
A cartesian (2,1)-category of homotopy polynomial
functors in groupoids

Abstract—Polynomial functors are a categorical generalization
of the usual notion of polynomial, which has found many
applications in higher categories and type theory: those are
generated by polynomials consisting a set of monomials built
from sets of variables. We study here a further generalization
of this notion, based on groupoids instead of sets, for which
we introduce a new “fibered” presentation. This allows us to
conveniently study the structure of the resulting bicategory: we
show that it is cartesian closed and thus forms a model of simply
typed λ-calculus, close to the one of generalized species. Our
computations are based on a formalization in univalent type
theory (in Agda) of polynomials in groupoids. Most notably, this
required us introducing an axiomatization in a small universe of
the type of finite types, as an appropriate higher inductive type
of natural numbers and bijections.

I. INTRODUCTION

Polynomial functors have been introduced as a categori-
cal generalization of traditional polynomials and have been
intensively studied by Kock and collaborators [1], [2], [3].
They have become an important categorical tool, allowing
the definition and manipulation of various structures such as
opetopes [4] or type theories [5]. This motivates the study
of the categorical structures they bear in order to facilitate
constructions on those, and the situation turns out to be quite
subtle. For instance, one would expect that they should be
cartesian closed (after all, most usual categories are), but it
is not the case: the cartesian product functor does not have a
satisfactory right adjoint. There are essentially two reasons for
that.

The first one is that there are size issues – the naive
definition of the exponential is too large to be a proper object
in the category of polynomials – which is easily overcome
by restricting to polynomials which are finitary, i.e., only
involve monomials consisting of products of variables which
are finite. The resulting category is isomorphic to the category
of Girard’s normal functors [6], which is a model of simply
typed λ-calculus, and linear logic [7], which can be thought of
as a quantitative variant of the relational model (historically,
this model is in fact one of the starting points motivating the
introduction of linear logic).

The second one is more problematic: polynomial functors
carry a very natural 2-categorical structure, but it was observed
early on that the closure mentioned above fails to extend to
a 2-categorical one [6], [8], [7]. Here, we advocate that a
satisfactory answer to this problem is provided by switching
from traditional polynomial functors to ones over groupoids,
as first considered by Kock [2], see also [9], [10]. We show that
the resulting bicategory is cartesian closed; it is more generally

a model of intuitionistic linear logic, which we expect to
extend as a model of differential linear logic. The resulting
category is close to the “equivariant variant” of polynomials,
provided by generalized species or analytic functors [11], [12],
[13], [14].

In order to work more easily with polynomial functors
over groupoids, we introduce here a fibered variant of the
definition introduced in [2], which is easier to manipulate
in practice. This definition allows us to carry on explicit
computations, and construct a structure of cartesian closed
category on those. It is also adapted to mechanized proofs:
we have formalized the main constructions required to have a
formalization of the constructions performed here, in Agda. In
order to do so, we work in the setting of univalent type theory,
where 1-truncated types are equipped with a structure of
groupoid, whose morphisms are identities, and all morphisms
are functorial. A salient contribution is the construction, as a
higher inductive type, of the type of finite sets and bijections
in a small universe, which is required in order to define the
exponential in the category of polynomials.

We recall the definition of polynomials, polynomial functors
and associated constructions in section II, we then present a
formalization in type theory of the cartesian closed bicategory
of polynomial functors in groupoids in section III, we also
perform this construction in the setting of set-theoretic cate-
gories in section IV and show that it is cartesian closed in
section V.

II. POLYNOMIAL FUNCTORS

We begin by recalling the traditional definition of polyno-
mial functors, as well as related constructions. All the material
in this section is already known, but required in the following.

A. The category of polynomial functors

Polynomial functors are a categorical generalization of the
notion of polynomial, see [1] for a detailed presentation.
Polynomials as traditionally defined as finite sums of the form
P (X) =

∑
0≤i<k X

ni . This notion can be “categorified”
by taking a set B of monomials (instead of specifying their
number k) and having a set Eb of instances of X in each
monomial b (instead of specifying their number ni). This data
can thus collected as a function representing the polynomial

E B
p

(1)

where B is the set of monomials and for each monomial b,
Eb = p−1(b) is the set of instances of X involved in the



monomial. Writing P for the above diagram (1) in sets, it
induces a endofunctor JP K of Set defined as

JP K(X) =
∑
b∈B

XEb

and we call polynomial functor such a functor. An interesting
point of view on the above data consists in considering the
elements of B as abstract operations, whose parameters are
the elements of Eb, so that JP K(X) corresponds to the set
obtained by formally applying the operations in B to the
required number of elements of the set X .

In the following, we more generally consider a “typed
variant” of polynomials and polynomial functors, where the
parameters of an operation are decorated by a “type” in a
set I , as well as their output in a set J . This data can be
encoded by a diagram P in Set of the form

I E B Js p t (2)

which we call a polynomial and consists of an untyped polyno-
mial (1) together with functions s and t respectively indicating
the types of the parameters and outputs of operations. Note that
the previous untyped setting is recovered when I and J are
both the terminal set. Writing Set/I for the slice category of
sets over a set I , such data again induces a functor JP K, called
a polynomial functor, obtained as the composite

Set/I Set/E Set/B Set/J
∆s Πp Σt (3)

where ∆s is the pullback map along s, and Σt (resp. Πp) is
the left (resp. right) adjoint to ∆t (resp. ∆p) given by post-
composition by t (resp. local cartesian closure).

Given a set I , it is well known that the slice category Set/I
of sets over I is equivalent to the category of families indexed
by I ,

Set/I ≃ SetI (4)

Through this equivalence, the above functor can be seen as a
functor SetI → SetJ , which is often convenient, obtained as
a composite of the following functors on families:

∆s : SetI → SetE

(Xi | i ∈ I) 7→ (Xs(e) | e ∈ E)

Πp : SetE → SetB

(Xe | e ∈ E) 7→ (
∏

e∈p−1(b) Xe | b ∈ B)

Σt : SetB → SetJ

(Xb | b ∈ B) 7→ (
∑

b∈t−1(j) Xb | j ∈ J)

giving rise to the functor

JP K : SetI → SetJ

(Xi | i ∈ I) 7→ (
∑

b∈t−1(j)

∏
e∈p−1(b)

Xs(e) | j ∈ J)

A functor obtained as in (3) is called a polynomial functor
and we say that the diagram (2) is a presentation of the
polynomial. For instance, the identity functor on Set/I is
polynomial as being presented by

I I I Iid id id

As a slightly richer example, the functor

exp : Set/1 → Set/1

X 7→
∑
n∈N

Xn

is also polynomial, as being presented by the diagram

1 N N 1id

It can be shown (and this is non-trivial) that the composite of
two polynomial functors is again polynomial: this means that
given two polynomial functors generated by two diagrams of
the form (2), one can find a third diagram of the form (2) which
is a presentation for the composite of the functors. We can
thus build a category PolyFun where an object is a set and
a morphism I → J is a polynomial functor Set/I → Set/J .
Note that even though an operation of composition is defined
on polynomials (2), we cannot build a category of those: their
composition being defined by using universal constructions, it
will not be strictly associative and the best we can hope for
is a structure of a bicategory. This motivates investigating the
2-categorical structure of polynomials.

These constructions can easily be generalized to any local
cartesian closed category instead of Set: the local cartesian
closure ensures the existence of the right adjoints Πf to
change of base functors ∆f , which are necessary to define
the polynomial functor (3) associated to a polynomial, as well
as to define the composition of polynomials. We should also
note here that the definition of composition crucially depends
on the Beck-Chevalley isomorphism.

B. 2-categorical structure

Given two polynomials P and P ′ of the form (2), both
from I to J , a morphism between them consists of two
functions β : B → B′ and ε : E → E′ between the operations
(resp. parameters) of P and those of P ′ making the diagram

I E B J

I E′ B′ J

ε

s p

⌟
β

t

s′ p′ t′

(5)

commute and such that the middle square is a pullback (such
a morphism is sometimes said to be cartesian to insist on
this requirement). This last condition can be understood as
requiring that β preserves the arity of operations (it is also
technically important because there is no sensible way of
defining horizontal composition of morphisms without this
condition). The composition of polynomials defined above
turns out to be associative up to isomorphism, so that one
can define a bicategory Poly whose 0-cells are sets, 1-cells
are polynomials and 2-cells are morphisms of polynomials.

