A NON-STANDARD SEMANTICS FOR KAHN NETWORKS IN CONTINUOUS TIME

SAMUEL MIMRAM & ROMAIN BEAUXIS

20TH CONFERENCE ON COMPUTER SCIENCE LOGIC
13 SEPTEMBER 2011
A model for systems operating in \textit{continuous time} $t \in \mathbb{R}^+$.

A controller to \textbf{cruise control} a car:

$$I(t) = K_p e(t)$$

- error: $e(t) = v_{\text{desired}} - v_{\text{actual}}$
- intensity of the engine: I
- parameters of the control: K_p
HYBRID SYSTEMS

A model for systems operating in continuous time \(t \in \mathbb{R}^+ \).

A PID-controller to cruise control a car:

\[
I(t) = K_p e(t) + K_i \int_0^t e(t)\,dt + K_d \frac{de}{dt}
\]

- error: \(e(t) = v_{\text{desired}} - v_{\text{actual}} \)
- intensity of the engine: \(I \)
- parameters of the control: \(K_p, K_i, K_d \)
A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.

A PID-controller to **cruise control** a car:

$$I(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_d \frac{de}{dt}$$

- **error**: $e(t) = v_{\text{desired}} - v_{\text{actual}}$
- **intensity of the engine**: I
- **parameters of the control**: K_p, K_i, K_d

We also want to have discontinuities!
A model for systems operating in continuous time $t \in \mathbb{R}^+$.
A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.

Diagram Description:

- **Equations:**
 - $\dot{x}(t)$
 - $\frac{1}{s}$
 - $x(t)$

- **System Diagram:**
 - **Switch**
 - **Gain** $\frac{1}{m}$
 - **Unit Delay**
 - **Gain** h
 - **Gain** b/m

- **Variables:**
 - 0
 - vm
 - $vm1$
 - 10

Mathematical Derivation:

The system described by the hybrid model operates in continuous time $t \in \mathbb{R}^+$ and involves components such as switches, gains, and unit delays to model the system dynamics.
A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.

\[
\dot{y} = x + y \\
\dot{x} = 1/s \\
x(t) \rightarrow y(t)
\]
HYBRID SYSTEMS

A model for systems operating in \textit{continuous time} \(t \in \mathbb{R}^+ \).

\[
\dot{y} = x + y
\]

\[
\dot{x} = \frac{1}{s} x
\]
A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.

$$\dot{y} = x + y$$
HYBRID SYSTEMS

A model for systems operating in continuous time $t \in \mathbb{R}^+$.

\[
\dot{y} = x + y \\
\dot{x} > 0.5 \quad x > 0.5?
\]
A model for systems operating in continuous time $t \in \mathbb{R}^+$.

$\dot{y} = x + y$

How can we define a semantics for those systems?

The streams $f : \mathbb{R}^+ \rightarrow \mathbb{R}$ on the wires could

- be integrable / derivable
- have discontinuities (zero-crossings)
- exhibit complex behaviors such as Zeno
- be approximated...
Let’s take inspiration from discrete time semantics.
KAHN PROCESS NETWORKS

A semantics for *distributed asynchronous computations*: processes exchanging *sequences of data* on channels.

\[1, 2, 3, \ldots \rightarrow \times 2 \rightarrow 2, 4, 6, \ldots\]
It is difficult to define a semantics for hybrid systems. Can we adapt the works on Kahn networks?
KAHN NETWORKS IN CONTINUOUS TIME

It is difficult to define a semantics for hybrid systems. Can we adapt the works on Kahn networks?

The sampling principle

We can consider a continuous stream \(t \mapsto x_t \) (with \(t \in \mathbb{R}^+ \)) as a discrete stream \(x_i \) (with \(i \in \mathbb{N} \)) where the data \(x_i \) occurs at time \(i \varepsilon \), with \(\varepsilon \) infinitesimal.

A continuous stream sampled at every \(\varepsilon \) seconds.
In the 60s, Robinson introduced an extension $^\ast \mathbb{R}$ of \mathbb{R} (the hyperreals) in which one can formally consider infinitesimals.

$$f'(x) = \frac{f(x + \varepsilon) - f(x)}{\varepsilon}$$

$$\int_{t=0}^{T} f(t) \, dt = \sum_{0 \leq i \leq T/\varepsilon} f(i) \varepsilon$$

with ε infinitesimal
THE PLAN

1. Define Kahn networks and their semantics
 ▶ formalization of Kahn networks
 ▶ Kahn networks form a free fixpoint category

