From Geometric Semantics to Asynchronous Computability

Eric Goubault Samuel Mimram

LIX, Ecole Polytechnique

Eric. Goubault@polytechnique.edu
Samuel.Mimram@polytechnique.edu

Abstract

We show that the protocol complex formalization of fault-tolerant
protocols can be derived from first principles, i.e. directly from a
suitable semantics of the underlying synchronization and commu-
nication primitives, based on a geometrization of the state space.
By constructing a one-to-one relationship between simplices of the
protocol complex and (di)homotopy classes of (di)paths in the later
semantics, we describe a connection between these two geometric
approaches to distributed computing: protocol complexes and di-
rected algebraic topology. This is exemplified on atomic snapshot,
iterated snapshot and layered immediate snapshot protocols, where
a well-known combinatorial structure, interval orders, plays a key
role. We believe that this correspondence between models paves
the way to proving impossibility results for much more intricate
fault-tolerant distributed architectures.

Categories and Subject Descriptors F.1.1 [Computation by Ab-
stract Devices]: Models of Computation—computability theory;
F.1.2 [Computation by Abstract Devices]: Models of Computation—
parallelism and concurrency

Keywords fault-tolerant distributed computing, atomic snapshot
protocol, protocol complex, directed algebraic topology, dihomo-
topy, interval order

1. Introduction

Fault-tolerant distributed computing is concerned with determining
algorithms, and, when possible, solving so-called decision tasks
on a given distributed architecture, in the presence of faults. The
seminal result in this field was established by Fisher, Lynch and
Patterson in 1985, who proved that there exists a simple task that
cannot be solved in a message-passing (or equivalently a shared
memory) system with at most one potential crash [10]. In particu-
lar, there is no way in such a distributed system to solve the very
fundamental consensus problem: each processor starts with an ini-
tial value in local memory, typically an integer, and should end up
with a common value, which is one of the initial values. Later on,
Biran, Moran and Zaks developed a characterization of the deci-
sion tasks that can be solved by a (simple) message-passing system
in the presence of one failure [3]. The argument uses a “similarity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PODC 2015, Month d-d, 20yy, City, ST, Country.

Copyright © 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Christine Tasson

PPS, Paris 7
Christine. Tasson@pps.univ-paris-diderot.fr

chain”, which can be seen as a connectedness result of a repre-
sentation of the space of all reachable states, called the view com-
plex [24] or the protocol complex [22]. Of course, this argument
turned out to be difficult to extend to models with more failures,
as higher-connectedness properties of the protocol complex mat-
ter in these cases. This technical difficulty was first tackled, using
homological considerations, by Herlihy and Shavit [21] (and inde-
pendently [5, 29]): there are simple decision tasks, such as k-set
agreement, a weaker form of consensus, that cannot be solved in
the wait-free asynchronous model, i.e. shared-memory distributed
protocols on n processors, with up to n — 1 crash failures. Then, the
full characterization of wait-free asynchronous decision tasks with
atomic read and writes (or equivalently, with atomic snapshots) was
described by Herlihy and Shavit [22]: this relies on the central no-
tion of chromatic (or colored) simplicial complexes, and their sub-
divisions. All results above are deduced from the contractibility of
the so-called “standard” chromatic subdivision, which was com-
pletely formalized in [24, 25] (and even for iterated models [18])
and corresponds to the protocol complex of distributed algorithms
solving layered immediate snapshot protocols.

Over the year, the geometric approach to problems in fault-
tolerant distributed computing has been very successful, see [23]
for a fairly complete up-to-date treatment. One potential limitation
however is that for some intricate models, it is extremely difficult to
produce their corresponding protocol complex. In this paper, we are
exploring the links between the semantics of the synchronization
and communication primitives we are considering on a given dis-
tributed architecture, and the protocol complex. The interest is that
the semantics of such synchronization primitives is much simpler
to write down than the protocol complex, which is very error-prone
to describe, as we will see in Section 3.2. We advocate in this pa-
per the calculation of protocol complexes from the first principles,
i.e. directly from the formal semantics of the underlying synchro-
nization primitives.

The other aim of this article is to make the link between two
geometric theories of concurrent and distributed computations: one
based on protocols complexes, and the other, based on directed al-
gebraic topology. Actually, the semantics of concurrent and dis-
tributed systems can be given by topological models, as pushed
forward in a series of seminal papers in concurrency, in the early
1990s. These papers have explored the use of precubical sets and
Higher-Dimensional Automata (which are labeled precubical sets
equipped with a distinguished beginning vertex) [28, 30], begun to
suggest possible homology theories [13, 16] and pushed the devel-
opment of a specific homotopy theory, part of a general directed
algebraic topology [19]. On the practical side, directed topological
models have found applications to deadlock and unreachable state
detection [6], validation and static analysis [4, 8, 15] state-space
reduction (as in e.g. model-checking) [17], serializability and cor-
rectness of databases [20] (see also [7, 14] for a panorama of appli-
cations).

In order to instantiate this link, we will be considering the sim-
ple model of shared-memory concurrent machines with crash fail-
ures, where processors compute and communicate through shared
locations, and where reads and writes are supposed to be atomic.
This model can also be presented [26] as atomic snapshot protocols
[1, 2], where processors are executing the following instructions:
scanning the entire shared memory (and copying it into their local
memory), computing in its local memory, and updating its “own
value”, i.e. writing the outcome of its computation in a specific lo-
cation in global memory, assigned to him only. The methodology
we are describing here is by no means limited to this simple model:
we have provided in this paper a general framework that builds pro-
tocol complexes from the semantics of communication primitives.
However, what is more difficult is determining the set of directed
homotopy classes of directed paths in this semantics. This is one
of the reasons why we chose to exemplify the method on a well-
known and simple case in fault-tolerant distributed computing. In
general, this step is by no means trivial, reinforcing the need for for-
mally deriving protocol complexes from first principles. The other
reason is that the reader will be more familiar with the model and
the expected result, and will be able to focus on the new technical
(directed algebraic topological) aspects of the paper.

Contents of the paper and main contributions. Section 2.1 be-
gins by defining the standard semantics (or interleaving semantics)
of atomic read/write protocols, and more precisely of atomic snap-
shot protocols where read and writes primitives are replaced by up-
date and (global) scan ones. In Section 2.2, we give an alternative
geometric semantics, which encodes also independence of actions,
as a form of homotopy in a geometric model. The very basics of di-
rected algebraic topology have been introduced for this purpose,
but we refer the reader to [9, 19] for more details. Yet, for the
wider picture, we prove the fact that (directed) homotopy encodes
commutation of actions, in the form of an equivalence between the
standard semantics and the geometric semantics. It is shown in Sec-
tion 2.3.1, Proposition 6 that two traces in the interleaving seman-
tics modulo commutation of actions induce dihomotopic (directed)
paths in the geometric model. The converse is shown in Section
2.3.3, Proposition 11, using the combinatorial notion of interval
order [11]. We then combine these results with the semantic equiv-
alence of Proposition 9, Section 2.3.3; this is the first main contri-
bution of the paper.

