A cartesian bicategory of polynomial functors in homotopy type theory

Samuel Mimram (joint with Eric Finster, Maxime Lucas and Thomas Seiller)
MFPS XXXVII – August 31, 2021
In a nutshell

The situation:

- the category of polynomial functors is cartesian closed

Our contributions:

- we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
- we have shown that the resulting bicategory is cartesian closed
- we have provided a small axiomatization of the type B of natural numbers and bijections
In a nutshell

The situation:

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]

Our contributions:
In a nutshell

The situation:

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

Our contributions:
In a nutshell

The situation:

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

Our contributions:

- we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
In a nutshell

The situation:

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

Our contributions:

- we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
- we have shown that the resulting bicategory is cartesian closed
In a nutshell

The situation:

- the category of polynomial functors is cartesian closed
- the 2-category of polynomial functors is not cartesian closed [Girard]
- we should consider polynomial functors in groupoids [Kock]

Our contributions:

- we have formalized polynomials in groupoids (or spaces) in HoTT/Agda
- we have shown that the resulting bicategory is cartesian closed
- we have provided a small axiomatization of the type \mathbb{B} of natural numbers and bijections
Part I

Polynomial functors
A **polynomial** is a sum of monomials

\[P(X) = \sum_{0 \leq i < k} X^{n_i} \]

(no coefficients, but repetitions allowed)
A **polynomial** is a sum of monomials

\[P(X) = \sum_{0 \leq i < k} X^{n_i} \]

(no coefficients, but repetitions allowed)

We can **categorify** this notion: replace natural numbers by elements of a set.

\[P(X) = \sum_{b \in B} X^{E_b} \]
Polynomial functors

This data can be encoded as a polynomial P, which is a diagram in Set:

$$E \xrightarrow{p} B$$

where

- $b \in B$ is a monomial
- $E_b = p^{-1}(b)$ is the set of instances of X in the monomial b.

\[X \quad X \quad X \quad X \quad \cdots \quad X \quad \downarrow \quad b \]
Polynomial functors

This data can be encoded as a polynomial P, which is a diagram in \textbf{Set}:

$$E \xrightarrow{p} B$$

where

- $b \in B$ is a monomial
- $E_b = p^{-1}(b)$ is the set of instances of X in the monomial b.

It induces a polynomial functor

$$[P] : \textbf{Set} \to \textbf{Set}$$

$$X \mapsto \sum_{b \in B} X^{E_b}$$
Polynomial functors

For instance, consider the polynomial corresponding to the function

\[E \xrightarrow{p} B \]

\[\bullet \]

The associated polynomial functor is

\[\llbracket P \rrbracket(X) : \text{Set} \to \text{Set} \]

\[X \mapsto X \times X \sqcup X \times X \times X \]
Polynomial functors

For instance, consider the polynomial corresponding to the function

\[\mathbb{N} \xrightarrow{p} 1 \]

The associated polynomial functor is

\[\mathbb{P}(X) : \textbf{Set} \to \textbf{Set} \]

\[X \mapsto X \times X \times X \times \ldots \]
Polynomial functors

For instance, consider the polynomial corresponding to the function

\[\mathbb{N} \xrightarrow{p} 1 \]

\[\vdots \]

\[\bullet \]

\[\bullet \]

\[\bullet \]

The associated polynomial functor is

\[\lbrack P \rbrack(X) : \text{Set} \to \text{Set} \]

\[X \mapsto X \times X \times X \times \ldots \]

A polynomial is \textbf{finitary} when each monomial is a finite product.
We will more generally consider a “colored variant” of polynomials P

$$I \leftarrow^s E \overset{p}{\longrightarrow} B \overset{t}{\longrightarrow} J$$

this means that

- each monomial b has a color $t(b) \in J$,
- each occurrence of a variable $e \in E$ has a color $s(e) \in I$.

![Diagram](attachment:image.png)
Polynomial functors: typed variant

We will more generally consider a “colored variant” of polynomials P

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$$

this means that

- each monomial b has a color $t(b) \in J$,
- each occurrence of a variable $e \in E$ has a color $s(e) \in I$.