2. A non-standard semantics for Kahn networks
 ▶ non-standard semantics using internal cpo
THE PLAN

1. Define Kahn networks and their semantics
 ▶ formalization of Kahn networks
 ▶ Kahn networks form a free fixpoint category

2. A non-standard semantics for Kahn networks
 ▶ non-standard semantics using internal cpo

Related works:

1. Semantics of Kahn networks
 ▶ Kahn
 ▶ categorical structure:
 Hildebrandt, Panangaden, Winskel, Stark, . . .

2. Using non-standard analysis to model hybrid systems
 ▶ Bliudze, Krob
 ▶ Benveniste, Caillaud, Pouzet
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:

\[1, 2, 3, \ldots \xrightarrow{\zeta} 0, 1, 2, 3, \ldots \]
EXAMPLES OF KAHN NETWORKS

▶ Prepend a 0:

\[1, 2, 3, \ldots \rightarrow \zeta \rightarrow 0, 1, 2, 3, \ldots \]

▶ Add two discrete streams:

\[x_0, x_1, x_2, \ldots \]
\[y_0, y_1, y_2, \ldots \]
\[(x_0 + y_0), (x_1 + y_1), \ldots \]
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:
 1, 2, 3, ... → \(\zeta \) → 0, 1, 2, 3, ...

- Add two discrete streams:
 1, 1, 1, ... + 1, 2 → 2, 3
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:

 \[1, 2, 3, \ldots \quad \xrightarrow{\zeta} \quad 0, 1, 2, 3, \ldots\]

- Add two discrete streams:

 \[1, 1, 1, \ldots \quad + \quad 2, 3, 4\]

 \[1, 2, 3 \quad + \quad 1, 2, 3\]
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:

\[1, 2, 3, \ldots \rightarrow \zeta \rightarrow 0, 1, 2, 3, \ldots\]

- Add two discrete streams:

\[1, 1, 1, \ldots \quad + \quad 1, 2, 3 \rightarrow 2, 3, 4\]

- A net composed of generators:

\[1, 2, 3, \ldots \quad + \quad \zeta \rightarrow \zeta \]
EXAMPLES OF KAHN NETWORKS

▶ Prepend a 0:

1, 2, 3, ... \rightarrow \zeta \rightarrow 0, 1, 2, 3, ...

▶ Add two discrete streams:

1, 1, 1, ...

1, 2, 3

\rightarrow + \rightarrow 2, 3, 4

▶ A net composed of generators:

1, 2, 3, ...

\rightarrow + \rightarrow \zeta \rightarrow 0
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:
 \[1, 2, 3, \ldots \xrightarrow{\zeta} 0, 1, 2, 3, \ldots \]

- Add two discrete streams:
 \[1, 1, 1, \ldots \]
 \[1, 2, 3 \]
 \[\xrightarrow{\text{+}} \]
 \[2, 3, 4 \]

- A net composed of *generators*:
 \[1, 2, 3, \ldots \]
 \[\xrightarrow{\text{+}} 1 \]
 \[\xrightarrow{\text{+}} \zeta \]
 \[0 \]
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:
 \[1, 2, 3, \ldots \xrightarrow{\zeta} 0, 1, 2, 3, \ldots \]

- Add two discrete streams:
 \[1, 1, 1, \ldots \] \quad + \quad \[1, 2, 3 \] \quad \rightarrow \quad 2, 3, 4

- A net composed of generators:
 \[1, 2, 3, \ldots \] \quad + \quad 1 \quad \xrightarrow{\zeta} \quad 0, 1 \]
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:

 $1, 2, 3, \ldots \xrightarrow{\zeta} 0, 1, 2, 3, \ldots$

- Add two discrete streams:

 $1, 1, 1, \ldots \quad + \quad 1, 2, 3 \quad \rightarrow \quad 2, 3, 4$

- A net composed of *generators*:

 $1, 2, 3, \ldots \quad + \quad 1, 3 \quad \xrightarrow{\zeta} \quad 0, 1$
EXAMPLES OF KAHN NETWORKS

- **Prepend a 0:**
 \[1, 2, 3, \ldots \rightarrow \zeta \rightarrow 0, 1, 2, 3, \ldots \]

- **Add two discrete streams:**
 \[1, 1, 1, \ldots \]
 \[1, 2, 3 \]
 \[+ \rightarrow 2, 3, 4 \]

- **A net composed of **generators**:\n \[1, 2, 3, \ldots \]
 \[+ \rightarrow 1, 3 \]
 \[\zeta \rightarrow 0, 1, 3 \]
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:
 \[1, 2, 3, \ldots \overset{\zeta}{\longrightarrow} 0, 1, 2, 3, \ldots\]

