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HYBRID SYSTEMS
A model for systems operating in continuous time t ∈ R+.

A

PID-

controller to cruise control a car:

I(t) = Kpe(t)

+ Ki

∫ t

0
e(t)dt + Kd

de
dt

I error: e(t) = vdesired − vactual
I intensity of the engine: I
I parameters of the control: Kp

, Ki , Kd

t

v

We also want to have discontinuities!
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ẋ

t
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HYBRID SYSTEMS
A model for systems operating in continuous time t ∈ R+.

ẏ = x + y
x

+
ẏ 1

s
y

How can we define a semantics for those systems?

The streams f : R+ → R on the wires could
I be integrable / derivable
I have discontinuities (zero-crossings)
I exhibit complex behaviors such as Zeno
I be approximated. . .
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Let’s take inspiration
from discrete time semantics.

4 / 33



KAHN PROCESS NETWORKS
A semantics for distributed asynchronous computations:

processes exchanging sequences of data on channels.

G. Kahn. The semantics of a simple language for parallel programming. Information processing, 74:471–475, 1974.

1, 2, 3, . . . // GFED@ABC×2 // 2, 4, 6, . . .
5 / 33



KAHN NETWORKS IN CONTINUOUS TIME
It is difficult to define a semantics for hybrid systems.

Can we adapt the works on Kahn networks?

The sampling principle
We can to consider a continuous stream t 7→ xt (with t ∈ R+)

as a discrete stream xi (with i ∈ N)
where the data xi occurs at time iε, with ε infinitesimal.
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The sampling principle
We can to consider a continuous stream t 7→ xt (with t ∈ R+)

as a discrete stream xi (with i ∈ N)
where the data xi occurs at time iε, with ε infinitesimal.

x

y

A continuous stream sampled at every ε seconds.
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NON-STANDARD ANALYSIS
In the 60s, Robinson introduced an extension ∗R of R

(the hyperreals)
in which one can formally consider infinitesimals.

x

y

f ′(x) = f (x + ε)− f (x)
ε

∫ T

t=0
f (t)dt =

∑
0≤i≤T/ε

f (i)ε

with ε infinitesimal 7 / 33



THE PLAN
1. Define Kahn networks and their semantics

I formalization of Kahn networks
I Kahn networks form a free fixpoint category

2. A non-standard semantics for Kahn networks
I non-standard semantics using internal cpo

Related works:
1. Semantics of Kahn networks

I Kahn
I categorical structure:

Hildebrandt, Panangaden, Winskel, Stark, . . .

2. Using non-standard analysis to model hybrid systems
I Bliudze, Krob
I Benveniste, Caillaud, Pouzet
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KAHN
NETS



EXAMPLES OF KAHN NETWORKS
I Prepend a 0:

1, 2, 3, . . . ζ 0, 1, 2, 3, . . .

I Add two discrete streams:

1, 1, 1, . . .

1, 2

, 3

+ 2, 3

, 4

I A net composed of generators:

1, 2, 3, . . .
+ ζ

1, 3, 6, . . .

0, 1, 3, . . .
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SEMANTICS OF KAHN NETWORKS

Definition
The Kahn domain (K ,v) is the complete partial order whose
elements are a the finite or infinite lists of elements in R, ordered
by prefix.

To each generator α : m→ n

... α ...

we associate a Scott-continuous function Km → Kn.
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SEMANTICS OF KAHN NETWORKS

The semantics of a composed net is given by associating a set of
equations to the network

and taking the unique minimal solution (which exists).
12 / 33



A semantics of what?

α
β is formalized by

0• p0• p2
xα
0 • •p3 •0

xβ
1

1• p1• •p4 •1
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A UNIVERSAL DESCRIPTION OF NETS
We can define the category NetΣ of nets on a set Σ of generators.

Theorem
The category NetΣ is the free fixpoint category containing a
Σ-object (i.e. an interpretation of the generators).

Any interpretation of the generators in a fixpoint category
canonically induces

an interpretation of all Kahn nets.

I We can give semantics of KN in other fixpoint categories.
I Avoids some technical details (solving systems of equations).
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A SEMANTICS OF HYBRID SYSTEMS?
The Kahn model

I The elements of the Kahn cpo are discrete streams,
i.e. lists ` of reals.