In Section 3.1, we turn to the other geometric model of dis-
tributed systems: protocol complexes. The second main contribu-
tion of the paper is developed in Section 3.2: the protocol complex
for atomic snapshot protocols (possibly iterated) is derived from the
geometric semantics of Section 2.2, through interval orders again.
We particularize this construction in Section 3.3 to the case of lay-
ered immediate snapshot which is generally studied by most au-
thors, since it is much simpler to study, and is enough to prove the
classical impossibility theorems, as e.g. [21]. Our explicit descrip-
tion of the protocol complex in the latter case is the same as the one
of [18] (linked as well to the equivalent presentation of [24]), hence,
combined with the result of [18] it proves that the layered imme-
diate snapshot protocols produce collapsible protocol complexes,
for any number of rounds. Therefore, it implies the asynchronous
computability theorem of [21] all the way from the semantics of
the communication primitives is used in these protocols.

2. Concurrent semantics of asynchronous
read/write protocols
2.1 Interleaving semantics of atomic read/write protocols

In atomic snapshot protocols, n processes communicate through
shared memory using two primitives: update and scan. Infor-
mally, the shared memory is partitioned in n parts, each one corre-

sponding to one of the n processes. The part of the memory associ-
ated with process P;, with ¢ € {0,...,n — 1}, is the one on which
process P; can write, by calling update. This primitive writes, onto
that part of memory, a value computed from the value stored in a
local register of P;. Note that as the memory is partitioned, there
are never any write conflicts on memory. Conversely, all processes
can read the entire memory through the scan primitive. Note also
that there are never any read conflicts on memory. Still, it is well
known that atomic snapshot protocols are equivalent [26], with
respect to their expressiveness in terms of fault-tolerant decision
tasks they can solve, to the protocols based on atomic registers with
atomic reads and writes. Generic snapshot protocols are such that
all processes loop, any number of times, on the three successive
actions: locally compute a decision value, update then scan. It
is also known [21, 22] that, as far as fault-tolerant properties are
concerned, an equivalent model of computation can be considered:
the full-information protocol where, for each process, decisions are
only taken at the end of the protocol, i.e. after rounds of update
then scan, only remembering the history of communications.

2.1.1 Interleaving semantics and trace equivalence

Formally, we consider a fixed set V of values, together with two
distinguished subsets Z and O of input and output values, the
elements of V \ (Z U O) being called intermediate values, and
an element | € Z N O standing for an unknown value. We
suppose that the sets of values and intermediate values are infinite
countable, so that pairs (z,y) of values z,y € V can be encoded
as intermediate values, and similarly for tuples. We suppose fixed a
number n € N of processes. We also write [n] as a shortcut for the
set{0,...,n — 1}, and V" for the set of n-tuples of elements of V,
whose elements are called memories. Given v € V" and ¢ € [n],
we write v; for the i-th component of v. We sometimes write 1"
for the memory [such that [; = L for every u € [n].

There are two families of memories, each one containing one
memory cell for each process P;:

— the local memories: | = (1s);c(n) € V",

— the global (shared) memory: m = (m;);cjn) € V™.

A state of a program is a pair (I, m) € V™ x V™ of such memories.
Processes can communicate by performing actions which consist
in updating and scanning the global memory, using their local
memory: we denote by u; any update by the ¢-th process and s;
any of its scan. We write A; = {u;, si} and A = ;) Ai for
the set of actions. Formally, the effect of the actions on the state is
defined by a protocol m which consists of two families of functions

Tu, V=V and w, VXV SV

indexed by ¢ € [n] such that 75, (z, m) = z for z € O. Starting
from a state (I, m), the effect of actions is as follows:

— u;: replace the contents of m; by 7y, (1),

— s;: replace the contents of [; by 75, (I;, m).

A protocol is full-information when m,, (x) = z for every x € V,
i.e. each process fully discloses its local state in the global mem-
ory. A sequence of actions T' € A" is called an interleaving trace,
and we write [T~ (1, m) for the state reached by the protocol 7
after executing the actions in 7', starting from the state (I, m).
A sequence of actions T' € A" is well-bracketed (giving some
form of generic protocol) when for every ¢ € [n] we have
proj;(T) € (u;s:)*, where proj, : A* — Aj is the obvious
projection which only keeps the letters in .4; in a word over .A. We
denote by A“ the set of countably infinite sequences of actions;
such a sequence is well-bracketed when every finite prefix is.

It can be noticed that different interleaving traces may induce
the same final local view for any process. Indeed, if i # j, then u;
and u; modify different part of the global memory, as we already
noted informally, and thus u;u; and uju; induce the same action
on a given state. Similarly, s; and s; change different part of the
local memory, and thus s;s; and s;s; induce the same action on
a given state. On the contrary, u;s; and s;u; may induce different
traces as u; may modify the global memory that is scanned by s;.
We can sum up this remark by:

Proposition 1. The equivalence on interleaving traces, defined as
the smallest congruence ~ such that

Vi #j, uju; & uuj and S;Si RS 8;S;

induces an operational equivalence: equivalent interleaving traces
starting from the same initial state leads to the same final state.

This justifies that we consider traces up fo equivalence in the
following. We use the usual notions on such operational semantics:
execution traces, interleaving traces or paths will denote any finite
sequences of actions u; and s; in A", maximal execution traces
are traces that cannot be further extended. We also use the classical
notions of length and concatenation of execution traces.

2.1.2 Decision tasks

We are going to consider the possibility of solving a particular task
with an asynchronous protocol. Formally, those tasks are specified
as follows:

Definition 2. A wait-free task © is a relation © C Z" x O™ such
for every (I1,l2) € © and i € [n], we also have (I1,15) € ©
where [} (resp. [5) is the memory obtained from I (resp. l2) by
replacing the i-th value by L. The domain of a wait-free task ©
isdom® = {leZ" |3 € O",(I,I') € O} and its codomain is
codom® ={lI' e O™ | eI™, (l,I') € OL

Notice that dom © induces a simplicial complex, with [n] xZ\{L}
as vertices, and simplices are {(¢,z) € [n] x V |l; = x # L}, for
any | € dom ©. This simplicial complex is called the input com-
plex; the output complex is defined similarly from codom ©. We
say that a protocol 7 solves a task © when for every | € dom O,
and well-bracketed infinite sequence of actions T' € A“, there ex-
ists a finite prefix 7" of T such that (I,1') € © where I’ is the local
memory after executing 7", i.e. (I';m’) = [T']~(l, L™). It can
be shown that, w.r.t. task solvability, we can assume that dom ©
contains only the memory ! such that [; = 4, and its faces; for sim-
plicity we will do so in Section 3.

