyV → Span(U)!V . Since it is an equivalence
on objects, the functor we are constructing is in particular essentially surjective. The action on
morphisms is given by the equivalence of proposition 44 (thus our functor will be fully faithful).
Remains to be shown that this mapping is compatible with identities and composition.

Fix a type A. By proposition 44, the identity polynomial on A is mapped to the span

!VA A A
idA idA , with idA(a) = (

∑
a′:A(a

′ = a), (a′, p) 7→ a′). But the type
∑

a′:A(a
′ = a) is

contractible with center (a, refla) [25, Lemma 3.11.8], so idA(a) = (1, csta) = ηA(a). So in the
end poly-to-span(IdA) = εA, which is the identity of A in Span(U)!V .

Now for composition. Let P = (I E B Js p t) and Q = (J F C Ku q v) be poly-
nomials in PolyV . Writing D :=

∑
c:C

∏
x:Fc

Bu(x) as in proposition 43, the span poly-to-span(Q◦

P) is given by !I D K
f g

, with

f(c, α) :=
(∑
x:Fc

Eα(x), (x, e) 7→ s(e)
)

and g(c, α) := v(c).

On the other hand, composition in Span(U)!V is given by the following composition of spans

!!I !B C

!I !!I !J K
!s !t u vid!!I

µ

Pulling back along id!!I does not change the morphism, so that this is the same as the composition
of the spans

!B C

!I !J K
µ◦!s !t u v

This composition is obtained by computing the following pullback:

!B×!JC ≡
∑
X:V

∑
π:X→B

∑
c:C

(X, t ◦ π) =!J

(
Fc, u|Fc

)
≃

∑
c:C

∑
X:V

∑
k:X≃Fc

∑
π:X→B

t ◦ π = u|Fc
◦ k (equality in Σ-types and univalence)

≃
∑
c:C

∑
π:Fc→B

t ◦ π = u|Fc
(contracting (X, k) onto (Fc, id))

≃
∑
c:C

∑
π:Fc→B

∏
x:Fc

t(π(x)) = u(x) (function extensionality)

≃
∑
c:C

∏
x:Fc

∑
b:B

t(b) = u(x) (swapping Π and Σ)

≡
∑
c:C

∏
x:Fc

Bu(x) (def. of Bu(x) ≡ fibtu(x))

≡ D

The inverse map l : D → !B×!JC maps the pair (c, α) to the tuple ((Fc, π1◦α), c, (reflFc , π2◦α)).

15

What remains to show is that the two following triangles commute.

D

!I J

!B×!JC

l

f g

v◦π2µ◦s◦π1

Let (c, α) : D. We have

µ(!s(π1(l(α, c)))) = µ(!s(Fc, α)) = µ(Fc, s ◦ α) = µ
(
Fc, x 7→

(
Eα(x), s|Eα(x)

))
=

(∑
x:Fc

Eα(x), (x, e) 7→ s(e)
)

= f(c, α)

and v(π2(l(c, α))) = v(c) = g(c, α). This completes the proof.

We would like to point out that the observation that polynomial functors could be described as
a Kleisli category was already made by Street [23, Example 13] (although ignoring size issues).

6 Related works

6.1 Recovering the bicategory of polynomials

Let us explain here the relationship between the work in this article and the construction of the
(wild) bicategory of spans performed in [5]. First, as indicated in section 2.2, the notion of wild
category is “right” only when the hom-types are sets (definition 4). In the general case, one
needs to add further additional axioms in order to ensure the coherence of the structure (in fact,
this coherence is itself part of the structure). The “next layer” of coherences can be expressed
as follows.

Definition 46. A 2-coherence for a wild precategory C consists of witnesses for the commutation
of the following diagrams for any suitably composable morphisms f, g, h, i:

i ◦ (h ◦ (g ◦ f))

i ◦ ((h ◦ g) ◦ f) (i ◦ h) ◦ (g ◦ f)

(i ◦ (h ◦ g)) ◦ f ((i ◦ h) ◦ g) ◦ f
αi◦h,g,f

ap(−◦f)(αi,h,g)

αi,h◦g,f

ap(i◦−)(αh,g,f) αi,h,g◦f
g ◦ (id ◦ f) (g ◦ id) ◦ f

g ◦ f

αg,id,f

ap(g◦−)(λf) ap(−◦f)(ρg)

A (pre)bicategory is a wild (pre)category equipped with a 2-coherence such that C(x, y) is a
groupoid for every objects x, y : C.