It induces a polynomial functor

$$[[P]](X) : \textbf{Set}^I \to \textbf{Set}^J$$

$$(X_i)_{i \in I} \mapsto \left(\sum_{b \in t^{-1}(j)} \prod_{e \in p^{-1}(b)} X_{s(e)} \right)_{j \in J}$$
The category of polynomial functors

Proposition

The composite of two polynomial functors is again polynomial:

\[
\text{Set}^I \xrightarrow{[P]} \text{Set}^J \xrightarrow{[Q]} \text{Set}^K
\]

\[[Q] \circ [P] = [Q \circ P]\]

We can thus build a category **PolyFun** of sets and polynomial functors:

- an object is a set \(I\),
- a morphism \(F : I \to J\) is a polynomial functor

\([P] : \text{Set}^I \to \text{Set}^J\)
A polynomial P

\[
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J
\]

induces a polynomial functor

\[
[P] : \text{Set}^I \rightarrow \text{Set}^J
\]

We have mentioned that composition is defined for polynomials. However, on polynomials, it is not strictly associative: we can build a bicategory Poly of sets and polynomial functors.

This suggests that 2-cells are an important part of the story!
Morphisms between polynomials

A morphism between two polynomials is

\[I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J \]

\[I \xleftarrow{s'} E' \xrightarrow{p'} B' \xrightarrow{t'} J \]

We send monomials to monomials, preserving typing and arities:

\[i_1 \ i_2 \ i_{n-1}i_n \]

\[b \]

\[\mapsto \]

\[i_1 \ i_2 \ i_{n-1}i_n \]

\[\beta(b) \]

\[j \]
Morphisms between polynomials

A morphism between two polynomials is

\[
\begin{array}{ccc}
I & \xleftarrow{s} & E & \xrightarrow{p} & B & \xrightarrow{t} & J \\
\downarrow{\varepsilon} & \downarrow{\bot} & \downarrow{\beta} & & \downarrow{\beta} & & \\
I & \xleftarrow{s'} & E' & \xrightarrow{p'} & B' & \xrightarrow{t'} & J
\end{array}
\]

We send monomials to monomials, preserving typing and arities:

\[
\begin{array}{c}
i_1 \quad i_2 \quad i_{n-1}i_n \\
\downarrow{\vdots} \\
b \\
\downarrow{j}
\end{array} \quad \mapsto \quad
\begin{array}{c}
i_1 \quad i_2 \quad i_{n-1}i_n \\
\downarrow{\vdots} \\
\beta(b) \\
\downarrow{j}
\end{array}
\]

We can build a bicategory \textbf{Poly} of sets, polynomials and morphisms of polynomials.
Morphisms between polynomials

A morphism between two polynomials is

\[
\begin{align*}
I & \xrightarrow{s} E \xrightarrow{p} B \xrightarrow{t} J \\
I & \xleftarrow{s'} E' \xrightarrow{p'} B' \xrightarrow{t'} J
\end{align*}
\]

We send monomials to monomials, preserving typing and arities:

\[
\begin{align*}
\vdots & \mapsto \beta(b)
\end{align*}
\]

We can build a bicategory \textbf{Poly} of sets, polynomials and morphisms of polynomials. In the following, we will restrict to the case where 2-cells are equivalences.
A morphism between polynomial functors

\[[P], [Q] : \text{Set}^I \to \text{Set}^J\]

is a “suitable” natural transformation, and we can build a 2-category \text{PolyFun}.

Morphisms between polynomial functors
The category PolyFun is cartesian. Namely, given two polynomial functors in Poly

$$P : I \to J \quad Q : I \to K$$

i.e., in Cat,

$$\lbrack P \rbrack : \text{Set}^I \to \text{Set}^J \quad \lbrack Q \rbrack : \text{Set}^I \to \text{Set}^K$$

we have, in Cat,

$$\langle P, Q \rangle : \text{Set}^I \to \text{Set}^J \times \text{Set}^K \cong \text{Set}^{J \sqcup K}$$

and the constructions preserve polynomiality: in PolyFun,

$$\langle P, Q \rangle : I \to (J \sqcup K)$$
Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

\[P : I \sqcup J \to K \]

i.e., in Cat,

\[[P] : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[\text{Set}^{I \sqcup J} \to \text{Set}^K \]
For the closed structure, we can hope for the same: given, in \textbf{PolyFun},

\[P : I \sqcup J \to K \]

de \textit{PolyFun},

\[P : I \sqcup J \to K \]

i.e., in \textbf{Cat},

\[[P] : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[
\begin{array}{c}
\text{Set}^{I \sqcup J} \to \text{Set}^K \\
\text{Set}^I \times \text{Set}^J \to \text{Set}^K \\
\end{array}
\]
For the closed structure, we can hope for the same: given, in PolyFun,

\[P : I \sqcup J \to K \]