Out of particular interest is the view protocol (sometimes iden-
tified with the full-information protocol in the literature) =< such
that 7, () = x for & € V), i.e. the protocol is full-information,
and 75 (x,m) = (x, (m)) forx € V and m € V™: when reading
the global memory, the protocol stores (an encoding as a value of)
the pair constituted of its current local memory x and (an encoding
as a value of) the global memory m it has read. Given aset £ C Z™
of possible initial local memories, a local memory reached by this
protocol by a well-bracketed trace, starting from a state (I, L™)
with [€ L, is called a coherent view memory, and the set of such
memories is written CViews,. Given ¢ € [n], an i-view is a value
of the form [; for some coherent view memory | € CViews, and
we write Views; (L) for the set of i-views. It can be shown that the
view protocol is the “most general one” in the following sense:

Proposition 3. Given any protocol m, there exists a unique fam-
ily of functions ¢; : Views;(Z") — V indexed by i € [n],
such that ¢;(x) = x for x € I, and such that for every
(x, (m)) € Views;(Z"),

Ty (6402), (s 005 (M), 1)) = s © 01 ({2, (m))

This is akin to the use of generic protocols in normal form [22],
where protocols only exchange their full history of communication
for a fixed given number of rounds, and then apply a local decision
function. This also means that we will be satisfied with describing
the potential sets of histories of communication between processes,
without having to encode the decision values: this will be the basis
of the geometric semantics of Section 2.2. As a direct consequence,
we recover the usual definition of the solvability of a task as a
simplicial map from some iterated protocol complex to the output
complex [22, 23].

2.2 Directed geometric semantics

In this section, we give an alternative semantics to atomic snapshot
protocols, using a geometric encoding of the state space, together
with a notion of “time direction”. One of the most simple setting
in which this can be performed is the one of pospaces [12, 27]: a
pospace is a topological space X endowed with a partial order <
such that the graph of the partial order is closed in X x X with the
product topology. The intuition is that, given two points z,y € X
such that x < y, y cannot be reached before x. The encoding can
be done in a quite general manner [8, 9]. Here, for the sake of
simplicity, we define directly the pospace that gives the semantics
we are looking for. It is rather intuitive and we will check this is
correct with respect to the interleaving semantics, in Section 2.3.

Consider the pospace X' below, indexed by the number n of
processes and the vector of number of rounds (r) = (ro, ..., 7n—1)
(each r; € N, with ¢ € [n], is the number of times process P;
performs update followed by scan). Here, we use a vector to
represent the number of rounds, which is rather unusual: this is be-
cause we do not want to treat only the layered immediate snapshot
protocols, but more general atomic snapshot protocols. We claim
now that the geometric semantics of the generic protocol, for n
processes and (r) rounds, is represented by the pospace

[To-1n U ufns;,
i€[n] i,5€[n]
kelr;], le[r;]

=

endowed with the product topology and product order induced
by R"™, where

-n,r7, € Nandu,s e RwithO<u<s<1,

- Uf = {Jc € Hie[n] [0, rs] ‘ r, =k + u} stands for the region
where the i-th process updates the global memory into its local
memory for the k-th time,

-5t = {1: € Hie[n] [0, 7] l =1+ s} stands for the region
where the i-th process scans the global memory with its local
memory for the [-th time.

The meaning of (1) is that a state (o, ..., Zn-1) € [];¢,[0, 7],
i.e. a state in which each process P; is at local time z;, is allowed
excepting when it is in UF N S} (for 4,5 € [n] and k € [ry],
l € [rj]): these forbidden states are precisely the states for which
there is a scan and update conflict. Namely, states in U}* N S;
are states for which process P; updates (for the k-th time) while
process P; scans (for the [-th time), which is forbidden in the
semantics. Indeed, the memory has to serialize the accesses since
shared locations are concurrently read and written, and either the
scan operation will come before the update one, or the contrary,
but the two operations cannot occur at the same time. This is
reflected in the geometric semantics by a hole in the state space,
as pictured in Figure 1 for two processes with one round each,
and in Figure 3 for two processes with several rounds each. In
higher-dimensions, the holes exhibit a complicated combinatorics.
For instance, for three processes, and one round each, Figure 2

to

Uy So

Figure 1. Pospace X (1171). Figure 2. Pospace X (21,171).

shows forbidden regions that intersect one another. What happens
in dimension 3 is that for all 3 pairs of processes (P,(Q), we have to
produce a forbidden region which has a projection, on the two axes
corresponding to P and @, similar to the one of Figure 1. Hence
for all three pairs of processes, we have two cylinders with square
section punching entirely the set of global states of the system.
Each of these 6 cylinders correspond to a pair (P,(Q)) of processes,
and a hole created either by a scan of P and an update of @, or a
scan of () and an update of P. Consider the cylinder created by the
conflict between the scan of P with the update of Q: it intersects
exactly two cylinders (parallel to the two other axes) in a non trivial
way, the one created by the scan of the third processor R and the
update of (), and the one created by the update of R and the scan
of P, as shown in Figure 2.

2.3 Equivalence of the standard and geometric semantics

In the geometric semantics of Section 2.2, we can define notions
analogous to equivalence of traces as for the standard interleaving
semantics of Section 2.1 (Proposition 1).

A dipath (or directed path) in a pospace (X, <) is a continuous
map « : [0,1] — X which is continuous and non decreasing
when [0, 1] is endowed with the order and topology induced by
the real line. A dipath is the continuous counterpart (as we will
make clear later) of a trace in the interleaving semantics, or an
execution. A dipath « : [0, 1] — Xis called inextendible, if there is
no dipath 8 : [0,1] — X such that «([0,1]) € B([0,1]). This
is the analogous in our geometric setting to maximal execution
traces. The concatenation of two dipaths o, o’ : [0,1] — X with
compatible ends, i.e. a(1) = o’(0) is the dipath v - &’ given by

, az ifz <05
(a-a)(z) = { a'((z)x_ 1) ifz>05

The continuous setting allows us to use the classical concepts of
(di)homotopy, which is the natural notion of equivalence between
paths, and to use some tools from algebraic topology to derive
properties of protocols (and more generally programs [14]). A
dihomotopy is a continuous map H : [0, 1] x [0, 1] — X such that
for all ¢ € [0,1], the map H(—,t) is a dipath. Two dipaths «, 8
such that «(0) = (0) and «(1) = B(1) are dihomotopic, written
a e~ f, if there is a dihomotopy map H : [0,1] x [0,1] — X
with H(—,0) = « and H(—,1) = . We denote by [«] the set
of inextendible dipaths dihomotopic to o and dPath(X) the set of
dipaths up to dihomotopy. Figure 3 represents dihomotopic dipaths
in a X{,.) space.

2.3.1 From equivalence classes of interleaving traces to
dihomotopic dipaths

We associate a dipath ar, starting at the origin 0O, to any interleav-
ing trace T with n processes and (r) rounds. This dipath is built by
induction on the length of trace 7"

tics X(2472>.

Si Ui Ui S’i

Figure 4. Extension of oy, by /3 according to last action of j: on
left during the k-th update of 4, on right during the k-th scan of <.

Lemma 4. There exists a (not necessary inextendible) dipath ot
in X{,.y such that ar(0); = 0, for every i € [n], and satisfying the
following. If the last action of process i in T’ is its k-th update,
then ar(1); € {k +u,k+ ”T*S} If it is its k-th scan, then
ar(1); € {k + s,k + 1}. If the last action in T is the k-th update
of process i, then ar(1); = k + w. If it is the k-th scan of i, then
ar(l); =k+s.