The resulting bicategory can be shown to be biequivalent to
the 2-category PolyFun, obtained by adding suitable natural
transformations to the above category [1, Theorem 2.17].
There is a subtlety concerning the 2-cells: the “natural” notion
of morphism between polynomial functors, strong natural



transformations, is more liberal than the notion of morphism
defined above on corresponding polynomials, and one can
either restrict those transformations (to cartesian natural trans-
formations) or generalize the notion of morphism between
polynomials.

C. The cartesian closed structure

The 1-category PolyFun of polynomial functors is carte-
sian. Considering polynomial functors as operating on families
through (4), as explained above, the paring of two polynomial
functors P : I → J and Q : I → K is induced by the one
in Cat:

⟨P,Q⟩ : SetI → SetJ × SetK ∼= SetJ⊔K

which motivates defining the product on objects of PolyFun
as the coproduct of sets.

We can hope that the category also has a closure for prod-
ucts induced by the one in Cat. The sequence of bijections
of hom-sets

SetI × SetJ → SetK

SetI → (SetK)
SetJ

SetI → SetSet
J×K

suggests that we define the closure as

[J,K] = SetJ ×K ≃ Set/J ×K (6)

However, this does not make sense because the objects of
PolyFun are sets and this lives in a larger universe. This mo-
tivates considering polynomials which are “reasonably small”.
We say that a polynomial P of the form (2) is finitary when
every operation has a finite set of parameters, i.e., the set
Eb = p−1(b) is finite for every operation b. Polynomial
functors corresponding to finitary functors can be shown to
be those preserving filtered colimits and are sometimes called
normal functors [6], [7]. From now on, we restrict our category
to such polynomials, and consider them up to isomorphism.
This change allows us to replace Set/J by Setfin/J in the
above definition of the exponential, where Setfin is the class
of finite sets (i.e., we consider families of finite sets instead of
families of sets). While this is certainly “smaller”, this is still
not a proper set; however, it is now equivalent to a proper set,
namely the set N/J of functions [n] → J for some n ∈ N,
where [n] = {0, . . . , n−1} is a canonical choice of a finite set
with n elements. To sum up, it can be shown that the resulting
category is still cartesian and we can define the exponential
as [J,K] = N/J ×K.

We have noted above that the category of polynomial
functors really is a 2-category (or a bicategory if we consider
polynomials instead) and it is natural to expect that the
cartesian closure would extend to the 2-categorical setting, by
which we mean that the isomorphism

PolyFun(I ⊔ J,K) ∼= PolyFun(I,N/J ×K)

between sets of isomorphism classes of polynomial functors
should extend to an equivalence of categories. It has however

been observed that it is not the case, see [6, Remark 2.19],
[8, Example 1.4.2] and [7, Theorem 1.24]. As an illustration,
consider the polynomial functor JP K(X) = X2, which is
induced by the following polynomial P :

1 2 1 1

(we write n for a set with n elements). Writing τ : 2 → 2
for the transposition, there are two automorphisms on P : the
identity and

1 2 1 1

1 2 1 1

τ
⌟

Since there are two distinct morphisms

P ⇒ P : 0 ⊔ 1 → 1

if we write P ♯ for the exponential transpose of P , the closure
should induce two distinct morphisms

P ♯ ⇒ P ♯ : 0 → N1 × 1

but this is not the case because 0 is initial in the 2-category.

D. Toward polynomial functors in groupoids

This tension is solved in [7] by quotienting the 2-cells under
an ad-hoc equivalence relation. In this paper, we advocate that
a more satisfactory approach consists in switching from poly-
nomial functors in sets to polynomial functors in groupoids:
intuitively, the problem comes from the fact that, N being a
set, there is no non-trivial endomorphism on a natural number,
which we should have if we were to have a closure for the
cartesian product.

We will see in section IV that a proper definition of poly-
nomials in groupoids requires more than simply considering
diagrams of the form (2) in the category of groupoids. For
instance, the traditional definition of composition does not
immediately extend to those because the category of groupoids
is not locally cartesian closed, and thus the right adjoint
to the change of base functor ∆f is not defined for every
morphism f . Following [2], this can be explained as the
fact that switching from sets to groupoids can be thought of
as switching from 0-truncated spaces to 1-truncated spaces,
where the strict universal limits and colimits involved in the
constructions on polynomials are not the right one: we need
to take limits and colimits up to homotopy. In practice, it
is convenient to avoid resorting to such constructions up to
homotopy, by imposing additional properties on the maps
involved in polynomials, typically being fibrations.

III. FORMALIZATION IN HOMOTOPY TYPE THEORY

We begin by presenting a formalization in homotopy type
theory, in the Agda language, of our constructions on polyno-
mials. The reason for presenting it first is mainly didactic: we
believe that it is simpler to understand because all construc-
tions performed in the internal language of type theory are up
to homotopy (and all types are “fibrant”), whereas in the “set



theoretic version” of section IV we have to ensure that they
are so by imposing suitable conditions. While the two exhibit
similar constructions and proofs, the link between them is not
entirely clear yet to us, making it necessary to present both
here, as discussed in theorem 33. All the code is available
in the repository [15], and is based on our own formalization
of homotopy type theory (or HoTT), following the reference
book [16], to which we suppose the reader already acquainted.

We unfortunately do not have enough space here to expose
in details the basic definitions of Agda and homotopy type
theory, and only recall notations. We write Type for the
universe of small types and Type1 for the universe of large
types (in particular Type is an element of Type1). We write
x ≡ y for the type of identities (or equalities or paths) between
two terms x and y of the same type. We write A ≃ B for the
type of equivalences between two types A and B (possibly
in different universes): it consists of functions f : A → B
admitting an inverse up to homotopy, in a suitably coherent
sense. We recall that a proposition is a type in which any
two identity proofs between the same terms are equal, and a
set (resp. a groupoid) is a type in which the type x ≡ y of
identities between two elements x and y is a proposition (resp.
a set). We postulate here the univalence axiom which states
that the canonical map from identities x ≡ y to equivalences
x ≃ y is itself an equivalence.

A. Formalizing polynomials

Our formalization of polynomials can be found in [15,
Polynomial.agda]. A direct translation of the definition of
polynomials (2) would consist in encoding them as

record Poly (I J : Type) : Type1 where
field

B : Type t : B → J
E : Type p : E → B

s : E → I

However, the constructions performed with this definition are
much involved because they require manipulating equalities
which quickly becomes quite intricate. As an illustration of
this, the type of operations of the composite of two polyno-
mials P and Q is

Σ (B Q) (λ b → (x : hfib (p Q) b) →
hfib (t P) (s Q (fst x)))

where hfib f x is the homotopy fiber of a function f at x:

hfib : {A B : Type} → (f : A → B) → B → Type
hfib {A} f b = Σ A (λ a → f a ≡ b)

which involves an identity type (we leave to the reader as an
exercise to complete the definition of composition in this style
and prove basic properties of polynomials).

A definition which is much easier to manipulate can be
obtained as follows. The function t : B → J above associates
to each operation of the polynomial in B a typing in J. This
data can equivalently be encoded as a family of types Op : J
→ Type which to every element j of J associates the type Op

j of operations of type j of the polynomial. Formally, we are
exploiting the equivalence between slices and families in type
theory, which is recalled in theorem 10 below. By performing
similar transformations on the rest of the data, we reach the
following definition, which is easier to work with because it
uses more heavily dependent types: the explicit computations
we had to perform with equality above are now implicitly
handled by the dependent pattern matching of Agda.

Definition 1. The type of polynomials between two types I
and J is

record Poly (I J : Type) : Type1 where
field

Op : J → Type
Pm : (i : I) → {j : J} → Op j → Type

Given types I and J, a polynomial from I to J consists of:
• a family of types Op j indexed by the elements j of J:

the operations of the polynomial;
• a family of type Pm i b indexed by the element i of
I and the operations b in Pm j for some j of J: the
parameters of the polynomial.

The careful reader will note that the above actually defines
“polynomials in types”, where there is a type (as opposed
to a set or a groupoid) of operations and parameters. The
notion of polynomial in groupoids can be obtained by further
restricting to the case where all the involved types (I, J, Op j
and Pm i b) are groupoids, in the sense of HoTT recalled
above.