i.e., in Cat,

\[[P] : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[
\begin{array}{c}
\text{Set}^{I \sqcup J} \to \text{Set}^K \\
\text{Set}^I \times \text{Set}^J \to \text{Set}^K \\
\text{Set}^I \to (\text{Set}^K)^{\text{Set}^J}
\end{array}
\]

for LL-people: this looks like \(!J`K\).
For the closed structure, we can hope for the same: given, in PolyFun,

\[P : I \sqcup J \rightarrow K \]

i.e., in Cat,

\[[P] : \text{Set}^{I \sqcup J} \rightarrow \text{Set}^{K} \]

we have

\[
\begin{align*}
\text{Set}^{I \sqcup J} &\rightarrow \text{Set}^{K} \\
\text{Set}^{I} \times \text{Set}^{J} &\rightarrow \text{Set}^{K} \\
\text{Set}^{I} &\rightarrow (\text{Set}^{K})^{\text{Set}^{J}} \\
\text{Set}^{I} &\rightarrow \text{Set}^{\text{Set}^{J} \times K}
\end{align*}
\]
Closed structure

For the closed structure, we can hope for the same: given, in PolyFun,

\[P : I \sqcup J \to K \]

i.e., in Cat,

\[[P] : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[
\text{Set}^{I \sqcup J} \to \text{Set}^K \\
\text{Set}^I \times \text{Set}^J \to \text{Set}^K \\
\text{Set}^I \to (\text{Set}^K) \text{Set}^J \\
\text{Set}^I \to \text{Set}^{\text{Set}^J \times K}
\]

which suggests defining the closure as

\[[J, K] = \text{Set}^J \times K \]
For the closed structure, we can hope for the same: given, in \textbf{PolyFun},

\[P : I \sqcup J \to K \]

i.e., in \textbf{Cat},

\[\llbracket P \rrbracket : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[
\begin{align*}
\text{Set}^{I \sqcup J} & \to \text{Set}^K \\
\text{Set}^I \times \text{Set}^J & \to \text{Set}^K \\
\text{Set}^I & \to (\text{Set}^K)^{\text{Set}^J} \\
\text{Set}^I & \to \text{Set}^{\text{Set}^J \times K}
\end{align*}
\]

which suggests defining the closure as

\[[J, K] = \text{Set}^J \times K \]

for LL-people: this looks like \(!J \Rightarrow K \).
Closed structure

In terms of operations, the intuition behind the bijection

\[\text{PolyFun}(I \sqcup J, K) \cong \text{PolyFun}(I, \text{Set}^J \times K) \]

is that we can formally transform operations as follows
In terms of operations, the intuition behind the bijection

\[\text{PolyFun}(I \sqcup J, K) \cong \text{PolyFun}(I, \text{Set}/J \times K) \]

is that we can formally transform operations as follows

\[\begin{array}{c}
I \\
\Downarrow \\
J \\
\Downarrow \\
K
\end{array} \quad \cong \quad \begin{array}{c}
I \\
\Downarrow \\
\text{Set}/J \\
\Downarrow \\
J \\
\Downarrow \\
K
\end{array} \]

via

\[\text{Set}^I \cong \text{Set}/J \]
There are two problems with our closure. The first one is that

\[[I, J] = \text{Set}/I \times J \]

is too large to be an object of our category.
There are two problems with our closure. The first one is that
\[[I, J] = \text{Set}/I \times J\]
is too large to be an object of our category.

One can restrict to polynomial functors which are \textbf{finitary}: we can then take
\[[I, J] = \text{Set}_{\text{fin}}/I \times J\]
There are two problems with our closure. The first one is that

\[[I, J] = \text{Set}/I \times J \]

is too large to be an object of our category.

One can restrict to polynomial functors which are \textbf{finitary}: we can then take

\[[I, J] = \text{Set}_{\text{fin}}/I \times J \]

or rather

\[[I, J] = \mathbb{N}/I \times J \]
Closed structure

There are two problems with our closure. The first one is that

\[[I, J] = \text{Set}/I \times J\]

is too large to be an object of our category.

One can restrict to polynomial functors which are finitary: we can then take

\[[I, J] = \text{Set}_{\text{fin}}/I \times J\]

or rather

\[[I, J] = \mathbb{N}/I \times J\]

Finitary polynomial functors are also known as normal functors [Girard].
Theorem

The category \textbf{PolyFun} is cartesian closed.
Theorem

The category PolyFun is cartesian closed.