It can be shown that the wild category Span(U) can be equipped with a 2-coherence. We
expect that the monad defined in section 4 can also be shown to be coherent (this is left for
future work), thus inducing a 2-coherence on the wild Kleisli category Poly(U). Moreover,
this construction can be refined (in the same spirit as section 4.1) in order to replace U by a
subuniverse of types satisfying suitable closure properties. In particular, this would allow defining
Poly(Gpd), thus recovering the construction of the wild bicategory of polynomials defined in [5].
It should be noted that, contrarily to what is claimed, [5] only actually constructs a wild 2-
coherent category: it is 3-truncated (and not 2-truncated as expected for a bicategory). However,
this can be fixed by truncating the wild 2-coherent category into a bicategory, using a similar
process as for categories (see definition 5 and proposition 6).

16

6.2 Towards a model of differential linear logic

In [19], Melliès defines a bicategorical model of differential linear logic based on a comonad on
spans (we consider here only the particular case where the “synchronization template” category
is the terminal one). When we restrict his model to groupoids (as opposed to categories), we
obtain a model which is equivalent to the one of the previous section with U := Gpd and
V := Fin. We can thus conclude that the morphisms in his Kleisli category are the polynomials,
this observation being new to our knowledge. This also suggests that we could extend our model
into one of differential linear logic. This shall be the topic of future work.

6.3 Species of structure

The model we have defined is close to the one of species of structures [6], we plan to investigate
the relationship between the two in future work. In particular, the comparison should be made
easier by the work of Gepner, Haugseng and Kock [9, Section 3.2] who showed that analytic and
polynomial functors coincide in the setting of ∞-categories.

References

[1] P Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Interna-
tional Workshop on Computer Science Logic, pages 121–135. Springer, 1994.

[2] Gavin M Bierman. What is a categorical model of intuitionistic linear logic? In Typed
Lambda Calculi and Applications: Second International Conference on Typed Lambda Cal-
culi and Applications, TLCA’95 Edinburgh, United Kingdom, April 10–12, 1995 Proceedings
2, pages 78–93. Springer, 1995.

[3] Ulrik Buchholtz. Update on semisimplicial types in homotopy type theory. Workshop on
Logic and higher structures,.

[4] Paolo Capriotti and Nicolai Kraus. Univalent higher categories via complete semi-segal
types. arXiv:1707.03693, doi:10.48550/arXiv.1707.03693.

[5] Eric Finster, Samuel Mimram, Maxime Lucas, and Thomas Seiller. A cartesian bicategory
of polynomial functors in homotopy type theory. In 37th Conference on the Mathematical
Foundations of Programming Semantics (MFPS 2021), 2021. arXiv:2112.14050.

[6] Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. The cartesian closed
bicategory of generalised species of structures. Journal of the London Mathematical Society,
77(1):203–220, 2008.

[7] Peter Freyd. Homotopy is not concrete. In The Steenrod Algebra and Its Applications:
A Conference to Celebrate NE Steenrod’s Sixtieth Birthday: Proceedings of the Conference
held at the Battelle Memorial Institute, Columbus, Ohio March 30th–April 4th, 1970, pages
25–34. Springer, 1970.

[8] Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. In
Mathematical proceedings of the cambridge philosophical society, volume 154, pages 153–
192. Cambridge University Press, 2013.

[9] David Gepner, Rune Haugseng, and Joachim Kock. ∞-operads as analytic monads. Inter-
national Mathematics Research Notices, 2022(16):12516–12624, 2022.

17

https://arxiv.org/abs/1707.03693
https://doi.org/10.48550/arXiv.1707.03693
https://arxiv.org/abs/2112.14050

[10] Jean-Yves Girard. Normal functors, power series and λ-calculus. Annals of pure and applied
logic, 37(2):129–177, 1988.

[11] Robert Gordon, Anthony John Power, and Ross Street. Coherence for tricategories, volume
558. American Mathematical Society, 1995.

[12] Mark Hovey. Model categories. Number 63. American Mathematical Society, 2007.

[13] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent foun-
dations (after voevodsky). Journal of the European Mathematical Society, 23(6):2071–2126,
2021.

[14] Joachim Kock. Data types with symmetries and polynomial functors over groupoids. Elec-
tronic Notes in Theoretical Computer Science, 286:351–365, 2012. arXiv:1210.0828.

[15] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory. Logical Methods
in Computer Science, 6, 2010.