B. First constructions on polynomials

The identity polynomial on a type I is defined as

Id : Poly I I
Op Id i = ⊤
Pm Id i {j = j} tt = i ≡ j

and has, for each element i of I, exactly one operation of
type i, whose only parameter is also of type i. The polynomial
functor induced by a polynomial P from I to J is

J_K : Poly I J → (I → Type) → (J → Type)
J_K P X j = Σ (Op P j) (λ c → (i : I) →

(p : Pm P i c) → (X i))

Finally, the composite P · Q of two polynomials P from I to
J, and Q from J to K is

_·_ : Poly I J → Poly J K → Poly I K
Op (P · Q) = J Q K (Op P)
Pm (_·_ P Q) i (c , a) =
Σ J (λ j → Σ (Pm Q j c) (λ p → Pm P i (a j p)))

Morphisms between polynomials can be encoded as follows:

Definition 2. The type of morphisms between two polynomi-
als P and Q is

record Poly→ (P Q : Poly I J) : Type where
field



Op→ : {j : J} → Op P j → Op Q j
Pm≃ : {i : I} {j : J} {c : Op P j} →

Pm P i c ≃ Pm Q i (Op→ c)

A morphism thus consists of:
• a morphism between the operations of P and those of Q,

which respects the typing;
• a morphism between the parameters of P and those of Q,

which respects typing and operations, and is moreover
an equivalence (requiring this morphism to be an equiv-
alence corresponds precisely to requiring that the square
in the middle of (3) is a pullback).

Definition 3. A morphism φ as above is an equivalence of
polynomials when the morphism on operations is an equiva-
lence at each element of J:

Poly-equiv : {P Q : I ⇝ J} (φ : P ⇝2 Q) → Type
Poly-equiv φ = {j : J} → is-equiv (Op→ φ {j = j})

As it can be observed above, we write I ⇝ J (resp. P ⇝2 Q)
for the type of polynomials from I to J (resp. morphisms of
polynomials from P to Q). We also write P ≃2 Q for the type
of equivalences of polynomials between P and Q.

C. A bicategory of polynomials

Starting from there we can build all the structure one expects
to find in a bicategory of polynomials:

• we can define the identity polynomial and the composi-
tion of polynomials (see above);

• we can show that composition of polynomials is associa-
tive and unital up to an equivalence of polynomials;

• we can define the horizontal and vertical composition of
morphism of polynomials;

• we can show that those compositions are associative and
unital up to a suitable notion of equivalence of morphisms
of polynomials.

Moreover, by using univalence, one can show the following.

Proposition 4. The type of equivalences between two polyno-
mials P and Q is equivalent to the type P ≡ Q of equalities
between the two polynomials:

(P ≡ Q) ≃ (P ≃2 Q)

We can therefore build a bicategory (it might be more
accurate to call it a (2, 1)-category) of groupoids, polynomials
in groupoids and equivalences, in the following sense.

Definition 5. A prebicategory consists of:
• a type of ob objects;
• for each objects I and J, we have a groupoid hom I J

of morphisms;
• for each object I there is a distinguished morphism id

in hom I I called identity;
• there is a composition operation
_⊗_ : hom I J → hom J K → hom I K
for every objects I, J and K;

• composition is associative and unital:

assoc :
(P : hom I J) (Q : hom J K) (R : hom K L) →
(P ⊗ Q) ⊗ R ≡ P ⊗ (Q ⊗ R)

unit-l : (P : hom I J) → id ⊗ P ≡ P
unit-r : (P : hom I J) → P ⊗ id ≡ P

• the traditional pentagon law
ap (λ P → P ⊗ S) (assoc P Q R) ·
assoc P (Q ⊗ R) S ·
ap (λ Q → P ⊗ Q) (assoc Q R S)
≡
assoc (P ⊗ Q) R S ·
assoc P Q (R ⊗ S)
and triangle law
assoc P id Q · ap (λ Q → P ⊗ Q) (unit-l Q)
≡
ap (λ P → P ⊗ Q) (unit-r P)
of bicategories are satisfied for composable morphisms
P, Q, R and S.

Above, “·” denotes the concatenation of paths (or transitivity
of equality) and ap is a proof that every function is a
congruence for equality.

Theorem 6. There is a prebicategory whose objects are
groupoids and morphisms are polynomials in groupoids.

The notion of prebicategory generalizes the notion of pre-
category in HoTT [16, Section 9.1]. As the name suggests, it
lacks a property in order to be called a bicategory, similarly
to the situation with categories. A morphism P in hom I J in
a prebicategory is an internal equivalence when there exists
morphisms Q and Q’ both in hom J I such that P ⊗ Q ≡
id and Q’ ⊗ P ≡ id, and we write I ≃’ J for the type of
internal equivalences from I to J. There is a canonical map
associating to any equality of type I ≡ J between two objects
I and J an internal equivalence from I to J. A bicategory is a
prebicategory in which this canonical map is an equivalence,
i.e., we have

(I ≡ J) ≃ (I ≃’ J).

Theorem 7. The prebicategory of theorem 6 is a bicategory.

Note that theorem 4, in addition to proving the above theorem,
allows us to use equalities as 2-cells instead of morphisms in
the sense of theorem 3. Because of this, the usual structure of
bicategory which is “missing” from theorem 5 (e.g. horizontal
and vertical composition of 2-cells, the exchange law, etc.)
is automatically present thanks to the general properties of
equality. If this was not the case (for instance, if we wanted
to consider morphisms of polynomials instead of equivalences
as 2-cells), we would have had to use a much more involved
notion of bicategory [17].

The notion of being cartesian for such a bicategory can be
formalized in the expected way and one can show:

Theorem 8. The bicategory of theorem 7 is cartesian, with
the product being defined by coproduct ⊔ on objects (the
groupoids), first projection polynomial being



projl : (I ⊔ J) ⇝ I
Op projl i = ⊤
Pm projl (inl i) {i’} tt = i ≡ i’
Pm projl (inr j) {i’} tt = ⊥

(and second projection is similar), and the pairing operation
on polynomials being

pair : (I ⇝ J) → (I ⇝ K) → I ⇝ (J ⊔ K)
Op (pair P Q) (inl j) = Op P j
Op (pair P Q) (inr k) = Op Q k
Pm (pair P Q) i {inl j} c = Pm P i c
Pm (pair P Q) i {inr k} c = Pm Q i c

D. Naive closed structure

A first step toward constructing a right adjoint to the
product is the formalization of the naive closure described in
section II-C given in [15, LargePolynomial.agda]. Namely,
the formula (6) indicates that the hom space from I to J should
be

(I → Type) × J.

Of course, we encounter the same size issues as mentioned
in the introduction, and we need to suppose that Type is
the same as Type1 (i.e., we disable the checking of universe
levels), which makes the logic inconsistent, for this proof to
go through. The formalization is still useful because it is a
simple version of the actual one for the closure, which is more
involved but does not require the extra assumption.

We define the exponential of a type as

Exp : Type → Type1
Exp I = I → Type

so that the internal hom between two types I and J should be
Exp I × J. We can indeed define a curryfication map

curry : (I ⊔ J) ⇝ K → I ⇝ (Exp J × K)
Op (curry P) (jj , k) =
Σ (Op P k)

(λ c → ((λ j → Pm P (inr j) c) ≡ jj))
Pm (curry P) i c = Pm P (inl i) (fst c)

and an uncurryfication map

uncurry : I ⇝ (Exp J × K) → (I ⊔ J) ⇝ K
Op (uncurry P) k = Σ (Exp J)

(λ jj → Op P (jj , k))
Pm (uncurry P) (inl i) (jj , c) = Pm P i c
Pm (uncurry P) (inr j) (jj , c) = jj j

Theorem 9. The above maps induce an adjunction in the sense
that we have

((I ⊔ J) ⇝ K) ≡ (I ⇝ (Exp J × K)).

An alternative, and sometimes more convenient, definition
for the exponential can be given as follows. The equiva-
lence (4) between slices and families, see also (7), generalizes
in type theory. Given a type I, we have an equivalence (and
thus an equality by univalence) between types over I and
families of types indexed by I, see [15, Fam.agda]:

Theorem 10. Given a type I, we have the equivalence

(Σ Type (λ A → A → I)) ≃ (I → Type).

This implies that, if we had defined exponential as

Exp : Type → Type1
Exp I = Σ Type (λ A → A → I)

we would also be able to show the adjunction result described
above.