Proof. First, when T is of length 0, a7 is the constant dipath stay-
ing at the origin 0. Otherwise, let " = T} - A be the concatenation
of a trace T} with action A (being either update u; or scan s;). By
induction, we have a dipath air, starting at 0 and ending at ar, (1),
associated to 77, that satisfies Lemma 4. Now, construct a dipath 3,
which is a line as described on Figure 4 starting at 8(0) = a1, (1),
and ending at 3(1) such that:

— Let us assume that the action A is an update, say the k-th update
of process i. As partly represented on the left part of Figure 4,
by Lemma 4, since the action before was a scan or nothing,
ar (1); € {0,k —1+s,k}and weset 5(1); = k + u.

For any other process j # i, if the last action of j is its say [-th
scan, then ar, (1); € {l{+s,l+1} and weset 5(1); = I+1 (in
red tones), otherwise we set 8(1); = ar, (1); (in blue tones).

— If A is a scan, say the k-th scan of i then, see the right part of
Figure 4. Since the action of ¢ before was the k-th update, we
have o, (1); € {k +u,k + “t*} and we set B(1); = k + s.
For any other process j, if the last action of j is its [-th update,
then ary (1); = {l +u,l + “t*} and set B(1); = [+ “L= (in
red tones), otherwise we set 3(1); = ax, (1); (in blue tones).

We then define the dipath .4 = ary - 5. O

To a maximal interleaving trace T, we can associate an inextendible
dipath o/ by further extending a1 as defined above: we define o/
to be aur - v where +y is the dipath given by (any parameterization
of) the line from v(0) = a7 (1) to y(1) = (7:)ie[n) the point y(1)
thus being the end of all inextendible dipaths in X{,.). We shall not
distinguish in the sequel o from a7 since we will only consider
maximal interleaving traces and their inextendible counterparts.
Example 5. The following figure shows the dipaths associated
to the trace T = wou1SouoS1SoUIUOSoU0S1So and the trace
T = ui1uoSouos180U1USoUS1So (only the beginnings differ,
the second trace being in green):

1

l l l l l l l l
| | | | | | sy 0
R TS B SRR EE RCE Ny O
| | | | | |
| | | | w1 | | 2, |
) EEERE ORI s M- -
| T | T o T | T
| | | | 1 | | |
| 1 i i | | 1 |
i i | | i i i i
| | | | | | | |
| | | S1 | | | |
Sib-- -] et - - ------- - --+---
N R e m ot Sil MELESEE ¥
Uy uo U1 I ! | ! | !
U "l (BN EEEEEE SN EEEEEE -l
i | i | i | i
uo | | | | | | |
I I I I I I I
ug S0 up So U S0 ug S0 To
We finally have:

Proposition 6. Two equivalent interleaving traces induce homo-
topic dipaths.

Proof. Recall from Proposition 1 that the equivalence of traces
is generated by u;u; ~ wuju; and s;s; ~ s;s;. Consider two
traces T and 7" and their associated dipaths ar and cvz/. Assume
that T and T are identical until the (m — 1)-th action and only
differ by the ordering of their m-th and (m + 1)-th actions. Up
to reparametrization, we can assume that these actions occur at the
same time in avr and o, respectively £, —1, tm, and 1.

First assume that in 7', the m-th action is the k-th update of
process ¢ and the (m + 1)-th action is the I-th update of process
J. On the left part of Figure 5, the possible paths are drawn, one
color being associated to one possible point at ¢,,—1. Notice that
from t,,, the paths are identical and are colored in black. Indeed,
by Lemma 4,

CYT(tm)i = k+u and CYT(tm+1)j :l+u
These actions are in the reverse order in 7, so
ar(tm);j =l4+u and ar/(tmy1)i =k + u.

The action of ¢ and j before t,,, in T" are respectively the (k — 1)-th
scan and the (I — 1)-th scan or nothing. Hence,

ar(tm—1)i = ar/(tm-1)i € {0,(k —1) + s,k},
ar(tm-1); = ar/(tm-1); €{0,(1—1) +s,1}.
Besides, by construction (the scan and update region is forbidden),
ar(tm)i =k and ar(tm); =1,
ar(tms1)i =k+u and ar(tmsy1); =1+ u.

Thent — tar + (1 — t)ag is a dihomotopy in X{,.) between ar
and apr.

Now, assume that in 7", the m-th action is the k-th scan of
process ¢ and the (m + 1)-th action is the I-th scan of process j.
The possible paths are drawn on the right part of Figure 5. Again
by Lemma 4,

ar(tm)i =k+s and ar(tmt1); =1+ s.
These action are in the reverse order in 7", so

ari(tm);j =l+s and ar/(tmy1)i =k + s.

X Atm-1) O a(ty) ® a(tms1)

Figure 5. Dihomotopic dipaths of equivalent traces differing by
swapping two updates on left and two scans on right according to
their starting points.

The action of ¢ and j before ¢, in T" are respectively the k-th update
and the [-th update. Hence,

ar(tm-1)i = ars(tm-1)i € {k +u,k + (u+ 5)/2},
ar(tm-1); = ar(tm-1); € {L+u, 1+ (u+5)/2} .
Besides, by construction (the scan and update region is avoided),
ar(tm)i =k+ (u+s)/2 and ar(tm); =1+ (u+s)/2,

ar(tm+1)i =k+s and ar(tms1); =1+ s.

Thent — ta+(1—t)a’ is a dihomotopy between ar and apr. O

2.3.2 Equivalence between equivalence classes of interleaving
traces and (colored) interval orders

In order to prove that dihomotopic dipaths are in bijection with
interleaving traces modulo equivalence, we introduce a combinato-
rial gadget that encodes the history of events observable on both an
equivalence class of interleaving traces, and a dihomotopy class of
dipaths in our continuous models.

Definition 7. Let (I;)zex be a family of intervals on the real line
(R, <). This family induces a poset (X, <), where < is defined as

x<y iff Vsel,, Vtel,, s<t.
Such a poset is called an interval order [11].

We denote z||y the independence relation, that is ||y whenever
—(z < y) and =~(y < z). A colored variant can also be defined:

Definition 8. An [n]-colored interval order is given by an interval
order (X, <) and a labeling function £ : X — [n] such that two
elements with the same label are comparable. Then for any ¢ € [n],
the restriction of the interval order to intervals labeled by i is a total
order. Write cIO(X) the set of colored interval orders on a set X.

Proposition 9. There is a bijection between [n]-colored interval
orders and traces up to equivalence.

Proof. We first associate a colored order interval to an interleaving
trace 7. For any ¢ € [n} Let r; be the number of occurrences of u;
in T Let v and oF be the respective k-th occurrence of u; and s;.
Let X = {(i,k) | k € [ri], € [n]}. Any embedding of T in the
real line induces an interval order by setting I(;) = [vf,aﬂ.
More precisely, X is then endowed with the partial order:

(i,k) < (¢, k') iff of <ol)

that is o occurs before vf,l. We can label this interval order (X, <)
by £ : (i,k) — i, and hence produce an [n]-colored interval order
since T is well-bracketed.