- Add two discrete streams:
 \[1, 1, 1, \ldots \overset{+}{\longrightarrow} 2, 3, 4\]
 \[1, 2, 3 \overset{+}{\longrightarrow} 2, 3, 4\]

- A net composed of **generators**:
 \[1, 2, 3, \ldots \overset{+}{\longrightarrow} 1, 3, 6 \overset{\zeta}{\longrightarrow} 0, 1, 3\]
EXAMPLES OF KAHN NETWORKS

- Prepend a 0:

\[1, 2, 3, \ldots \xrightarrow{\zeta} 0, 1, 2, 3, \ldots \]

- Add two discrete streams:

\[1, 1, 1, \ldots \quad 2, 3, 4 \]
\[1, 2, 3 \]

- A net composed of *generators*:

\[1, 2, 3, \ldots \xrightarrow{+} 1, 3, 6, \ldots \xrightarrow{\zeta} 0, 1, 3, \ldots \]
Definition

The **Kahn domain** \((K, \sqsubseteq) \) is the complete partial order whose elements are the finite or infinite lists of elements in \(\mathbb{R} \), ordered by prefix.
Definition

The **Kahn domain** \((K, \sqsubseteq)\) is the complete partial order whose elements are a the finite or infinite lists of elements in \(\mathbb{R}\), ordered by prefix.

To each generator \(\alpha : m \to n\)

we associate a **Scott-continuous function** \(K^m \to K^n\).
The semantics of a composed net is given by associating a set of equations to the network and taking the unique minimal solution (which exists).
A semantics of what?

Fig. 3. A parallel program schema.
A semantics of what is formalized by

Fig. 3. A parallel program schema.

is formalized by
A UNIVERSAL DESCRIPTION OF NETS

We can define the category Net_Σ of nets on a set Σ of generators.
We can define the category Net_Σ of nets on a set Σ of generators.

Definition

A **fixpoint category** is a category with

- cartesian products
- a trace.

Theorem

The category Net_Σ is the free fixpoint category containing a Σ-object (i.e. an interpretation of the generators).

Any interpretation of the generators in a fixpoint category canonically induces an interpretation of all Kahn nets.

We can give semantics of KN in other fixpoint categories.

Avoids some technical details (solving systems of equations).
We can define the category Net_Σ of nets on a set Σ of generators.

Definition

A fixpoint category is a category with

- cartesian products
- a trace.

Theorem

The category Net_Σ is the free fixpoint category containing a Σ-object (i.e. an interpretation of the generators).
We can define the category Net_Σ of nets on a set Σ of generators.

Theorem

The category Net_Σ is the free fixpoint category containing a Σ-object (i.e. an interpretation of the generators).

Any interpretation of the generators in a fixpoint category canonically induces an interpretation of all Kahn nets.
A UNIVERSAL DESCRIPTION OF NETS

We can define the category Net_Σ of nets on a set Σ of generators.

Theorem

The category Net_Σ is the free fixpoint category containing a Σ-object (i.e. an interpretation of the generators).

Any interpretation of the generators in a fixpoint category canonically induces an interpretation of all Kahn nets.

- We can give semantics of KN in other fixpoint categories.
- Avoids some technical details (solving systems of equations).
The Kahn model

- The elements of the Kahn cpo are discrete streams, i.e. lists \mathcal{L} of reals.
The Kahn model

- The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- They can be seen as partial functions $\ell : \mathbb{N} \rightarrow \mathbb{R}$ whose domain of definition is an initial segment of \mathbb{N}:
A SEMANTICS OF HYBRID SYSTEMS?

The Kahn model

- The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- They can be seen as partial functions $\ell : \mathbb{N} \to \mathbb{R}$ whose domain of definition is an initial segment of \mathbb{N}:

$$\mathbb{R}^{\leq \mathbb{N}}$$

The intuitive continuous-time model

- We want to model hybrid systems where streams are now partial functions $f : \mathbb{R}^+ \to \mathbb{R}$:

$$\mathbb{R}^{\leq \mathbb{R}^+}$$
The Kahn model

- The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- They can be seen as partial functions $\ell : \mathbb{N} \rightarrow \mathbb{R}$ whose domain of definition is an initial segment of \mathbb{N}:

$$\mathbb{R}^{\leq \mathbb{N}}$$

The intuitive continuous-time model

- We want to model hybrid systems where streams are now partial functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}$:

$$\mathbb{R}^{\leq \mathbb{R}^+}$$

- We want to be able to derivate those streams: we restrict to piecewise smooth functions (with a *finite number of discontinuities*)
A SEMANTICS OF HYBRID SYSTEMS?