E. Finite types

Following the plan of section II-C for the proof, we now
restrict to finitary polynomials in order to have a smaller
exponential in the closure, for which we can handle the
size issues. In this section, we first formalize the notion
of finiteness for type which will be used to define finitary
functors. The proofs associated to this section can be found
in [15, FinType.agda].

Definition 11. A type is finite when it is merely equivalent to
the type with n elements for some natural number n:

is-finite : Type → Type
is-finite A = Σ N (λ n → ∥ A ≃ Fin n ∥)

Above, Fin n is the canonical type with n elements (its
constructors are 0 up to n−1) and ∥ A ∥ is the propositional
truncation of A (an element of this type can be thought of as
a witness that there exists a proof of A, without explicitly
providing such a proof [16, Section 3.7]). The following
lemma shows that, for a finite type A, there is a well-defined
notion of cardinality which is the natural number n such that
∥ A ≃ Fin n ∥ holds:

Lemma 12. Given a type A, if ∥ A ≃ Fin m ∥ and ∥ A ≃
Fin n ∥ then m ≡ n.

Proof. By transitivity, we should have Fin m ≃ Fin n and
thus Fin m ≡ Fin n by univalence and thus m ≡ n by
injectivity of the type constructor Fin. This last fact is not
obvious (not every type constructor is injective) and can be
shown by induction on m and n.

Using this, one can deduce that being finite is a proper
predicate:

Lemma 13. Being finite for a type is a proposition.

We write FinType for the type of all finite types:

FinType : Type1
FinType = Σ Type is-finite

Note that this type is a large one (it lives in Type1), which
will give rise to major difficulties in the following. The above
lemma ensures that equality of finite types is equivalent to
equality of the underlying types and moreover

Lemma 14. FinType is a groupoid.

Proof. The types Fin n being decidable, they are sets by
Hedberg’s theorem [16, Theorem 7.2.5]. Since a finite type A



is equivalent to such a type Fin n by definition and being a
set is a proposition [16, Lemma 3.3.5], its underlying type is
also a set by transport, and therefore A is a set by the above
remark.

F. Finitary polynomials

Following theorem 36, a functor is finitary when, for each
operation c, the total space of its parameters is finite [15,
FinPolynomial.agda]:

is-finitary : (P : I ⇝ J) → Type
is-finitary P = {j : J} (c : Op P j) →

is-finite (Σ I (λ i → Pm P i c))

Remark 15. Another natural definition of being finitary could
be to require that each space of parameters is finite:

is-finitary : (P : I ⇝ J) → Type
is-finitary P = (i : I) {j : J} (c : Op P j) →

is-finite (Pm P i c)

but one quickly convinces himself that this notion is not
suitable: identity polynomials are not generally finitary in this
sense, and being finitary is not stable under composition.

By using similar arguments as in section V-C, the proof of
section III-D can be refined to show

Theorem 16. Ignoring size issues, the cartesian bicategory
of finitary polynomials in groupoids admits Exp I × J as
internal hom, where Exp is now defined as

Exp : Type → Type1
Exp I = Σ (I → Type) (λ F → is-finite (Σ I F))

i.e., we restrict to families whose total space is finite.

Moreover, through the equivalence between families and slices
(see theorem 10), it can be shown:

Lemma 17. The above definition of the exponential is equiv-
alent to the following one:

Exp : Type → Type1
Exp I = Σ FinType (λ N → fst N → I)

For the same reasons as in section III-D, the above reasoning
requires us to ignore size issues, which forces us working in
an inconsistent logic. Again the cause of the problem is the
fact that, given a small type A, Exp A is a large type. If we
consider the definition of theorem 17 for the exponential, this
is due to the fact that we sum over finite types, and FinType
is itself a large type. We see however in next section that it is
in fact equivalent to a small type, so that the above proof can
be modified in order to properly handle size issues.

G. A small axiomatization of finite types

In this section, we show the last missing bit of our construc-
tion: the type FinType of finite types is equivalent to a small
type [15, Bij.agda]. This is a generalization of the following
simple observation: every finite set is isomorphic to a set of
the form [n] = {0, . . . , n− 1} for some natural number n, so

that the class of finite sets is equivalent to the set of natural
numbers. However, FinType is a groupoid and not a set, in the
sense of HoTT: there are non-trivial equalities between finite
types which, by univalence, correspond to isomorphisms of
finite types. For this reason, we do not expect that the type
FinType is equivalent to the traditional type N of natural
numbers, which has no non-trivial path between its element (it
has decidable equality and thus is a set by Hedberg’s theorem),
but rather to a type that we call here B, which has natural
numbers as objects, but is moreover such that the group of
path endomorphisms on an object n is the symmetric group
on n elements. A more accurate picture of the situation than
the equivalence between finite sets and natural numbers is
thus the equivalence between the category Bij of finite sets
an bijections and its skeleton, which has natural numbers as
objects.

The type B being constructed from constructors (the natural
numbers), but also paths, it is natural to describe it as a higher
inductive type [16, Section 6]. Those are not readily available
in current plain version of Agda, but we can simulate those
by working axiomatically with them, as done usually. We thus
axiomatize B as the small type such that

• it has natural numbers as objects:
obj : N → B

• for every equivalence between finite sets there is a path
in B between the corresponding natural numbers:
hom : {m n : N} (α : Fin m ≃ Fin n) →

obj m ≡ obj n
• the path associated to identity is the identity:
id-coh : (n : N) → hom {n = n} ≃-refl ≡ refl

• paths are compatible with composition:
comp-coh : {m n o : N}

(α : Fin m ≃ Fin n) (β : Fin n ≃ Fin o) →
hom (≃-trans α β) ≡ hom α · hom β

• there are no higher paths, i.e., B is a groupoid:
B-is-groupoid : is-groupoid B

We also need to postulate an appropriate elimination principle,
which can be found in the formalization: it roughly states
that, in order to define function of type f : B → A, for some
groupoid A, it is enough to define:

• an element f (obj n) of A for every natural number n,
• a path apd f (hom e) : f (obj m) ≡ f (obj n)

for every equivalence e : Fin m ≃ Fin n,
in suitably coherent way. This definition is close to the one
performed in [18] in order to define Eilenberg-MacLane spaces
in homotopy type theory. In the definition of hom, the reader
might be surprised that we allow two different cardinalities
of finite sets: given an equivalence Fin m ≃ Fin n, we
necessarily have m ≡ n. But this “more general” definition
simplifies the proofs in practice.

One of the main contribution of this paper is the following
theorem:

Theorem 18. The large type of finite types and the above type
are equivalent: FinType ≃ B.



Proof. The proof uses the “encode-decode method” introduced
to compute the fundamental group of the circle [16, Sec-
tion 8.1]. Given a natural number n and an element b of B,
we can encode the type of paths of type obj n ≡ b in B
as the type Code n b defined by induction on b (using the
elimination rule for B): in particular, for a natural number m,
we define Code n (obj m) to be the type Fin n ≃ Fin m
of equivalences between Fin m and Fin n. Namely, we can
define two functions

f : obj n ≡ b ⇄ Code n b : g

such that g◦f is the identity and f ◦g is then identity on paths
of the form hom e for e : Fin n ≃ Fin m. From there, we
can deduce that the canonical function B-to-Fin from B to
FinType (defined using the elimination principle for B) is an
embedding. This map is easily shown to be surjective, and we
deduce that it is and equivalence by [16, Theorem 4.6.3].

As a byproduct of the above theorem, we have a map
B-to-Fin from B to FinType. This finally allows us to give
the following definition of the exponential

Exp : Type → Type
Exp A = Σ B (λ b → B-to-Fin b → A)

which remains in small types. The proof of section III-F can
be adapted to this definition (because it is equivalent to the
one of theorem 17 by theorem 18), resulting in a proof which
does not require inconsistent assumptions on universes.

IV. A BICATEGORY OF POLYNOMIAL FUNCTORS IN
GROUPOIDS

In this section and the following, we study polynomial func-
tors in groupoids, from a more traditional category-theoretic
perspective. We introduce a “fibered variant” of polynomial
functors in groupoids and show that it forms a cartesian closed
bicategory. We begin by reviewing alternative preexisting
approaches in the literature.

A. Homotopy polynomial functors in groupoids

Our aim is to define a notion of polynomial functor in the
category of groupoids, which is complete and cocomplete. For
a category with pullbacks, any change of base functor ∆f

admits a left adjoint Σf . Moreover, being locally cartesian
closed is equivalent to requiring the existence of a right
adjoint functor Πf to every change of base functors ∆f , which
we need in order to define composition of polynomials, and
this is not the case for the category of groupoids [19] (the
morphisms f for which Πf exists are called exponentiable).
It is however weakly cartesian closed, if we properly take the
structure of 2-category of groupoids in account [19].