Remark (Girard)

The 2-category PolyFun is not cartesian closed.
Failure of the cartesian closed structure

We would like to have an equivalence of categories

$$\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K)$$
Failure of the cartesian closed structure

We would like to have an equivalence of categories

\[\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K) \]

but consider the polynomial functor

\[[P](X) = X^2 : \text{Set}^{0 \sqcup 1} \to \text{Set}^1 \]
We would like to have an equivalence of categories

$$\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K)$$

but consider the polynomial functor

$$\llbracket P \rrbracket (X) = X^2 : \text{Set}^{0\sqcup 1} \to \text{Set}^1$$

which is induced by the polynomial

$$1 \leftarrow \ 2 \longrightarrow 1 \longrightarrow 1$$
Failure of the cartesian closed structure

We would like to have an equivalence of categories

\[\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K) \]

but consider the polynomial functor

\[\llbracket P \rrbracket(X) = X^2 : \text{Set}^{0 \sqcup 1} \to \text{Set}^1 \]

which has two automorphisms

\[
\begin{array}{cccccc}
1 & \xleftarrow{\text{id}} & 2 & \longrightarrow & 1 & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \xleftarrow{\tau} & 2 & \longrightarrow & 1 & \longrightarrow & 1
\end{array}
\]
We would like to have an equivalence of categories

\[\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K) \]

but consider the polynomial functor

\[\llbracket P \rrbracket (X) = X^2 : \text{Set}^{0\sqcup 1} \to \text{Set}^1 \]

whose exponential transpose is

\[
\begin{array}{ccc}
0 & \xleftarrow{} & 0 \\
\downarrow & & \downarrow \\
1 & \xrightarrow{\star \mapsto 2} & \mathbb{N}
\end{array}
\]

and has only one automorphism.
Failure of the cartesian closed structure

We would like to have an equivalence of categories

\[
\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K)
\]

but consider the polynomial functor

\[
\lbrack P \rbrack(X) = X^2 : \text{Set}^{0\sqcup1} \to \text{Set}^{1}
\]

whose exponential transpose is

\[
0 \leftarrow 0 \rightarrow 1 \xrightarrow{\star \mapsto 2} \mathbb{N}
\]

and has only one automorphism.

The equivalence fails:

\[
\text{PolyFun}(0 \sqcup 1, 1) \not\simeq \text{PolyFun}(0, \mathbb{N}/1 \times 1)
\]

(two elements on the left, one on the right)
The failure of the equivalence

$$\text{PolyFun}(0 \sqcup 1, 1) \not\cong \text{PolyFun}(0, \mathbb{N}/1 \times 1)$$

can be interpreted as being due to the fact that $2 \in \mathbb{N}/1$ has no non-trivial isomorphism.

This suggests moving to **groupoids**!
The failure of the equivalence

$$\text{PolyFun}(0 \sqcup 1, 1) \ncong \text{PolyFun}(0, \mathbb{N}/1 \times 1)$$

can be interpreted as being due to the fact that $2 \in \mathbb{N}/1$ has no non-trivial isomorphism.

This suggests moving to groupoids!

More precisely, we should replace \mathbb{N} by the groupoid \mathbb{B} of all symmetric groups.
The notion of polynomial functor generalizes in any locally cartesian closed category.
The notion of polynomial functor generalizes in any locally cartesian closed category.

…but the category Gpd is not cartesian closed!
The notion of polynomial functor generalizes in any locally cartesian closed category.

...but the category \textbf{Gpd} is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy (slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.
The notion of polynomial functor generalizes in any locally cartesian closed category.

...but the category \textbf{Gpd} is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy (slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

This requires properly defining and using all the usual constructions in a suitable 2-categorical sense.
Given a polynomial P

$$E \xrightarrow{p} B$$

the induced polynomial functor

$$[P] : \text{Gpd} \to \text{Gpd}$$

$$X \mapsto \int_{b \in B}^b E_b$$

where E_b is the homotopy fiber of p at b and

$$\int_{b \in E}^b E_b = \sum_{b \in \pi_0(B)} X_b / \text{Aut}(b)$$

where the quotient is to be taken 2-categorically / homotopically...
Part II

Formalization in Agda
There is a framework in which everything is constructed \textit{up to homotopy} for free: \textbf{homotopy type theory}.

In particular, there is a well-known notion of groupoid in this setting: a type with no non-trivial equalities between equalities.