[16] Jacob Lurie. Higher Algebra. URL: https://people.math.harvard.edu/~lurie/papers/
HA.pdf.

[17] Jacob Lurie. Higher topos theory. Princeton University Press, 2009.

[18] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science
& Business Media, 2013.

[19] Paul-Andre Mellies. Template games and differential linear logic. In 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13. IEEE. URL:
https://ieeexplore.ieee.org/document/8785830/, doi:10.1109/LICS.2019.8785830.

[20] Paul-André Melliès. Categorical semantics of linear logic. Panoramas et syntheses, 27:15–
215, 2009.

[21] Robert AG Seely. Linear logic, ∗-autonomous categories and cofree coalgebras. Ste. Anne
de Bellevue, Quebec: CEGEP John Abbott College, 1987.

[22] Michael Stay. Compact closed bicategories. Theory and Applications of Categories,
31(26):755–798, 2016. arXiv:1301.1053.

[23] Ross Street. Polynomials as spans. arXiv:1903.03890, doi:10.48550/arXiv.1903.03890.

[24] Paul Taylor. Quantitative domains, groupoids and linear logic. In Category Theory and Com-
puter Science: Manchester, UK, September 5–8, 1989 Proceedings, pages 155–181. Springer,
1989.

[25] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

[26] Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the
london mathematical society, 102(2):370–394, 2011.

18

https://arxiv.org/abs/1210.0828
https://people.math.harvard.edu/~lurie/papers/HA.pdf
https://people.math.harvard.edu/~lurie/papers/HA.pdf
https://ieeexplore.ieee.org/document/8785830/
https://doi.org/10.1109/LICS.2019.8785830
https://arxiv.org/abs/1301.1053
https://arxiv.org/abs/1903.03890
https://doi.org/10.48550/arXiv.1903.03890
https://homotopytypetheory.org/book

A Omitted proofs

Proof of lemma 2. Fix a morphism f : C(x, y) and suppose ((g, p), (h, q)) : isIso(f). Then we
have

g = g ◦ (f ◦ h) = (g ◦ f) ◦ h = h.

Hence g is both a left and right inverse to f . Thus the type
(∑

g:C(y,x) g ◦ f = idx

)
is equivalent

to
∑

g′:C(y,x) g
′ = g, which is contractible, and similarly for the second component of isIso(f).

We proved that isIso(f) → isContr(isIso(f)), which implies that isIso(f) is a proposition. Note
that a similar property is shown in [25, Lemma 9.1.3] for categories, but the proof relies on the
fact that hom types are sets (definition 4).

Proof of proposition 6. We write

pathToEquivx,y : (x =Ob∥C∥1
y)→ (x ∼= y)

for the canonical function associating to two equal objects of ∥C∥1 an isomorphism between them:
our aim is to show that this map is an equivalence. Since being an isomorphism is a proposition
(lemma 2) and thus a groupoid [25, Theorem 7.1.7], we can suppose given x, y : C and we have
to show (|x|1 = |y|1) ≃ ∥x ∼= y∥0. We know that |x|1 = |y|1 is equivalent to ∥x = y∥0 [25,
Theorem 7.3.12], which in turn is equivalent to ∥x ∼= y∥0 by univalence of C. Finally, we can
show ∥x ∼= y∥0 ≃ (|x|1 ∼= |y|1) by directly constructing an isomorphism between two types.

Proof of lemma 9. Suppose given a span (s, t) : a −7−→ b which admits an inverse (u, v) : b −7−→ a.
Since (u, v) ◦ (s, t) = ida, with the notations of (1), we have π1 ◦ s = ida and therefore s
admits a left inverse. Similarly, s admits a right inverse and is thus invertible, and similarly t is
invertible.

Proof of proposition 10. Let a, b be objects of C. By lemma 9 and univalence of C, we have

(a ≃Span b) ≃
∑
x:U

(x ≃C a)× (x ≃C b) ≃
∑
x:U

(x = a)× (x = b) ≃ (a = b)

where the last step follows from classical identities and contractibility of singleton types [25,
Lemma 3.11.8].

Proof of proposition 13. We define Span(F) on objects by Span(F)(a) := Fa and on morphisms
by

Span(F)(a x b
f g

) := Fa Fx Fb
Ff Fg

That Span(F) preserves identities immediately follows from the fact that F does, and that F
preserves composition of spans is precisely the statement that F preserves pullbacks.