This allows to define a notion of “weak” or “homotopy”
polynomial functors in groupoids: this is the path followed
by Kock in [2], which contains a detailed account of what
follows. The idea, that we only briefly sketch here, consists in

replacing all the constructions of limits and colimits by ones
“up to homotopy”. For instance, given a diagram

A×C B B

A C

⌟
g

f

in Set, it is well-known that the pullback of f and g is the
set

A×C B = {(a, b) ∈ A×B | f(a) = g(b)}

equipped with the obvious projections. In the 2-category Gpd,
one can consider the homotopy pullback of f and g, whose
formula is essentially the same excepting that equality is now
replaced by an explicit isomorphism: it is a category whose
objects are triples (a, e, b) with a ∈ A, b ∈ B and e : fa → gb
is a morphism in C. In this way, given a functor f : I → J ,
one can define a 2-functor ∆f : Gpd/J → Gpd/I which
is defined on objects by homotopy pullback, and admits a
(homotopy) right adjoint Πf . In this way, we can define
a polynomial in groupoids as a diagram (2) in Gpd and
adapt the constructions of section II, by suitably replacing all
constructions by ones up to homotopy.

As an another approach, instead of generalizing the con-
structions up to homotopy, we can keep the strict versions of
section II, but restrict to polynomials for which those work:
this is the approach taken by Weber in [9], see also [10]. The
morphisms in Gpd which are exponentiable are precisely the
isofibrations: a functor F : I → J between groupoids is an
isofibration when, for every object i ∈ I and isomorphism
g : Fi → j in J , there is an isomorphism f : i → i′ such that
Ff = g. In the category of groupoids, isofibrations coincide
with Conduché functors (which are exponentiable morphisms
in Cat) and with Grothendieck fibrations, and we will simply
say fibrations for those. Following this observation, we can
define a polynomial in Gpd as a diagram (2) such that
both p and t are fibrations: the first one allows the use of
Πp in the definition of polynomials (3) as well as when
defining composition of polynomials, and the second one
justifies the use of the Beck-Chevalley isomorphism when
defining composition. It can be checked that such polynomials
are closed under composition. We expect that a comparison
between this definition and the previous one can be made
by using general arguments of model structures, based the
existence of the canonical model structure on Gpd [20], for
which weak equivalences are equivalence of categories and
fibrations are fibrations in the above sense (in particular, this
model category is right proper, from which follows that strict
pullbacks along fibrations coincide with homotopy pullbacks).
We leave this for future works though.

In this paper, we introduce a third possible definition of
polynomials, where the data is not organized in the same way
as usual. It is well-known that the equivalence (4) generalizes
as an equivalence of 2-categories

Fib(I) ≃ [I,Gpd]pseudo (7)



between fibrations over a groupoid I and pseudofunctors
from I to groupoids (as a variant there is also an equiva-
lence between split fibrations over I and functors from I to
groupoids), see for instance [21, Chapter 12], where the left-
to-right functor is given by the Grothendieck construction (see
below). This means that when defining a polynomial (2), we
can equivalently encode the data of the morphism t : B → J
as a functor t : J → Gpd, and similarly for other morphisms.
Our definition is detailed in section IV-C and, again, we leave
the detailed comparison with previous ones for later. There
are many possible small variants on this definition (using
pseudofunctors or functors, fibrations which are split or not,
etc.), and this one is the only one for which we were able to
construct the closure to the cartesian product, for interesting
technical reasons. It is however not customary to detail failed
attempts in papers.

B. Preliminaries on groupoids and 2-categories

Let us fix some notations first. We denote isomorphisms
of categories by ∼= and equivalences by ≃. We recall that
a category is a groupoid when every morphism is invertible
and we write Gpd for their (2-)category. We write ⊤ for the
terminal groupoid and ⋆ for its only object, and ⊥ for the
initial groupoid.

Definition 19. Given a functor F : I → Gpd for some
groupoid I , the dependent sum

∑
i:I Fi is the groupoid whose

objects are pairs (i, x) with i an object of I and x an object
of Fi, and such that a morphism (i, x) → (j, y) is the data
of an arrow f : i → j in I , and an arrow g : Ff (x) → y in
Fj . The category

∑
i:I Fi is also known as the Grothendieck

construction of F .

Given a 2-category C, we write:
• C≃ for the sub-2-category of C whose 1-cells are re-

stricted to equivalences and 2-cells to isomorphisms;
• |C|1 for the 1-truncation of C which is the category with

the same objects as C and morphisms are obtained from
1-cells of C by quotienting by isomorphism 2-cells.

Lemma 20. We have the following properties of 1-truncation:

• the operation |−|1 extends as a functor from 2-categories
to categories;

• given a 2-category C, the category |C≃|1 is a groupoid;
• the 1-truncations of two 2-equivalent 2-categories are

equivalent;
• 1-truncation preserves products.

The traditional notion of slice category generalizes as follow
in the 2-categorical setting.

Definition 21. Given a 2-category C, and X an object of C,
the slice 2-category C//X is such that

• a 0-cells is a pair of an object A of C and a morphism
fA : A → X ,

• a 1-cell from (A, fA) to (B, fB) is a morphism
u : A → B and a 2-isomorphism α : fB ◦ u ⇒ fA,

• a 2-cell from (u, α) to (v, β) is a 2-cell from u to v such
that the appropriate diagram commutes.

Lemma 22. Supposing that C has coproducts, given two
objects X and Y , we have C//(X ⊔ Y ) ∼= C//X × C//Y .

Lemma 23. Given a functor F : C → D which is a 2-equi-
valence of 2-categories and an object X of C, we have an
equivalence of slice categories: C//X ≃ D//FX .

Given a functor F : C → D between 2-categories and an
object X of D, we can similarly define a notion of comma
category F//X which generalizes the previous definition (a
slice category is a comma category over the identity functor),
and the above lemmas generalize to those.

C. A fibered view of polynomial functors in groupoids

We can now introduce our definition of polynomial functor
in groupoids, which appropriately reformulates in the language
of category theory the type theoretic theorem 1. Given a
groupoid I , we define its exponential as the groupoid

!I = |Gpd≃//I|1
This can be thought of as acting as the type of groupoids
over I , except that we need to truncate the resulting 2-category
in order to get back to groupoids, see also theorem 27. It can
be shown to satisfy the following “Seely isomorphism”, using
the properties of section IV-B:

Lemma 24. Given groupoids I and J , we have

!(I ⊔ J) ∼= !I × !J.

Definition 25. A fibered polynomial in groupoids from I to J
is the data of:

• an operations functor Op[P ] : J → Gpd, and
• a parameters functor Pm[P ] :

∑
j:J Op[P ]j → !I .

Unpacking the definition, the data of Pm[P ] decomposes into
three components:

• a functor Pm[P ] :
∑

j:J Op[P ]j → Gpd,
• for any object b ∈ Op[P ]j , a functor sPb : Pm[P ]b → I
• for any morphism u : (j, b) → (j′, b′) in Op[P ], a natural

transformation αP
u : sPb′ ◦ Pm[P ]u ⇒ sPb :

Pm[P ]b Pm[P ]b′

I

Pm[P ]u

sPb

αP
u⇐=

sP
b′

We note here that every polynomial in groupoids in our
sense induces one in the sense of [10], and leave detailed
comparison for future work.

Lemma 26. Any fibered polynomial induces a polynomial in
groupoids

I
∑
j:J

∑
b:Op[P ]j

Pm[P ]b
∑
j:J

Op[P ]j J

∑
j:J

∑
b:Op[P ]j

sPb π1 π1

where both projections π1 are fibrations.



Remark 27. Let us briefly discuss the definition of !I . In
view of the above lemma, if we had chosen to work with the
1-categorical slice construction Gpd/I instead of the 2-slice
Gpd//I , it would have resulted in a much stricter notion
of polynomials than traditional ones [10]. Namely, it would
impose that, in a polynomial (2), the arrow E → I sends lifts
of isomorphisms of B to identities in I .

The reason why we have to truncate can be seen as an
instance of the phenomenon explained in the introduction, but
one dimension higher: our polynomials canonically form a
tricategory, but the closure is only correct up to dimension 2.