Conversely, we associate an interleaving trace 77 to an [n]-col-
ored interval order I = (X, <) labeled by ¢. For any i € [n], the
set {x € X | l(z) = 4} is totally ordered of cardinal [r;]. Then, we
can assume w.l.o.g. that X = {(¢,k) | k € [rs], ¢ € [n]} and that
(i,k) < (i, k") whenever k& < k’. Let us choose w.l.o.g. an in-
terval representation I of (X, <) such that endpoints are pairwise
disjoints. For any k € [ry], i € [n], let v¥ and ¥ be the left
and right endpoint of the interval I(; 1) of the real line. The real
line order induces a linear ordering of the endpoints such that the
equivalence (2) is satisfied. Then 77 is obtained by substituting w;
to v¥ and s; to oF in the given sequence of endpoints.

Let us finally prove that two interval representations I = (I,;)
and J = (Jg,:), indexed by k € [r;] and ¢ € [n], induce equivalent
traces 11 ~ T);. From the equivalence (2), we deduce that if
(i,k) < (i, k') then o < v¥ andif (i, k)||(¢', k') then o & v,
that is of > vf/. Thus, the only freedom is on the ordering of
the u;’s on the one side, and of the s;’s on the other side, which
corresponds precisely to the equivalence of traces. O

From the last proposition and Proposition 6, we can associate
to any interval order a class of dihomotopic dipaths. We denote
i : cIO(X,) — dPath(X{,,) the maps that send an interval
order to a dipath up to dihomotopy.

2.3.3 From dihomotopic dipaths to equivalence classes of
interleaving traces

As already mentioned, dipaths geometrically represent execution
traces, keeping in mind that dipaths which can be deformed through
a continuous family of executions are operationally equivalent.
This argument can be made concrete for the asynchronous model
we are working on, by giving the explicit relation between dipaths
and colored interval orders (Definition 8), because of Proposition 9.

To any inextendible dipath « : [0, 1] — X{,,, we associate an
interval order <, on

Xy = AGk) i€ nlkelrl}
through the interval collection for i € [n], I(; 1) = [u}, s}] colored
by ¢ where
uf = inf {t €0,1] ‘ alt); € U{“} 3)
s = inf {t €0,1] ‘ alt); € sf} @

correspond to the event “« enters an update or scan hyperplane”.

Let us give simple examples of this in dimension 2 and 3. In
dimension 2, and for one round, consider the three inextendible
dipaths of Figure 6. (We are not writing the round number as upper
index since we are considering here only one round). They are
actually representatives of the three dihomotopy classes of dipaths
in this pospace. The dipath o, on the left of Figure 6, corresponds
to an execution in which process 1 does its update and scan before
process O even starts updating. Hence, the interval of local times
at which process 1 updates and scans is less than the interval of
local times at which process 0 updates and scans: this is reflected
by the corresponding interval order [u1, $1] <aq [@0, So]. The one
on the right, a3 is symmetric: the corresponding interval order
is [uo, $0] <az [u1,s1]. The dipath on the middle of Figure 6
corresponds to an execution in which the two processes are running
synchronously, hence they both update at the same time, and scan
at the same time: the corresponding interval order is [uo, so] not
comparable with [u1, s1].

In dimension 3, there are many more dipaths that one can draw.
Consider only, for instance, the synchronous execution of the three
processes: this is shown in Figure 7 and corresponds to the interval

t1 t1 t1
s1|/m s1 W s11 M
Uq [] Ui | Ui]
Ty 5o 1o o 8o L0 To 50 L0

[u1, s1] < [uo, so] [wo, so] [u1,s1] [u1, 1] < [uo, so]

Figure 6. Dipaths in the three dihomotopy classes of inextendible
dipaths in X%M) together with corresponding interval orders.

to

Figure 7. Pospace X?LLI) and a synchronous execution, on the
diagonal.

order where all three intervals [uo, So], [u1, $1] and [uz, s2] are not
comparable.

For any ¢ € [n], the restriction of this order to the intervals
labeled by ¢ is a total order. Indeed, dipaths « are non decreasing,
u < sand a(uf); = k4+u, a(s¥); = k+s, hence forall k € [r],
uf < s®andif k # 0, sff1 < uk.

Remark 10. One should keep in mind that:

—auf)i=k+uvand a(sh); =k +s,

—ifuf <t< sk thenk+u<a(t)<k+s,

—ifsf <t <uft thenk + 5 < at): < (k+1) + w.
Moreover, notice that the trace 7., induced by the intersection of

with the update and scan hyperplanes is associated to the interval
order (X(;y, Za)-

Proposition 11. [f two inextendible dipaths on X{,, are dihomo-
topic, then they induce the same interval order.

Proof. Let H : [0,1] x [0,1] — X7, be a dihomotopy between
a=H(—,1)and 8 = H(—,0).Let u (resp. v¥) and s¥ (resp. t})
be the defined as in (3) and (4) for « (resp. 8). Let us fix 4, j € [n]
and prove that, for any k& € [r;] and I € [r;], the dipaths « and 8
intersect U and Sj- in the same order. More precisely, we want to
prove that:

uf < sé iff vf < té-. (&)
We can then deduced that the dihomotopic dipaths H(—,0) and
H(—, 1) induce the same interval order on

Xy = AGR) [ien] ker]}.
Let H;j;, o and (3;; be the projections of H, o and J respectively
on the plan [0, r;] X [0, r;] induced by the processes 7 and j. Notice
that H;;, o;; and B;; are continuous and that for any ¢ € [0, 1],
H;;j(—,t), ai; and f;; are non-decreasing. Moreover, since U}
and S; are parallel to the direction along which we project, H;j;,
a;; and (3;; are taking their values in the pospace:

Xij = [0,7] x [0,75] \ U

ke(ry], 1€[ry]

k 1
UFn st

Thus, H;; is a dihomotopy between «;; and f3;; in the space X;;.
Since a;; and B;; are homotopic, the concatenation of «;; and
of the reverse of (3;; is contractible in X;;. Thus, there is no hole
between a;; and f3;;. Since moreover they are non-decreasing, we
get:

auf); <l+s iff BOF); <i+s.
The equivalence (5) follows. O

Let us denote : dPath(X{,,) — cIO(X,) the map sending a
dipath up to dihomotopy to an interval order. We end this section by
proving that there is a retraction between traces up to equivalence
and dipaths up to dihomotopy:

s n

T

cIO(X,)

Lemma 12. Tio inextendible dipaths o and 3, which intersect the
update and scan hyperplanes in the same order, are dihomotopic.