Let’s formally develop the theory of polynomials in this setting.
A polynomial

\[I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J \]

is a **container**:

record Poly (I J : Type) : Type₁ where

 field

 \(\text{Op} : J \to \text{Type} \)

 \(\text{Pm} : (i : I) \to \{j : J\} \to \text{Op} j \to \text{Type} \)

We sometimes write

\[I \rightsquigarrow J = \text{Poly } I \ J \]
Composing polynomials

The polynomial functor induced by a polynomial \(P \) is

\[
[_] : I \rightsquigarrow J \to (I \to \text{Type}) \to (J \to \text{Type})
\]

\[
[_] P X j = \Sigma (\text{Op } P j) \ (\lambda \ c \to (i : I) \to (p : \text{Pm } P i c) \to (X i))
\]
Composing polynomials

The polynomial functor induced by a polynomial P is

\[
[-] : I \leadsto J \to (I \to \text{Type}) \to (J \to \text{Type})
\]

\[
[-] P X j = \Sigma (\text{Op } P j) (\lambda c \to (i : I) \to (p : \text{Pm } P i c) \to (X i))
\]

The composite of two polynomials is

\[
_ \cdot _ : I \leadsto J \to J \leadsto K \to I \leadsto K
\]

\[
\text{Op } (P \cdot Q) = [Q] (\text{Op } P)
\]

\[
\text{Pm } (_ \cdot _ P Q) i (c , a) = \Sigma J (\lambda j \to \Sigma (\text{Pm } Q j c) (\lambda p \to \text{Pm } P i (a j p)))
\]
A bicategory

Theorem

We can build a pre-bicategory of types, polynomials and their morphisms.

Note: by univalence, we can use propositional equality for 2-cells, which simplifies the definition.
A bicategory

Theorem
We can build a pre-bicategory of types, polynomials and their morphisms.

Theorem
We can build a bicategory of groupoids, polynomials in groupoids and their morphisms.
Theorem
We can build a pre-bicategory of types, polynomials and their morphisms.

Theorem
We can build a bicategory of groupoids, polynomials in groupoids and their morphisms.

Theorem
This bicategory is cartesian with \sqcup as coproduct.
Defining the exponential

In order to define the 1-categorical closure, the plan was:

\[
\text{Set} \quad \rightsquigarrow \quad \text{Set}_{\text{fin}} \quad \rightsquigarrow \quad \mathbb{N}
\]
In order to define the 1-categorical closure, the plan was:

\[
\text{Set} \rightsquigarrow \text{Set}_{\text{fin}} \rightsquigarrow \mathbb{N}
\]

For the 2-categorical closure the plan is

\[
\text{Gpd} \rightsquigarrow \text{Gpd}_{\text{fin}} \rightsquigarrow \mathbb{B}
\]

Here, \(\mathbb{B} \) is the groupoid with \(n \in \mathbb{N} \) as objects and \(\Sigma_n \) as automorphisms on \(n \).
Finite types

We write $\text{Fin } n$ for the canonical finite type with n elements: its constructors are 0 to $n-1$.

\[
\text{data Fin : } \mathbb{N} \rightarrow \text{Set where}
\begin{align*}
\text{zero : } & \{n : \mathbb{N}\} \rightarrow \text{Fin (suc n)} \\
\text{suc : } & \{n : \mathbb{N}\} (i : \text{Fin n}) \rightarrow \text{Fin (suc n)}
\end{align*}
\]
We write $\text{Fin } n$ for the canonical finite type with n elements: its constructors are 0 to $n-1$.

data Fin : $\mathbb{N} \rightarrow \text{Set}$ where

- $\text{zero} : \{n : \mathbb{N}\} \rightarrow \text{Fin } (\text{suc } n)$
- $\text{suc} : \{n : \mathbb{N}\} \ (i : \text{Fin } n) \rightarrow \text{Fin } (\text{suc } n)$
The predicate of being finite is

\[\text{is-finite} : \text{Type} \to \text{Type}\]
\[\text{is-finite } A = \Sigma \mathbb{N} \left(\lambda n \to \| A \simeq \text{Fin } n \| \right)\]
Finite types

The predicate of being finite is

\[\text{is-finite} : \text{Type} \rightarrow \text{Type} \]
\[\text{is-finite } A = \Sigma N (\lambda n \rightarrow \| A \cong \text{Fin } n \|) \]

The type of finite types is

\[\text{FinType} : \text{Type}_1 \]
\[\text{FinType} = \Sigma \text{Type} \text{ is-finite} \]
Finite types