The counterpart of theorem 2 for morphisms is the following.

Definition 28. A morphism between fibered polynomials
P Q : I ⇝ J consists of two natural transformations

β : Op[P ] ⇒ Op[Q] ε : Pm[Q] ◦ (
∑
j:J

βj) ⇒ Pm[P ]

∑
j:J Op[P ]j

|Gpd//I|1 J

∑
j:J Op[Q]j

π1
Pm[P ]

∑
j:J βj

ε⇐=

Pm[Q]
π1

D. Bicategorical structure

In this section, we focus on fibered polynomials, which we
simply call polynomials and detail their structure of bicategory.

1) Horizontal composition:

Definition 29. For any groupoid I , the unit polynomial
idI : I ⇝ I is given by Op[id]i = ⊤, and Pm[id] is given by
the following data:

• the functor Pm[id] :
∑

i:I Op[id] → Gpd is the constant
functor equal to ⊤;

• for any object i ∈ I , sid : ⊤ → I sends ⋆ to i;
• for any morphism u : i → i′ in I , αid

u = u−1.

⊤ ⊤

I
i

u−1

⇐=
i′

Definition 30. Given two polynomials P : I ⇝ J and
Q : J ⇝ K their composition Q ◦ P : I ⇝ K is defined
as follows:

• Operations are given by

Op[Q ◦ P ]k =
∑

b:Op[Q]k

[Pm[Q]b,
∑
j:J

Op[P ]j ],

where [_, _] denotes the category of morphisms in !I;
• An object of Op[Q ◦ P ]k is therefore a triple (b, fα)

where b ∈
∑

k:K Op[Q]k, f : Pm[Q]b →
∑

j:J Op[P ]j ,
and α : π1 ◦ f ⇒ sQ; the groupoid Pm[Q ◦ P ]b,f,α is
given by:

Pm[Q ◦ P ]b,f,α =
∑

x:Pm[Q]b

Pm[P ]f(x).

• The arrow sQ◦P
b,f,α : Pm[Q ◦ P ] → I sends a pair (x, y) to

sPf(x)(y). A morphism (x, y) → (x′, y′) in Pm[Q◦P ]b,f,α
is a pair (u, v), with u : x → x′ in Pm[Q]b, and
v : Pm[P ]f(u)(y) → y′ in Pm[P ]f(x′). The image of
(u, v) under sQ◦P

b,f,α is the composite:

sPf(x)(y) sPf(x′)(Pm[P ]f(u)(y)) sPf(x′)(y)
αP

u,y
−1 sP

f(x′)(v)

• We now describe the action of Pm[Q◦P ] on morphisms.
A morphism (b, f, α) → (b′, f ′, α′) in Op[Q ◦ P ] is the
data of a pair (u, β) , where u : b → b′ is a morphism
in Op[Q], and β : f ′ ◦ Pm[Q]u ⇒ f is a natural
transformation such that (α′◦Pm[Q]u)∗αQ

u = (tP ◦β)∗α
(those natural transformations go from tP ◦ f ′ ◦Pm[Q]u
to sQb ).
We define Pm[Q ◦ P ]u,β : Pm[P ]b,f,α → Pm[P ]b′,f ′,α′

as the functor sending a pair (x, y) to
(Pm[Q]u(x),Pm[P ]β−1

x
(y)).

• It remains to define αQ◦P
u,β : sQ◦P

b′,f ′,α′◦Pm[Q◦P ]u,β ⇒ sQ◦P
b,f,α.

Computing these functors for any (x, y), we see αQ◦P
u,β,(x,y)

should have source sPf ′(Pm[Q]u(x))
(Pm[P ]β−1

x
(y)), and

target sPf(x)(y). We define αQ◦P
u,β,(x,y) = αP

β−1
x

.∑
x:Pm[Q]b

Pm[P ]f(x)
∑

x:Pm[Q]b′

Pm[P ]f ′(x)

I
sQ◦P
b,f,α

Pm[Q◦P ]u,β

αP

β
−1
x⇐=

sQ◦P
b′,f′,α′

Definition 31. Let (ε, β), (ε′, β′) : P Q be two morphisms
of fibered polynomials, and let µ : β → β′ be a modification
(that is, a family of natural transformations µb : βb ⇒ β′

b

for b ∈ Op[P ]). Then µ induces a natural transformation∑
j:J µb :

∑
j:J βj ⇒

∑
j:J β′

j .
A 2-equivalence between fibered polynomial is the data of

such a modification µ such that the composite of µ and ε
equals ε′.

Proposition 32. The composition defined above defines a
bicategory fPoly whose:

• objects are groupoids;
• morphisms are fibered polynomials;
• 2-cells are morphisms of fibered polynomials, quotiented

by 2-equivalences.

Proof. See section B.

Remark 33. Although the computations performed here and
below are quite similar to the ones performed in Agda in
section III, we would like to point out that the comparison
between the two is not obvious, because they do not construct
bicategories in the same sense. For instance, in our type-
theoretical notion of bicategory, we have a type of objects,
whereas traditional bicategories have a set of objects, so that
it is not clear whether we can make our formalization apply
to usual bicategories.



V. CARTESIAN CLOSED STRUCTURE STRUCTURE

A. Cartesian structure

The cartesian product in fPoly is written ⊕ in order to
distinguish it from the cartesian product × of groupoids. We
define it on objects I and J as the coproduct I ⊕ J = I ⊔ J
of groupoids. We write ι1 : I → I ⊔ J and ι2 : J → I ⊔ J
for the canonical injections. The first projection polynomial
ΠI,J

1 : I ⊔ J ⇝ I is defined as follows:
• the operations functor Op[ΠI,J

1 ] : I → Gpd is the
constant functor equal to ⊤;

• the parameters functor Pm[ΠI,J
1 ] : I × ⊤ → Gpd

is the constant functor equal to ⊤, and the functor
si : Pm[ΠI,J

1 ]i → I ⊔ J sends ⋆ to i;
• for any morphism u : i → i′ in I , αid

u = u−1.

⊤ ⊤

I
i

u−1

⇐=
i′

The second projection ΠI,J
2 : I ⊔ J ⇝ I is defined similarly.

Given two polynomials P : I → J and Q : I → K, their
pairing ⟨P,Q⟩ : I → (J ⊔K) is defined as follows.

• Op[⟨P,Q⟩] : J⊔K → Gpd is Op[⟨P,Q⟩]ι1j = Op[P ]j ,
and Op[⟨P,Q⟩]ι2k = Op[Q]k.

• Notice that there is an isomorphism:∑
x:J⊔K

Op[⟨P,Q⟩] ∼=
∑
j:J

Op[P ]j ⊔
∑
k:K

Op[Q]k,

and therefore we can define Pm[⟨P,Q⟩] as the copairing
{Pm[P ],Pm[Q]}.

Proposition 34. The operations defined above induce a cate-
gorical product.

Proof. We prove that using the equational definition of prod-
ucts. I.e. we show that for polynomials P1 : I ⇝ J1 and
P2 : I ⇝ J2, the pairing ⟨P1, P2⟩ : I ⇝ J1 ⊔ J2 satisfies:

• Πi ◦ ⟨P1, P2⟩ ∼= Pi;
• ⟨Π1 ◦ P,Π2 ◦ P ⟩ ∼= P for P : I ⇝ J1 ⊔ J2.

Details of the computations are given in section C.

B. Naive closed structure

Leaving size issues aside, we study here a “naive” closure
for the cartesian product, which is akin to the one defined at the
end of section III-D: given two groupoids I and J , we define
a large groupoid [I, J ] which satisfies the usual equivalence
required for a right adjoint to the cartesian product. This proof
will be refined in next section in order to handle size issues
formally.

We claim that the closure to the product can be obtained as

[I, J ] = !I × J.