Proof. Since o and 3 intersect the update and scan hyperplanes
in the same order, we can reparametrize such that the times at
which u* and sé intersect are the same for o and (. Then, the
function H : z,t — ta(z) + (1 — t)B(z) is a dihomotopy. Let us
prove that H takes its value in X7, that is, for all z,t € [0,1],
H(z,t) ¢ UFnN S;. Assume for instance that uf > sé. If
H(z,t) € UF, then H(x,t); = k 4 u and, since a, § € X{ys

— either a(x); > k + v and B(x) < k + u, then, as « and 3 are
non decreasing, z > uf and < uf and we get a contradiction,

— either a(z); < k+wand 8(x) > k+ u, this case is impossible
for the same reason,

—ora(r); = k+ uand B(x) = k + u, then, as o and § are

non decteasing, a(z); > alub); > als); = {+ s and
B(xz); > 1+ s, thus H(x,t) ¢ SJ’,
If uf < s}, consider H(x,t) € S! to show H(x,t) ¢ UF. 0

Proposition 13. A dipath « is dihomotopic to the dipath associated
to the interval order induced by o, that is, i o r(a) e~ cv.

Proof. Let T be a trace representing the interval order (X ("r), =a)
induced by . Let T, be the trace induced by the sequence of inter-
section of a with the update and scan hyperplanes. By Remark 10,
T, is also representing the interval order (X () =a), s0 that Ty,
and T' are equivalent interleaving traces. Thus, ar «~ ar, by
Proposition 6. Now, by construction, the dipath ar,, intersects the
update and scan hyperplanes in the order given by T, that is in
the same order as « (see Remark 10). Therefore, by Lemma 12,
a e~ ar, . Finally, we get a «w ar, e ar = i(r(a)). O

The key result that we have just proved can be summarized as
follows:

Theorem 14. There is a deformation retract between dihomotopy
lclasses of dipaths over X{\.y and interleaving traces up to equiva-
ence.

3. Protocol complexes, derived from the
concurrent semantics
3.1 Protocol complex

The protocol complex has been designed [22] to represent the pos-
sible reachable states, at some given round, of the generic protocol
in normal form, i.e. it is going to encode all possible histories of
communication between processes, and as we will prove later on,

all interleaving traces up to equivalence (or equivalently the dipaths
up to dihomotopy), by maximal simplices:

Definition 15. The protocol complex for atomic snapshot protocols
is the abstract simplicial complex constructed from the generic
protocol in normal form, and whose

— vertices are pairs (4, ;) where ¢ € [n] represents the name of a
process and /; represents its local memory,

— maximal simplices are {(0,lo),...,(n,lx)} where l; is the
local view by process ¢ at the end of the execution represented
by this simplex.

Example 16. The local views in each vertex are determined by
the operational semantics of Section 2.1, as in the two following
examples:

Global\i‘\ﬁuo@\i‘% ulm EMM m
— —

— —
Local [0] [1] o] [1] for]] oif [[oL] [or

Global uo IIUI 51 S0
— — — —

Local [0] [1] [o] [x] ~ fol [x] ~ [of for] [or] fo1]
There is a third potential outcome of the computation, symmetric
to the first case, in which process 1 would do its update and scan
before process 0 does. Putting this together, according to Defini-

tion 15, we get the well known protocol complex for one round and
two processes [22]:

0,(0L1) 1,(01)

0, (01) 1,(L1)

The encoding of the local states, i.e. vertices in the graph above,
is as follows. The identifier of the process whose local view is the
number before the comma, e.g. the state 0, (0_L) above is the local
view of processor 0. The group of numbers or L within parenthe-
ses, e.g. (0L) in the state above, is a condensed notation for the
local state where lo = (0, (0, L)), see Section 2.1. Similarly, state
1, (01) denotes the local view of processor 1, with local state such
that I, = (1, (0, 1)).

3.2 Construction of the protocol complex from the directed
geometric semantics

We can now link protocol complexes with interval orders, i.e. traces
up to equivalence or dipaths up to dihomotopy: a colored interval
order represents indeed an execution and we can deduce the local
view of the ¢-th process by restricting the interval order to the last
scan of ¢. We encode local views restricting to the full information
generic protocol in normal form with initial local state [; = ¢ for
1 € [n] (this only changes the naming of local states, and not the
structure of the protocol complex).

Proposition 17. Let (X(;, =) be an [n]-colored interval order.
Then the local memory of the i-th process at round k of its cor-
responding execution (in the full-information generic protocol in
normal form, i.e. its view) is given by its restriction VI to the k-th
scan S¥ of the i-th process, i.e.

Vzk = {(jvl) | (ka)H(], l) or (.77l) = (Z>k)}

meaning that it is the value of the local state l; under the seman-
tics of Section 2.1 for the interleaving path corresponding to the
interval order VF under the equivalence of Proposition 9.

Proof. Remember that (i, k) < (4, 1) iff S¥ happens before U, see
Equivalence (2). By contradiction, (¢, k)||(7,1) or (j,1) < (i,k)
iff S¥ happens after U}. We conclude, noticing that the ¢-th local
memory only depends on the updates preceding the last i-th scan.

O

Example 18. Consider again the one round, two processes case.
We have represented below the protocol complex already depicted
in Example 16, and decorated its maximal simplices, i.e. edges,
with the corresponding dipaths modulo dihomotopy above, and the
corresponding interval order, below:

DN

0, (01) == 1,(01) = 0, (01) —

1,(L1)

The local view of process 0 which is 0,(0L) comes from the
restriction of the interval order o<1, subscript of the leftmost edge
in the graph above, to 0: an interleaving trace corresponding to this
interval order, under Proposition 9 is uoso leading to local state
(0_L) on process 0. Similarly, 1, (01) corresponds to the local state
Iy = (01) for process 1, both for the restriction o<1 of o<1 to Vi
(corresponding to a trace uosou1S1, as in the trace ", superscript
of the edge on the left of the graph above) and for the restriction o 1
ofo 1to V11 (corresponding to a trace uou1Sos1 for instance, as in
the trace / superscript of the middle edge of the graph above).

We are now in a position to give a combinatorial description of
the protocol complex of Definition 15, using interval orders. We
call the resulting equivalent complex, the interval order complex:

Definition 19. The interval order complex is the simplicial com-
plex whose

— vertices are ((4, k), Vi) where i stands for the i-th process, k
for the round number and V;* an interval order such that for all
(4,1) € V¥, either (i, k)| (4,1) or (4,1) < (i, k),

— maximal simplices are {((0,70),Vy°),...,((n,mn),Va")}
such that there is an interval order (X}, <) whose restriction
to (¢,7;) is V.

In that case we say that it is the interval order complex on (7)
rounds and for n + 1 processes.

Example 20. An example of interval order complex with the traces
corresponding to the execution for 2 processes, 2 rounds is depicted
at Figure 8. Note that this is not the classical iterated subdivision in
three parts at each round, i.e. a 9 edges complex, that is depicted for
atomic snapshot protocols [23]. This is because we are considering
more executions that the classical layered immediate snapshot pro-
tocols of [23]: we allow round 2 of process 0 to begin while process
=1
1 is still in round 1 for instance. Consider the interval order ?X¢
01
labeling the upper left edge of the protocol complex in Figure 8,
where an arrow x = y means < y. As shown in the same fig-

ure, it corresponds to the execution _* ,*|precisely where process 0

is executing its 2 rounds before process 1 even starts its first round.
The local view of process 0 at (its) round 2 corresponds to the in-

-1
terval order 4, restriction of 4 {4 to V(g2‘0). An interleaving trace
0 0—=1
corresponding to this is e.g. upSouoSo, Which, by the semantics of
Section 2.1, leads to the local state of process 0: (0, (0, (0, L))_L)
written in condensed form as the upper left local state 0, ((0_)_) in
Figure 8.