Proof of proposition 15. First, observe that by the computation of proposition 13, the action of
Span(−) obviously preserves the composition of functors.

First, for vertical composition of cartesian natural transformations : let C,D be wild categories
with pullbacks, F,G,H : C → D pullback-preserving functors, α : F ⇒ G and β : G ⇒ H
cartesian natural transformations. Given A : C, we have Span(β ◦ α)A = L(βA ◦ αA) = L(βA) ◦
L(αA) = Span(βA) ◦ Span(αA), so Span preserves vertical composition of cartesian natural
transformations.

Now, for whiskering operations : let C,D, E be categories with pullbacks, F, F ′ : C → D,
G,G′ : D → E be pullback-preserving functors, α : F ⇒ F ′ and β : G⇒ G′ be cartesian natural
transformations.

19

– First for left whiskering : write G ∗ α : G ◦ F ⇒ G ◦ F ′ for the left whiskering of α by G,
i.e. (G ∗ α)A := G(αA) for all A : C. Since G preserves pullbacks, G ∗ α is also a cartesian
natural transformation. Moreover, for all A : C, we have

Span(G ∗ α)A = L(G(αA)) = G(L(αA)) = Span(G)(Span(α)A)

so that Span preserves left whiskering.

– Then, for right whiskering : similarly, write β∗F : G◦F ⇒ G′◦F for the right whiskering of
β by F , i.e. (β∗F)A = βFA for all A : C. The naturality squares for β∗F are still naturality
squares for β, so they are cartesian regardless of the fact that F preserves pullbacks. Now,
for all A : C, we have

Span(β ∗ F)A = L(βFA) = Span(β)FA = (Span(β) ∗ Span(F))A

so that Span preserves right whiskering.

We just proved Span preserves vertical composition and left and right whiskering of cartesian
natural transformations, so it also preserves horizontal composition. This concludes the proof.

Proof of proposition 18. Given objects A,B,C of C, we have

SpanC(A⊗B,C) ≡ SpanC(A×B,C) (definition of ⊗)

≃
∑
X∈C

(X → A×B)× (X → C) (definition of SpanC)

≃
∑
X∈C

(X → A×B × C) (univ. prop. of × in C)

≃
∑
X∈C

(X → A)× (X → B × C) (univ. prop. of × in C)

≃ SpanC(A,B ⊗ C) (definition of SpanC)

Proof of proposition 20. We restrict our attention to binary products and the terminal object.
Let A and B be types. We have

SpanU (X,A ⊔B) ≃ (X × (A ⊔B))→ U (fibered/indexed equivalence)

≃ ((X ×A) ⊔ (X ×B))→ U
≃ ((X ×A)→ U)× ((X ×B)→ U)
≃ SpanU (X,A)× SpanU (X,B),

which proves that A ⊔B has the universal property of the cartesian product in SpanU .

For the terminal object, given a span X
s←− Y

t−→ ∅, the map t : Y → ∅ is necessarily unique
and implies that Y ≃ ∅. Hence the data of such a span reduces to that of a map ∅ → X, of
which there is only one. Hence ∅ is terminal in SpanU .

Proof of lemma 29. Let f : A→ B be a map of types and consider the follow naturality squares:

A !A !!A !A

B !B !!B !BηB

ηA

f !f

µA

!!f

µB

!f

20

Given a : A, we have

(!f)(ηA(a)) = (!f)(1, csta) = (1, cstf(a)) = ηB(f(a))

(and this equality is actually reflexivity).
Given (E,E′, p) : !!A (under the equivalence of remark 28), we have

(!f)(µA(E,E′, p)) = (!f)(ΣEE′, p) = (ΣEE′, f ◦ p)

and
µB((!!f)(E,E′, p)) = µB(E,E′, f ◦ p) = (ΣEE′, f ◦ p)

which completes the proof of naturality.

Proof of proposition 30. Let A : U . We need to prove the following square and triangles commute

!!!A !!A !A !!A !A

!!A !A !A

!µA

µ!A

µA

µA

!ηA η!A

µ
id!A id!A

Let (E, p) : !A. We have

µA(η!A(E, p)) ≃ µA(1, cstE , (∗, e) 7→ p(e)) ≃ (E, p)

and
µA(!ηA(E, p)) ≃ µA(E, e 7→ 1, (e, ∗) 7→ p(e)) ≃ (E, p)

hence the triangles commute.
Now let (E,E′, E′′, p) : !!A. Here we are using a characterization of !!!A similar to that

of !!A in remark 28. In other words, we have E : V, E′ : E → V, E′′ : ΣEE′ → V and
p : ΣE(ΣE′E′′)→ A. We have

µA(!µA(E,E′, E′′, p)) = µA(E,ΣE′E′′, p) = (ΣE(ΣE′E′′), p)

and
µA(µ!A(E,E′, E′′, p)) = µA(ΣEE′, E′′, p) = µA(ΣE(ΣE′E′′), p)

hence the square commutes, which completes the proof.