I They can be seen as partial functions ` : N→ R
whose domain of definition is an initial segment of N:

R≤N

The intuitive continuous-time model
I We want to model hybrid systems where streams are now

partial functions f : R+ → R:
R≤R

+

I We want to be able to derivate those streams:
we restrict to piecewise smooth functions
(with a finite number of discontinuities)

These do not form a cpo!
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A SEMANTICS OF HYBRID SYSTEMS?
I We want to be able to derivate those streams: we restrict to

piecewise smooth functions (with a finite number of
discontinuities)

These do not form a cpo!

x

t

x

t

x

t

x

t . . .
f0 f1 f2 f3 . . .

[0, 1/2] [0, 3/4] [0, 7/8] [0, 15/16] . . .

. . . because of the Zeno effect. 16 / 33



NON-STANDARD
ANALYSIS
A CRASH COURSE



NON-STANDARD ANALYSIS

In order to give a meaning to the infinitesimals, we replace reals by
hyperreals which are sequences (xi )i∈N of reals.

I A real x is seen as the constant sequence (x).
I An infinitesimal number is a sequence converging towards 0.
I An “infinite” number is a sequence converging towards ±∞.
I The usual operations are extended pointwise on sequences:

(xi )× (yi ) = (xi × yi )

I What is the inverse of (0, 1, 0, 1, 0, 1, . . .)?
I In order to recover usual properties one has to consider

equivalence classes of sequences.
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HYPERREALS
We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(xi ) ≡ (yi ) whenever {i ∈ N | xi = yi} ∈ F
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We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(xi ) ≡ (yi ) whenever {i ∈ N | xi = yi} ∈ F

The set F should satisfy properties:
I two sequences equal at every index excepting a finite number

should be equal: F should contain all cofinite sets
I two sequences are either equal (equivalent) or different:

∀U ⊆ N, U ∈ F or N \ U ∈ F

I . . .
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HYPERREALS
We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(xi ) ≡ (yi ) whenever {i ∈ N | xi = yi} ∈ F

The set F should be a non-principal ultrafilter on N.

Definition
An ultrafilter F on N is a collection of subsets of N such that
1. intersection: ∀U,V ∈ F , U ∩ V ∈ F
2. supersets: ∀U ∈ F , ∀V ⊆ N, U ⊆ V ⇒ V ∈ F
3. proper: ∅ 6∈ F
4. complement: ∀U ⊆ N, U ∈ F or N \ U ∈ F

(with AC such an F exists).
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HYPERREALS
We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(xi ) ≡ (yi ) whenever {i ∈ N | xi = yi} ∈ F

Definition
I The field of hyperreals ∗R is RN/ ≡.
I The ring of hyperintegers ∗N is NN/ ≡.

19 / 33



INFINITESIMAL AND UNLIMITED
Definition
An hyperreal x ∈ ∗R is

I infinitesimal: if x 6= 0 and ∀r ∈ R, |x | < r
I unlimited: if ∀r ∈ R, |x | > r

Example
I infinitesimal: x = 〈11 ,

1
2 ,

1
3 ,

1
4 , . . .〉

I unlimited: x = 〈1, 2, 3, 4, . . .〉

Intuition
I ∗R is R completed with infinitesimals and unlimited.
I ∗N is N completed with unlimited
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NON-STANDARD ANALYSIS

Continuity, derivation, integration, etc.
have the “expected” formulations

in this framework.

21 / 33



NON-STANDARD
SEMANTICS
OF KAHN NETWORKS



TOWARDS A NON-STANDARD SEMANTICS
I The elements of the Kahn cpo are the streams:

R≤N

I The “continuous time semantics” failed:

R≤R
+

I We will see those functions as sequences

f (0), f (ε), f (2ε), f (3ε), . . .

for some infinitesimal ε

R≤N
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I The “continuous time semantics” failed:

R≤R
+

I We will see those functions as sequences

f (0), f (ε), f (2ε), f (3ε), . . .

for some infinitesimal ε

R≤N
We have to take in account infinitesimal variations!
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I The elements of the Kahn cpo are the streams:

R≤N

I The “continuous time semantics” failed:

R≤R
+

I We will see those functions as sequences

f (0), f (ε), f (2ε), f (3ε), . . .

for some infinitesimal ε

∗R≤N
But for every n ∈ N, nε is an infinitesimal!
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TOWARDS A NON-STANDARD SEMANTICS
I The elements of the Kahn cpo are the streams:

R≤N

I The “continuous time semantics” failed:

R≤R
+

I We will see those functions as sequences

f (0), f (ε), f (2ε), f (3ε), . . .

for some infinitesimal ε

∗R≤
∗N

We consider hypersequences of hyperreals.
23 / 33



FIXPOINTS IN ∗R≤∗N

The semantics of the following net should be the constant
stream f such that ∀n ∈ ∗N, f (nε) = 0:

0, 0, 0, . . .