In Figure 9, we show the interval order complex for 3 processes
and 1 round. Note again that we do not have exactly the same
picture as in [23]: to the 13 triangles that we have in [23], we
have to add the 6 extra blue triangles that make the complex not
faithfully representable as a planar shape and which correspond
to non immediate snapshot executions. For instance, the upper
left blue triangle is labeled with the interval order where O is not
comparable to both 1 and 2, and 2 is less than 1. An interleaving

trace (up to equivalence) corresponding to this interval order is
given on the same figure: uou2S2u181S0.

3.3 Particular case of 1-round immediate snapshot protocols

The connections between directed algebraic topology and the pro-
tocol complex approach is not complete yet: the combinatorial de-
scription of the protocol complex in the case of layered imme-
diate snapshot protocols seems, at first glance, of a different na-
ture than the one using interval order complexes of Definition 19.
We recall that an (layered, for multi-round protocols) immediate
snapshot protocol [23] is a protocol where the snapshot of a given
process comes “right after” its update, meaning that the allowed
traces (within one round), up to equivalence, should be, of the form
Uiy - .. Uiy Siq - - - Sqy,. Of course, there is some difference in that
interval order complexes account for non necessarily layered nor
“immediate” protocols. It is the aim of this section to make the
connection between the subcomplex of interval order complexes
describing layered immediate snapshot protocols, and the equiva-
lent two definitions of chromatic barycentric subdivision [18, 24]
that describe combinatorially the protocol complex in that case.

We recall that the standard chromatic subdivision X(A[”’]) of the
standard [n]-colored simplicial complex A is defined as follows
(see [18], where an equivalence with the Definition in [24] is also
shown):

Definition 21. The standard chromatic subdivision x(A™) of A"
is the [n]-colored simplicial complex whose vertices are pairs (V%)
with V' C [n] and ¢ € V and simplices are sets of the form
o ={(Vo,i0)y...,(Va,iq)} withd > —1 (¢ =) whend = —1)
which are

1. well-colored: for every k, ! € [d], ix = 4; implies k = [,
2. ordered: forevery k,l € [d], Vi, C Vior V, C Vj,
3. transitive: for every k, [€ [d], i; € Vi implies V; C V5.

This complex is colored via the second projection: £(V, i) = i.

Remark 22. The transitivity (property 3) of Definition 21 is equiv-
alent to looking only at immediate snapshot executions. Observe
the left upper blue triangle of Figure 8, which is composed of ver-
tices (0 : 012), (1 : 012) and (2 : 0L2) (respectively mean-
ing ({0,1,2},0), ({0,1,2},1) and ({0, 2}, 2) in the notations of
Definition 21). It does not correspond to a layered execution: it cor-
responds to the equivalence class of traces uouzs2u1$1S0. Transi-
tivity does not hold either: 0 € {0, 2} but {0, 1,2} ¢ {0,2}.

Proposition 23. Layered immediate snapshot executions corre-
spond to interval orders such that J < K and I is not compa-
rable with J implies I < K. The subcomplex of the interval order
complex on one round, (X[} 1y, =), that contains only immedi-
ate snapshot executions is isomorphic to the chromatic barycentric
subdivision of Definition 21.

Proof. For the first part, suppose that we have an interval order <,
representing some simplex in the interval order complex such that
J < K and I is not comparable with J and K. I, J and K
correspond to some intervals of updates and scans local times
L Ll lj b Ik i .

on some process, [us, 8] [u),s]] and [ur ,'.sk’”} respectively.
Suppose that I is not comparable with K, this means that the
interleaving path bi b b Lk b bi i
1 g p ce U UG S U Sy 8IS
in the equivalence class represented by the interval order we are
considering. This is clearly not layered nor immediate snapshot,
therefore being a layered immediate snapshot execution implies the
condition on =< of Proposition 23.

Conversely, we suppose that for I not comparable to J and

J < K, then I < K and we prove that all interleaving paths are

0, ((0(-1)(-1))

X1 /_/
0=1 [

L((0(-1))(-1))

0 1
AN 0
0<1

1, ((01)(01))
0=1
(/ - /‘ A H
— 0o 1
1,((01)(1)) ———————0, ((01)1)

0 1 0-=1
XA XA 0=1
0=1 0=1 192
0 1

Figure 8. interval order complex, together with corresponding traces, of 2 processes, 2 rounds.

0:0LL

2:112 1:112

1:111

Figure 9. interval order complex with traces of 3 processes, 1 round.

layered and immediate snapshot ones. Suppose we have an inter-
leaving path (up to equivalence) of the form: Tu;j U s;j VulrWsik X
where T', U, V, W and X are interleaving paths. This is a layered
immediate snapshot execution except if there are update and scans
ul?, s such that u' appears in U and s'* appears in W. But v
appearing in U implies I = [ul’,)] is not comparable with .J
and hence, by hypothesis, I must be less that K, implying that sii
appears in U or V.

Now, we prove the second statement. Consider a simplex
o = {(Vb,i0),...,(Va,iq)} with d > 0 (the case d = —1 is
trivial) in the chromatic barycentric subdivision of Definition 21.
We associate to o the following simplex in the interval order com-
plex: we construct a partial order <, on {(Vb, %), ..., (Va,ia)}

such that Vi, <, V; if Vi © V; and the color of (V;,4;) is 41, we
just need to prove that this partial order is a colored interval order,
and that the condition of Proposition 23 holds.

Let us now consider, in our partial order <., four elements
(Va,i2), (Vy,iy), (Vz,i) and (V4,4:), and suppose furthermore
that (Vz,iz) <o (Vy,iy) and (Vz,4.) <o (V4,4:). Then, as o
is “ordered” (see Definition 21), necessarily, either V, C V, or
V. C V. Suppose we are in the first situation. We also have that
V., C Vi and V, # V, by definition of <. Hence V, <, Vi:. We
conclude that, as a partial order, <, is (2+2)-free, property which
characterizes interval orders [11].

Now consider again ¢ in the chromatic barycentric subdivision,
and its associated interval order <,. Take (Vy,1y) <o (Vi,i2)

and (V4,4,) which is not comparable with (V,,4,). Hence, by
definition of the (strict) order <5, Vo = V, or V; € V,. In the
first case, (Vy,is) <o (Vi,i.), trivially, and in the second case,
by property 2 (“ordered”) of Definition 21, V,, C V,, which implies
(Vy,iy) <o (Vi,iz), impossible since (V,i,) and (Vj,14,) are
supposed incomparable.

Finally, note that well-coloredness of ¢ implies trivially that the
labeling we define is indeed a labeling function of a colored interval
order.