Given a polynomial P : I ⊔ J ⇝ K, its parameters can be
seen as a functor

Pm[P ] :
∑
j:J

Op[P ]j → !I × !J,

by post-composition with the isomorphism theorem 24. We
define its transpose P ♯ : I ⇝ !J ×K as follows, where IsoC
denotes the maximal subgroupoid of a category C:

• operations Op[P ♯] : !J ×K → Gpd are defined by

Op[P ♯]f,k =
∑

b:Op[P ]k

Iso!J(π2(Pm[P ]k,b), f);

• the parameters of P ♯ are defined as the composite of
– the canonical inclusion∑

(f,k):!J×K Op[P ♯]f,k ↪→
∑

j:J Op[P ]j ;
– the parameters Pm[P ] :

∑
j:J Op[P ]j → !I × !J ;

– the projection π1 : !I × !J → !I .
Conversely, to a polynomial Q : I ⇝ !J ×K, we associate

a polynomial Q♭ : I ⊔ J ⇝ K as follows:
• operations Op[Q♭] : K → Gpd are given by

Op[Q♭]k =
∑
f :!J

Op[Q]f,k;

• parameters Pm[Q♭] :
∑

k:K Op[Q♭]k → !(I ⊔ J) are
defined, up to the isomorphism of theorem 22, by

Pm[Q♭]k,(f,b) = (Pm[Q]k,b, f).

Proposition 35. Given polynomials P : I ⊔ J ⇝ K and
Q : I ⇝ !J ×K, we have (P ♯)♭ ≃ P and (Q♭)♯ ≃ Q.

C. A cartesian closed bicategory

In order to avoid the size issues of above approach, we
further restrict to finitary polynomial functors in the following.
Given a natural number n, recall that we write [n] for the set
n = {0, . . . , n− 1}. A groupoid is said to be finite when it is
merely equivalent to the set [n], seen as a discrete groupoid,
for some n ∈ N. We write Gpdfin for the full subcategory of
Gpd whose objects are finite groupoids.

Definition 36. A polynomial functor P : I ⇝ J is finitary
if for any operation b ∈ Op[P ]j , the groupoid which is the
source of Pm[P ]j,b ∈ Gpd//I is finite.

Proposition 37. Finitary polynomials form a subcartesian
bicategory of fibered polynomials.

We write B the groupoid whose objects are natural numbers,
and such that a morphism m → n is a bijective func-
tion [m] → [n]. The groupoid B satisfies that B(m,n) = ∅
for m ̸= n and the group of endomorphisms on an object n is
the symmetric group on n elements. This groupoid provides
a small model of the category of finite groupoids in the sense
that it is small and equivalent to it:

Proposition 38. There is a 2-equivalence of 2-categories
Gpd≃

fin ≃ B.

Proof. There is an inclusion functor F : B → Gpd≃
fin

sending an object n to the discrete groupoid [n] and a
bijection to the corresponding functor. This functor is es-
sentially surjective (every finite groupoid is equivalent to
the discrete groupoid [n] where n is the number of its



isomorphism classes of objects) and fully faithful (the functor
Fm,n : B(m,n) → Gpd≃

fin(Fm,Fn) is an equivalence of
groupoids). Therefore, assuming the axiom of choice, it is an
equivalence of (2,1)-categories.

By theorems 20 and 23, we immediately deduce:

Corollary 39. We have an equivalence !I ≃ B//I .

This finally allows to show that our bicategory is cartesian
closed, properly taking size issues in account.

Theorem 40. The cartesian bicategory of finitary polynomials
is closed with exponentials being given by [I, J ] = B//I × J .

VI. FUTURE WORK

In this work, we have constructed a bicategory of polyno-
mial functors in groupoids, both in the setting of type theory,
and the more traditional one of (set-theoretic) category theory.
As mentioned in theorem 33, we would like to explore further
the links between the two: we expect that the second can be
deduced from the first, although the way of formally doing
this so eludes us at the moment.

A second aspect in which we wish to push investigations
on this model is its relation with linear logic. Namely, the
bicategory of spans in groupoids can be understood as the
full subbicategory of polynomials as in eq. (2) where the
morphism p is the identity. This subbicategory is monoidal
with the tensor induced on objects by cartesian product of
groupoids. The inclusion functor admits a left adjoint which
is a strong lax monoidal functor. This allows to model the
exponential of linear logic [22] and will be detailed elsewhere.
We also expect that the constructions of differential linear logic
can be interpreted in the model.

Finally, we already mentioned that our model is close to the
one of generalized species, which is also a model of (differen-
tial) linear logic [11], [13] inspired by combinatorial species
[23]. We would like to understand the relationship between
those two models, which is hinted at in [2, Section 3.9]: one
of the main difference is that whereas generalized species
are be composed using traditional composition of profunctors,
which involves a quotient, homotopy polynomial functors
perform a homotopy quotient, and we should be able to obtain
the first from the second by suitably discarding homotopical
information (i.e., “taking π0”).

On the long term, we finally want to investigate the vast
generalization to polynomial in ∞-groupoids, as first studied
in [3]. This would make more transparent the comparison with
the type theoretic formalization, but we expect the study of this
model to be much more involved on a technical level.
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APPENDIX

A. Dependent sum and products of groupoids

In this section we define and study the dependent product∏
of groupoids, which will be useful in the next sections,

in particular in order to give an equivalent definition of
the composition of polynomials which is more amenable to
computations.

Definition 41. The dependent product of F is the following
groupoid.

• Objects of
∏

i:I Fi, denoted c are families of objects ci
in Fi indexed by i ∈ I , and arrows cα : Fα(ci) → cj
for any arrow α : i → j in I , such that cidi

= idci and
cα◦β = Fβ(cα) ◦ cβ .

• A morphism f : c → d is the data, for any object i ∈ I ,
of an arrow fi : ci → di, such that for any α : i → j we
have fj ◦ cα = dα ◦ Fαfi.

Lemma 42. The constructions
∑

and
∏

are functorial, both
in I and in F : I → Gpd:

• Any functor f : J → I induces a functor∑
j:J Ff(j) →

∑
i:I Fi, which is an isormorphism (resp.

an equivalence) whenever f is, and similarly for
∏

.
• Any natural transformation α : F ⇒ G induces a functor∑

i:I Fi →
∑

i:I Gi, which is an isormorphism (resp. an
equivalence) whenever α is, and similarly for

∏
.

Lemma 43. The following isomorphisms hold:
• For any groupoids I and J , [I, J ] ∼=

∏
i:I J .

• For any two functors f, g : I → J between groupoids,
[f, g] ∼=

∏
i:I J(fi, gi), where [f, g] denotes the set of

natural transformations from f to g.
• For any two functors f : C → I and f : D → I ,

[f, g] ∼=
∑

h:C→D

∏
x:C

I(g(h(x)), f(x)),

where [f, g] denotes the homomorphisms from f to g in
Gpd//I .

• Associativity. Let F : I → Gpd be a functor, and
G :

∑
i:I Fi → Gpd be a functor. Then∑

i,x:
∑

i:I Fi

Gi,x
∼=

∑
i:I

∑
x:Fi

Gi,x∏
i,x:

∑
i:I Fi

Gi,x
∼=

∏
i:I

∏
x:Fi

Gi,x

• Distributivity. Let F : I → Gpd be a functor, and
G :

∑
i:I Fi → Gpd be a functor. Then∏

i:I

∑
x:Fi

Gi,x
∼=

∑
ϕ:

∏
i:I Fi

∏
i:I

Gi,ϕi

• For any functor F : I1 ⊔ I2 → Gpd,∑
i:I1⊔I2

Fi
∼=

∑
i1:I1

Fi1 ⊔
∑
i2:I2

Fi2∏
i:I1⊔I2

Fi
∼=

∏
i1:I1

Fi1 ×
∏
i2:I2

Fi2

Lemma 44. The following equivalences hold:

• For any object i of a groupoid I , Σj:II(i, j) ≃ ⊤
• For any object i of a groupoid I and functor
F :

∑
j:I I(i, j) → Gpd,∏

j:I

∏
x:I(i,j)

Fj,x ≃ Fi,x.

In particular, for any functor F : I → Gpd,∏
j:I [I(i, j), Fj ] ≃ Fi.

• For any functors f : C → I and B : I → Gpd,

[f,
∑
i:I

Bi] ≃
∏
x:C

Bf(x)

B. Proof of Theorem 32

a) Left unit: Let P : I ⇝ J be a polynomial. Let us
define an iso idJ ◦P ⇒ P . For that we start by the equivalence
β : Op[id ◦P ] ⇒ Op[P ]. We have, for any object j : J :

Op[id ◦P ]j =
∑
⋆:⊤

[⊤ →j J,
∑
j:J

Op[P ]j ]

∼= [⊤ →j J,
∑
j:J

Op[P ]j ]

An object of Op[id ◦P ]j is therefore the data of an element
(j′, b) ∈

∑
j:J Op[P ]j , and an isomorphism u : j′ → j.