ζ

However, if we compute its semantics using the fixpoint
construction we get the stream f such that

∀n ∈ N, f (nε) = 0

The value f (nε) is not defined for unlimited hyperintegers n ∈ ∗N!
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INTERNAL THINGS
From (Di ⊆ R)i∈N we can define a subset D ⊆ ∗R:

I D0 = {x0, y0, z0, . . .}
I D1 = {x1, y1, z1, . . .}
I D2 = {x2, y2, z2, . . .}
I . . .

D = {〈z0, x1, y2, . . .〉, . . .}

Definition
An internal set D ⊆ ∗R is a set such that there exists a family
(Di ⊆ R)i∈N for which

D = 〈Di〉 = {〈xi〉 | ∀i ∈ N, xi ∈ Di}

Internal functions f = 〈fi〉, internal relations, etc. are defined
similarly.
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THE TRANSFER PRINCIPLE

Proposition
The transfer principle:

a first-order formula is satisfied for R
iff

it is satisfied for ∗R,
if we suppose that all the sets, etc in the formula to be internal

Lemma
Internal induction principle: if D is an internal subset of ∗N s.t.

I 0 ∈ D
I ∀n ∈ D, n + 1 ∈ D

then D = ∗N.
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NON-STANDARD FIXPOINTS

This suggests that

we should consider internal cpo!

Proposition
An internal Scott-continuous function f between two internal cpo
admits a least (internal) fixpoint

fix(f ) =
∨
{f n(⊥) | n ∈ ∗N}

Remark
An internal cpo (D,≤) is not necessarily a cpo!
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THE INFINITESIMAL-TIME DOMAIN

Definition
I The category ICPO:

internal cpo and internal Scott-continuous functions
I The infinitesimal-time domain IT ∈ ICPO:

the internal cpo of internal functions in ∗R≤∗N

Proposition
The category ICPO is a fixpoint category.

A Σ-object in this category canonically induces
a semantics of Kahn networks
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EXAMPLE – THE CONSTANT STREAM

If we interpret
(si ) 0, (si )

ζ

then the net
0, 0, 0, . . .

ζ

is interpreted as the constant stream s : ∗R
∗N such that

∀i ∈ ∗N, si = 0
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EXAMPLE – DERIVATION
If we interpret

(si ) (si−1)
ε

(si )

(ti )

(ti − si )
−

(si )

(ti )

(si/ε)
/ε

(with ε infinitesimal) then the net

(si )
ε

− /ε

(
si−si−1

ε

)

is interpreted as the function
D : ∗R

∗N → ∗R
∗N

(si ) 7→
(

si−si−1
ε

)
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EXAMPLE – DERIVATION
The function

D : ∗R
∗N → ∗R

∗N

(si ) 7→
(

si−si−1
ε

) acts as a derivation

operator for streams.

Definition
In order to compare

I CT = R≤R+ : the continuous time model
I IT = ∗R≤

∗N: the infinitesimal time model
we introduce

sampling standardisation
S : CT → IT

s 7→ (s(iε))i∈∗N

T : IT → CT
(si )i∈∗N 7→ t 7→ st(sbt/εc)

Proposition
For any continuously differentiable s ∈ CT, T (D(S(s))) = s ′.
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NON-STANDARD SEMANTICS
GOING FURTHER

In this way, we give a non-standard semantics for hybrid systems:
I we can interpret all the common building blocks

(derivation, integration, zero-crossing, etc.)
I we relate it to the “continuous time model” through S and T

A fist step to study hybrid systems:

I we have a well-defined semantics
I we can study when solutions exist
I we can study when solutions s are reasonable:

I we should have T ◦ S(s) = s
I definitions should be independent of the infinitesimal ε

(in particular, Zeno effects are “non-reasonable”)
I we have a built-in notion of approximation
I NSA enables us to use discrete techniques for continuous:

continuous-time bisiumlations, game semantics, etc.?
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THANKS!

Any questions?
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