Conversely, suppose we have a 1-round colored interval or-
der (X, <) on d + 1 elements which satisfies the property from
Proposition 23. We consider the interval orders V;*, restriction
of X to VE = {(3,1) | (i k)|, 1) or (j,1) < (i, k)}. We con-
struct a (colored) d-simplex in the chromatic barycentric subdi-
vision of Definition 21 by defining k-simplices (for all k& < n)
ox = (v}, i))iciw) (Where |V| the set of elements of an in-
terval order V). Indeed we check easily that this is well-colored.
Suppose we have (|Vi|,4x) and (|Vi],4;) such that i; € |Vi|. As
Vi, and V; are restrictions of the same interval order to both the set
of elements less than or incomparable to iy, respectively ;, and
that by definition of V;, 4; € Vi, we have |V;| C |Vi|. A similar
argument shows that property 2 of Definition 21 holds as well. [J

4. Conclusion and future work

We have shown that there are strong connections between directed
algebraic topology, with its applications to semantics and valida-
tion of concurrent systems, and the protocol complex approach to
fault-tolerant distributed systems. This has been exemplified on the
simple layered immediate snapshot model, but also on the more
complicated (non layered, non immediate) iterated snapshot model.
This, combined with the results of [18, 25], entirely classifies geo-
metrically the computability of wait-free layered immediate snap-
shot protocols, directly from the semantics of the update and scan
primitives. We classified combinatorially, en route, the potential
schedules of executions (equivalently, the potential local views of
processes) as an interesting and well-known combinatorial struc-
ture: interval orders.

This is a first step towards a more ambitious programme. Fault-
tolerant distributed models, whose protocol complex are more com-
plex to guess combinatorially, may be taken care of, by going
through the very same steps we went through, starting with the geo-
metric semantics of the communication primitives, and classifying
the dipaths modulo dihomotopy. We are thinking of applying this to
atomic read/write protocols with extra synchronization primitives
such as test&set, compare&swap and others.

In the long run, we would like to derive impossibility results
directly by observing some obstructions in the semantics, in the
form of suitable directed algebraic topological invariants.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit.
Atomic snapshots of shared memory. J. ACM, 40(4):873-890, Sept.
1993. .

[2] J. H. Anderson. Composite registers. In Conference on Principles of
Distributed Computing, pages 15-30. ACM, New York, 1993.

O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of
the distributed tasks which are solvable in the presence of one faulty
processor. In Proceedings of the seventh annual ACM Symposium on
Principles of distributed computing, pages 263-275. ACM, 1988.

R. Bonichon, G. Canet, L. Correnson, E. Goubault, E. Haucourt,
M. Hirschowitz, S. Labbé, and S. Mimram. Rigorous evidence of
freedom from concurrency faults in industrial control software. In
SAFECOMP, pages 85-98, 2011.

[3

[4

=

[5] E. Borowsky and E. Gafni. Generalized FLP impossibility result for
t-resilient asynchronous computations. In Proc. of the 25th STOC.
ACM Press, 1993.

[6] L. Fajstrup, E. Goubault, and M. Raussen. Detecting deadlocks in con-
current systems. In Proceedings of the 9th International Conference
on Concurrency Theory. Springer-Verlag, 1998.

[7] L. Fajstrup, M. RauBen, and E. Goubault. Algebraic topology and
concurrency. Theoretical Computer Science, 357(1):241-278, 2006.

[8] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, and M. RauB3en.
Trace spaces: An efficient new technique for state-space reduction. In
ESOP, pages 274-294, 2012.

[9] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, and M. Raussen.
Directed Algebraic Topology and Concurrency. Springer Verlag,
2015, to be published.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374-382, 1985.

[11] P. C. Fishburn. Intransitive indifference with unequal indifference
intervals. Journal of Mathematical Psychology, 7(1):144—149, 1970.

[12] G. Gierz. A Compendium of continuous lattices. Springer, 1980.

[13] E. Goubault. The Geometry of Concurrency. Ph.d. dissertation, Ecole
Normale Supérieure and Ecole Polytechnique, 1995.

[14] E. Goubault. Some geometric perspectives in concurrency theory.
Homology, Homotopy and Applications, 2003.

[15] E. Goubault and E. Haucourt. A practical application of geometric
semantics to static analysis of concurrent programs. In CONCUR
2005—Concurrency Theory, pages 503-517. Springer, 2005.

[16] E. Goubault and T. P. Jensen. Homology of higher-dimensional au-
tomata. In Proc. of CONCUR. Springer-Verlag, Aug. 1992.

[17] E. Goubault, T. Heindel, and S. Mimram. A geometric view of
partial order reduction. Proceedings of Mathematical Foundations of
Programming Semantics, Electr. Notes Theor. Comput. Sci., 298:179—
195, 2013.

[18] E. Goubault, S. Mimram, and C. Tasson. Iterated chromatic subdi-
visions are collapsible. Applied Categorical Structures, pages 1-42,
2014. ISSN 0927-2852. .

[19] M. Grandis. Directed Algebraic Topology : Models of Non-Reversible
Worlds, volume 13 of New Mathematical Monographs. Cambridge
University Press, 2009. ISBN 978-0-521-76036-2.

[20] J. Gunawardena. Homotopy and concurrency. Bulletin of the EATCS,
54:184-193, 1994.

[21] M. Herlihy and N. Shavit. The asynchronous computability theorem
for t-resilient tasks. In Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 111-120. ACM, 1993.

[22] M. Herlihy and N. Shavit. The topological structure of asynchronous
computability. Journal of the ACM (JACM), 46(6):858-923, 1999.

[23] M. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing
Through Combinatorial Topology. Elsevier, 2014.

[24] D. Kozlov. Chromatic subdivision of a simplicial complex. Homology,
Homotopy and Applications, 14(2):197-209, 2012.

[25] D. Kozlov. Topology of the view complex.
arXiv:1311.7283, 2013.

[26] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[27] L. Nachbin. Topology and order. Van Nostrand mathematical studies.
Van Nostrand, 1965.

[28] V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th
ACM Symposium on Principles of Programming Languages. ACM
Press, 1991.

[29] M. E. Saks and F. Zaharoglou. Wait-free k-set agreement is impos-
sible: the topology of public knowledge. In STOC, pages 101-110,
1993.

[30] R. van Glabbeek. Bisimulation semantics for higher dimensional
automata. Technical report, Stanford University, Manuscript available
on the web as http://theory.stanford.edu/ rvg/hda, 1991.

arXiv preprint

http://theory.stanford.edu/~rvg/hda

	Introduction
	Concurrent semantics of asynchronous read/write protocols
	Interleaving semantics of atomic read/write protocols
	Interleaving semantics and trace equivalence
	Decision tasks

	Directed geometric semantics
	Equivalence of the standard and geometric semantics
	From equivalence classes of interleaving traces to dihomotopic dipaths
	Equivalence between equivalence classes of interleaving traces and (colored) interval orders
	From dihomotopic dipaths to equivalence classes of interleaving traces

	Protocol complexes, derived from the concurrent semantics
	Protocol complex
	Construction of the protocol complex from the directed geometric semantics
	Particular case of 1-round immediate snapshot protocols

	Conclusion and future work