Proof of proposition 31. For l0, we have !∅ ≃ (∅ V−→ U) ≃ 1 by the universal property of the
empty type and the fact that it is V-small. For l2, given types A,B : U , we have

!A× !B ≃ (A
V−→ U)× (B

V−→ U) ≃ (A ⊔B
V−→ U) ≃ !(A ⊔B)

using remark 26 and closure of V under coproducts. Unfolding this equivalence, we have

l2A,B((E, p)(F, q)) := (E ⊔ F, p ⊔ q).

Given maps f : A → C and g : B → D, we need to show the following naturality square
commutes.

!A×!B !(A ⊔B)

!C×!D !(C ⊔D)

!(f⊔g)!f×!g

l2A,B

l2C,D

21

Let ((E, p), (F, q)) : !A× !B. We have

(!(f ⊔ g))(l2A,B((E, p), (F, q))) = (!(f ⊔ g))(E ⊔ F, p ⊔ q) = (E ⊔ F, f ◦ p ⊔ g ◦ q)
l2C,D((!f × !g)((E, p), (F, q))) = l2C,D((E, f ◦ p), (F, g ◦ q)) = (E ⊔ F, f ◦ p ⊔ g ◦ q)

which concludes the proof.

Proof of proposition 32. Using proposition 13, we only need to show that ! : U → U preserves

pullbacks. Let A
f−→ C

g←− B be a diagram of types. We have the following chain of equivalences:

!A×!C !B ≡
∑
E:V

∑
p:E→A

∑
F :V

∑
q:F→B

((E, f ◦ p) = (F, g ◦ q)) (def. of ! and pullback)

≃
∑
E:V

∑
p:E→A

∑
F :V

∑
q:F→B

(∑
l:E≃F

(f ◦ p = g ◦ q ◦ l)
)

(equality in Σ-types and univalence)

≃
∑
E:V

∑
F :V

∑
l:E≃F

∑
p:E→A

∑
q:F→B

(f ◦ p = g ◦ q ◦ l) (reordering of terms)

≃
∑
E:V

∑
p:E→A

∑
q:E→B

(f ◦ p = g ◦ q) (contracting (F, l) onto (E, idE))

≃
∑
E:V

∑
p:E→A

∑
q:E→B

(∏
e:E

(f(p(e)) = g(q(e)))
)

(function extensionality)

≃
∑
E:V

(E → A×C B) (univ. prop. of the pullback)

≡ !(A×C B) (def. of !)

Proof of proposition 33. Let f : A→ B be a map between types. Unwinding the corresponding
naturality square of η, we get

A B

∑
E:V(E → A)

∑
E:V(E → B)

f

a 7→(⊤,∗7→a)

(E,p)7→(E,f◦p)

b 7→(⊤,∗7→b)

That square is definitionally commutative, i.e. the left-bottom and top-right compositions com-
pute to the same term, or still in other terms, the witness of commutativity is refl(a 7→(⊤,cstf(a))).

We have the following chain of equivalences:

!A×!B B ≡
∑
E:V

∑
p:E→A

∑
b:B

((E, f ◦ p) = (⊤, cstb)) (unfolding the definitions)

≃
∑
E:V

∑
l:E≃⊤

∑
p:E→A

∑
b:B

(f ◦ p = cstb ◦ l) (equality in Σ-types, univalence, reordering)

≃
∑

p:⊤→A

∑
b:B

(f ◦ p = cstb) (contracting (E, l) onto (⊤, id⊤))

≃
∑
a:A

∑
b:B

(f(a) = b) (universal prop. of ⊤)

22

≃ A (contracting the last two terms onto (f(a), refl))

Moreover, computing this chain of equivalences from bottom to top exactly gives the connecting
map A→ !A×!B B of the pullback of the naturality square of η. So η is indeed cartesian.

Proof of proposition 34.