The predicate of being finite is

\[
is\text{-}finite : \text{Type} \to \text{Type} \\
is\text{-}finite A = \Sigma N (\lambda n \to \| A \simeq \text{Fin} n \|)
\]

The type of finite types is

\[
\text{FinType} : \text{Type}_1 \\
\text{FinType} = \Sigma \text{Type} \ is\text{-}finite
\]

(note that this is a large type)
A polynomial is **finitary** when, for each operation, the total space of its parameters is finite:

\[
\text{is-finitary} : (P : I \rightarrow J) \rightarrow \text{Type}
\]

\[
\text{is-finitary} \; P = \{j : J\} \; (c : \text{Op} \; P \; j) \rightarrow \text{is-finite} \; (\Sigma \; I \; (\lambda \; i \rightarrow \text{Pm} \; P \; i \; c))
\]
A small model for finite types

The type of \textbf{integers} is

\begin{verbatim}
data \textit{N} : Type where
 zero : \textit{N}
 suc : \textit{N} \to \textit{N}
\end{verbatim}
The type \mathbb{B} is

```haskell
data $\mathbb{B}$ : Type where
  obj : $\mathbb{N} \to \mathbb{B}$
  hom : $\{n : \mathbb{N}\} \to \text{obj} n \equiv \text{obj} n$
  id-coh : $(n : \mathbb{N}) \to \text{hom} \{n = n\} \equiv \text{refl}$
  comp-coh : $\{m n o : \mathbb{N}\} \to \text{hom} \{\sim\text{-trans} \alpha \beta\} \equiv \text{hom} \alpha \cdot \text{hom} \beta$
```

(this is a small higher inductive type!)
A small model for finite types

The type \mathbb{B} is

\[
\text{data } \mathbb{B} : \text{Type where}
\]
\[
\begin{align*}
\text{obj} & : \mathbb{N} \to \mathbb{B} \\
\text{hom} & : \{n : \mathbb{N}\} (\alpha : \text{Fin } n \simeq \text{Fin } n) \to \text{obj } n \equiv \text{obj } n \\
id\text{-coh} & : (n : \mathbb{N}) \to \text{hom } \{n = n\} \simeq \text{refl} \equiv \text{refl} \\
\text{comp\text{-coh}} & : \{m \ n \ o : \mathbb{N}\} (\alpha : \text{Fin } m \simeq \text{Fin } n) (\beta : \text{Fin } n \simeq \text{Fin } o) \to \\
& \quad \text{hom } (\simeq\text{-trans } \alpha \ \beta) \equiv \text{hom } \alpha \cdot \text{hom } \beta
\end{align*}
\]

(this is a small higher inductive type!)

Theorem

$\text{FinType } \simeq \mathbb{B}$.
The closure

We define

\[\text{Exp} : \text{Type} \to \text{Type}_1 \]
\[\text{Exp} \ I = I \to \text{Type} \]

Theorem

Ignoring size issues, for polynomials we have

\[(I \sqcup J) \rightsquigarrow K \simeq I \rightsquigarrow (\text{Exp} \ J \times K) \]
We define
\[
\operatorname{Exp} : \text{Type} \to \text{Type}_1
\]
\[
\operatorname{Exp} I = \Sigma (I \to \text{Type}) \left(\lambda F \to \text{is-finite} \left(\Sigma I F \right) \right)
\]

Theorem

Ignoring size issues, for finitary polynomials we have

\[
(I \sqcup J) \leadsto K \simeq I \leadsto (\operatorname{Exp} J \times K)
\]
We define

\[\text{Exp} : \text{Type} \to \text{Type}_1 \]

\[\text{Exp } I = \Sigma \text{FinType} (\lambda \: N \to \text{fst } N \to I) \]

Theorem

Ignoring size issues, for finitary polynomials we have

\[(I \sqcap J) \leadsto K \cong I \leadsto (\text{Exp } J \times K) \]
We define
\[\text{Exp} : \text{Type} \to \text{Type} \]
\[\text{Exp } I = \sum \mathbb{B} (\lambda b \to \mathbb{B}\text{-to-Fin} \ b \to A) \]

Theorem
For finitary polynomials we have

\[(I \sqcup J) \leadsto K \simeq I \leadsto (\text{Exp } J \times K) \]
The exponential

Note that

\[
\text{Exp} : \text{Type} \to \text{Type} \\
\text{Exp} \ I = \Sigma \ B \ (\lambda \ b \to B\text{-to-Fin} \ b \to A)
\]

is the free pseudo-commutative monoid!
Questions?