We define βj(j
′, b, u) = Op[P ]u(b). Its inverse is given by

β−1
j b = (j, b, idj). This is indeed an equivalence because u

induces an isomorphism (j′, b, u) ∼= (j,Op[P ]ub, id).
The components of the equivalence ε are functors

εj,(j′,b,u) : Pm[id ◦P ]j,(j′,b,u) → Pm[P ]j,Op[P ]u(b) over I .
Note that we have an isomrphism:

Pm[id ◦ P ]j,(j′,b,u) =
∑
⋆:⊤

Pm[P ]j′,b ≃ Pm[P ]j′,b,

and so we can choose

εj,(j′,b,u) = Pm[P ]u,id : Pm[P ]j′,b → Pm[P ]j,Op[P ]ub.

The fact that these isomorphisms live over I is given by
αP
u,id.

b) Right unit: Let P : I ⇝ J be a polynomial. Let us
define an iso P ◦ idI ⇒ P . For that we start by a family of
functors βj : Op[P ◦ id]j → Op[P ]j . We first notice that:

Op[P ◦ id]j =
∑

b:Op[P ]j

[Pm[P ]b,
∑
j:J

⊤]

∼=
∑

b:Op[P ]j

[Pm[P ]b, J ]

It remains to show that there is an equivalence
[Pm[P ]b, J ] ≃ ⊤: let f : Pm[P ]b → J and α : f ⇒ sPb be
a natural isomorhism, then morphisms between (f, α) and
(sPb , id) in [Pm[P ]b, J ] are in bijections with the inverses of
α.

So the first projection induces an equivalence
Op[P ◦ id]j → Op[P ]j , which we take as βj .



The equivalences εb,f,a : Pm[P ]b → Pm[P ◦ id]b,f,a are
given by the isomorphism:

Pm[P ◦ id]b,f,a =
∑

x:Pm[P ]b

⊤

≃ Pm[P ]b

c) Associativity.: Let P1 : I ⇝ J , P2 : J ⇝ K and
P3 : K ⇝ L be three polynomials. To prove the associativity,
notice first that Theorem 44 induces an equivalence:

Op[Q ◦ P ]k ≃
∑

b:Op[Q]k

∏
x:Pm[Q]b

Op[P ]sQb (x)

The computation shown in Figure 1 defines the associativity
equivalences βl : Op[(P3 ◦ P2) ◦ P1] → Op[P3 ◦ (P2 ◦ P1)],
which send a triple (b3, λx3.b2, λx3x2.b1) to the pair
(b3, λx3.(b2, λx2.b1)).

Finally, ε consists in defining equivalences
Pm[(P3◦P2)◦P1]b3,b2,b1 → Pm[P3◦(P2◦P1)](b3,λx3.(b2x3,b1x3)).
Those are given by the following composite:

Pm[(P3 ◦ P2) ◦ P1]b3,b2,b1

=
∑

x3,x2:
∑

x3:Pm[P3]b3
Pm[P2]b2(x3)

Pm[P1]b1(x3,x2))

∼=
∑

x3:Pm[P3]b3

∑
x2:Pm[P2]b2(x3)

Pm[P1]b1(x3,x2))

=
∑

x3:Pm[P3]b3

Pm[(P2 ◦ P1)]b2x3,b1x3

= Pm[P3 ◦ (P2 ◦ P1)]b1,λx3.(b2x3,b1x3)

C. Proof of Theorem 34

We prove the result using the equational definition of
products. I.e. we show that for polynomials P1 : I ⇝ J1
and P2 : I ⇝ J2, the pairing ⟨P1, P2⟩ : I ⇝ J1 ⊔ J2 satisfies:

• Πi ◦ ⟨P1, P2⟩ = Pi;
• ⟨Π1 ◦ P,Π2 ◦ P ⟩ = P for P : I ⇝ J1 ⊔ J2.

For the first equality :

Op[Π1 ◦ ⟨P1, P2⟩]j
=

∑
b:Op[Π1]j

[Pm[Π1]j ,
∑
j:J1

Op[⟨P1, P2⟩]ι1j ]

∼= [⊤ →j J,Pm[P1]ι1j ]

∼=
∏
j′:J1

[J1(j
′, j),Op[P1]j′ ]

∼= Op[id ◦P ]j ∼= Op[P ]j .

The map βj therefore sends a pair (⋆, b, α) to b. For ε, we
have the following equivalence:

Pm[Π1 ◦ ⟨P1, P2⟩]⋆,b,α =
∑

⋆:Pm[Π1]

Pm[⟨P1, P2⟩]b

∼= Pm[P1]b

The equivalence Π2 ◦ ⟨P1, P2⟩ = P2 is similar.

We now prove the last equivalence, by distinguishing two
cases depending on whether j ∈ J1 or j ∈ J2. In the first
case:

Op[⟨Π1 ◦ P,Π2 ◦ P ⟩]ι1j
= Op[Π1 ◦ P ]j

=
∑
⋆:⊤

[⊤ →ι1j J1 ⊔ J2,
∑

j′:J1⊔J2

Op[P ]j′ ]

∼= [⊤ →ι1j J1 ⊔ J2,
∑
j1:J1

Op[P ]ι1j1 ⊔
∑
j2:J2

Op[P ]ι2j2 ]

∼= [⊤ →ι1j J1,
∑
j1:J1

Op[P ]ι1j1 ]

∼= Op[P ]ι1j1

And βι1j therefore sends a pair (⋆, ι1(b, α)) to b. The
equivalence ε is then given by:

Pm[⟨Π1 ◦ P,Π2 ◦ P ⟩](⋆,ι1(b,α))
= Pm[Π1 ◦ P ]⋆,b,α)

=
∑
⋆:⊤

Pm[P ]b

∼= Pm[P ]b

The case where j ∈ J2 is symmetric.

D. Proof of Theorem 37

Proof. We need to show that the identity polynomial and the
two projections are finitary, and that finitary polynomials are
closed under composition and pairing.

The fact that the identity and the projections are finitary
comes from the fact that ⊤ is finite.

Let now P : I ⇝ J and Q : J ⇝ K be two finitary
polynomials, and take (b, f, α) ∈ Op[Q ◦ P ]k. By hypoth-
esis there exists n ∈ N such that there is an equivalence
ϕ : [n] → Pm[Q]b, and for any b′ ∈ Op[P ]j , there exists
nb′ such that Pm[P ]b′ ≡ [nb′ ]. We then have:

Pm[Q ◦ P ]b,f,α =
∑

y:Pm[Q]b

Pm[P ]f(y)

∼=
∑
y:[n]

Pm[P ]f(ϕ(y))

≡
∑
y:[n]

[nf(ϕ(y))] ∼=

[
n∑

k=1

nf(ϕ(k))

]
This proves that finitary polynomials are stable under compo-
sition.

Take now P : I ⇝ J1 and P2 : I ⇝ J2 two fini-
tary polynomials, and let us show that ⟨P1, P2⟩ is finitary.
This is immediate since Pm[⟨P1, P2⟩]ι1b = Pm[P1]b and
Pm[⟨P1, P2⟩]ι2b = Pm[P2]b.



Op[(P3 ◦ P2) ◦ P1]l

≃
∑

b,f :Op[P3◦P2]l

∏
x,y:Pm[P2◦P2]b,f

Op[P1]sP3◦P2
b,f (x,y)

≃
∑

b3:Op[P3]l

∑
f :
∏

x:Pm[P3]b
Op[P2]

s
P3
b

(x)

∏
x,y:

∑
x:Pm[P3]b3

Pm[P2]f(x)

Op[P1]sP2
f(x)

(y)

∼=
∑

b3:Op[P3]l

∑
f :
∏

x:Pm[P3]b3
Op[P2]

s
P3
b

(x)

∏
x:Pm[P3]b3

∏
y:Pm[P2]f(x)

Op[P1]sP2
f(x)

(y)

∼=
∑

b3:Op[P3]l

∏
x:Pm[P3]b3

∑
b2:Op[P2]

s
P3
b3

(x)

∏
y:Pm[P2]b2

Op[P1]sP2
b2

(y)

≃
∑

b3:Op[P3]l

∏
x:Pm[P3]b3

Op[P2 ◦ P1]s[P3]b3 (x)

≃ Op[P3 ◦ (P2 ◦ P1)]l

Figure 1. Computation for the associativity.
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