!A×!B !!B ≃
∑
E:V

∑
p:E→A

∑
F :V

∑
F ′:F→V

∑
q:ΣFF ′→B

(E, f ◦ p) =!B (ΣFF ′, q) (see remark 28 for !!B)

≃
∑
E:V

∑
p:E→A

∑
F :V

∑
F ′:F→V

∑
q:ΣFF ′→B

∑
l:E≃ΣFF ′

f ◦ p = q ◦ l (equality in Σ-types and univalence)

≃
∑
F :V

∑
F ′:F→V

∑
p:ΣFF ′→A

∑
q:ΣFF ′→B

f ◦ p = q (contracting (E, l) onto (ΣFF ′, id))

≃
∑
F :V

∑
F ′:F→V

(ΣFF ′ → A) (contracting (q,−) onto (f ◦ p, refl))

≃ !!A (remark 28)

Like with η, one can check that the underlying map of the inverse of the equivalence thus
constructed is equal to the map !!A→ !A×!B !!B induced by the naturality square of µ. Hence
µ is cartesian.

Proof of theorem 35. We need to show that the following data constitutes a symmetric monoidal
functor:

(!,m2,m0) : (Span(U),⊔,∅)→ (Span(U),×,1).

Since the functor ! on spans is obtained as a lifting of ! : U → U , and similarly for the natural
transformations m2 and m0, using proposition 15 we only need to show that

(!, l2, l0) : (U ,⊔,∅)→ (U ,×,1)

is a symmetric monoidal functor. Following [20, Section 7.3] (and writing respectively α, λ, ρ, γ
for the obvious associativity, left-unitality, right-unitality, and symmetry isomorphisms), this
amounts to showing the following four diagrams commute.

(!A× !B)× !C !A× (!B × !C) !A× 1 !A

!(A ⊔B)× !C !A× !(B ⊔ C) !A× !∅ !(A ⊔∅)

!((A ⊔B) ⊔ C) !(A ⊔ (B ⊔ C)) 1× !B !B

!A× !B !B × !A !∅× !B !(∅ ⊔B)

!(A ⊔B) !(B ⊔A)

α×

l2A,B×id!C

l2A⊔B,C

!α⊔

id!A×l2B,C

l2A,B⊔C

(1)

ρ×

id!A×l0

l2A,∅

!ρ⊔

λ×

!λ⊔l0×id!B

γ×

l2B,Al2A,B

!γ⊔

(4)

(2)

(3)

Most verifications are straightforward:

23

– for diagram (1), given (((E, p), (F, q)), (G, r)) : (!A× !B)× !C, both paths in the hexagon
evaluate to (E ⊔ (F ⊔ G), p ⊔ (q ⊔ r)) : !(A ⊔ (B ⊔ C)) up to associativity of ⊔, which is
an equivalence and hence an equality by univalence (see the case of (4) for more a detailed
reasoning along those lines),

– diagrams (2) and (3) are trivial,

– and finally for diagram (4), given ((E, p), (F, q)) : !A× !B, we have

l2B,A(γ×((E, p), (F, q))) = l2B,A((F, q), (E, p)) = (F ⊔ E, q ⊔ p)

and
!γ⊔(l

2
A,B((E, p), (F, q))) = !γ⊔(E ⊔ F, p ⊔ q) = (E ⊔ F, γ⊔ ◦ (p ⊔ q))

By characterization of equality in Σ-types and univalence, an equality between (E⊔F, γ⊔ ◦
(p⊔q)) and (F⊔E, q⊔p) in !(B⊔A) consists of the data of an equivalence f : E⊔F ≃−→ F⊔E
and an equality e : γ⊔ ◦ (p⊔ q) = (q ⊔ p) ◦ f in E ⊔F → B ⊔A. Choosing f := γ⊔, a simple
computation shows the following square commutes

E ⊔ F A ⊔B

F ⊔ E B ⊔A

p⊔q

γ⊔

q⊔p

γ⊔

which concludes the proof.

24

	Introduction
	Categories in homotopy type theory
	Homotopy type theoretic definitions and notations
	Wild categories
	Structure in wild categories

	Wild categories of spans
	Functoriality of the Span construction
	Finite products in spans of types

	The exponential comonad
	The exponential as a monad on TypeU
	Lifting the exponential monad to spans

	The exponential modality and polynomials
	The functor associated to a polynomial
	Polynomials are Kleisli morphisms

	Related works
	Recovering the bicategory of polynomials
	Towards a model of differential linear logic
	Species of structure

	Omitted proofs