The Kahn model

- The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- They can be seen as partial functions $\ell : \mathbb{N} \rightarrow \mathbb{R}$ whose domain of definition is an initial segment of \mathbb{N}:

$$\mathbb{R} \leq \mathbb{N}$$

The intuitive continuous-time model

- We want to model hybrid systems where streams are now partial functions $f : \mathbb{R}^{+} \rightarrow \mathbb{R}$:

$$\mathbb{R} \leq \mathbb{R}^{+}$$

- We want to be able to derivate those streams: we restrict to piecewise smooth functions (with a finite number of discontinuities)

These do not form a cpo!
A SEMANTICS OF HYBRID SYSTEMS?

- We want to be able to derivate those streams: we restrict to piecewise smooth functions (with a finite number of discontinuities)

These do not form a cpo!

\[0, 1/2 \] \[0, 3/4 \] \[0, 7/8 \] \[0, 15/16 \] ...

...because of the Zeno effect.
In order to give a meaning to the infinitesimals, we replace reals by *hyperreals* which are sequences \((x_i)_{i \in \mathbb{N}}\) of reals.

- A real \(x\) is seen as the constant sequence \((x)\).
- An infinitesimal number is a sequence converging towards 0.
- An “infinite” number is a sequence converging towards \(\pm \infty\).
- The usual operations are extended pointwise on sequences:
 \[(x_i) \times (y_i) = (x_i \times y_i)\]
In order to give a meaning to the infinitesimals, we replace reals by **hyperreals** which are sequences \((x_i)_{i \in \mathbb{N}}\) of reals.

- A real \(x\) is seen as the constant sequence \((x)\).
- An infinitesimal number is a sequence converging towards 0.
- An “infinite” number is a sequence converging towards \(\pm \infty\).
- The usual operations are extended pointwise on sequences: \((x_i) \times (y_i) = (x_i \times y_i)\)
- What is the inverse of \((0, 1, 0, 1, 0, 1, \ldots)\)?
- In order to recover usual properties one has to consider *equivalence classes* of sequences.
We will define a collection \mathcal{F} of subsets (called **large**) of \mathbb{N} and consider the equivalence relation such that

$$(x_i) \equiv (y_i) \quad \text{whenever} \quad \{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$$
We will define a collection \mathcal{F} of subsets (called large) of \mathbb{N} and consider the equivalence relation such that

$$(x_i) \equiv (y_i) \quad \text{whenever} \quad \{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$$

The set \mathcal{F} should satisfy properties:

- two sequences equal at every index excepting a finite number should be equal: \mathcal{F} should contain all cofinite sets
- two sequences are either equal (equivalent) or different:

 $$\forall U \subseteq \mathbb{N}, \quad U \in \mathcal{F} \quad \text{or} \quad \mathbb{N} \setminus U \in \mathcal{F}$$

- ...
We will define a collection \mathcal{F} of subsets (called large) of \mathbb{N} and consider the equivalence relation such that

$$(x_i) \equiv (y_i) \text{ } \text{ whenever } \{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$$

The set \mathcal{F} should be a non-principal ultrafilter on \mathbb{N}.

Definition

An ultrafilter \mathcal{F} on \mathbb{N} is a collection of subsets of \mathbb{N} such that

1. intersection: $\forall U, V \in \mathcal{F}, \quad U \cap V \in \mathcal{F}$
2. superset: $\forall U \in \mathcal{F}, \forall V \subseteq \mathbb{N}, \quad U \subseteq V \Rightarrow V \in \mathcal{F}$
3. proper: $\emptyset \notin \mathcal{F}$
4. complement: $\forall U \subseteq \mathbb{N}, \quad U \in \mathcal{F} \text{ or } \mathbb{N} \setminus U \in \mathcal{F}$

(with AC such an \mathcal{F} exists).
We will define a collection F of subsets (called large) of \mathbb{N} and consider the equivalence relation such that

$$(x_i) \equiv (y_i) \quad \text{whenever} \quad \{i \in \mathbb{N} \mid x_i = y_i\} \in F$$

Definition

- The field of **hyperreals** \mathbb{R}^* is $\mathbb{R}^\mathbb{N} / \equiv$.
- The ring of **hyperintegers** \mathbb{N}^* is $\mathbb{N}^\mathbb{N} / \equiv$.
INFINITESIMAL AND UNLIMITED

Definition
An hyperreal $x \in \mathbb{R}$ is

- **infinitesimal**: if $x \neq 0$ and $\forall r \in \mathbb{R}, |x| < r$
- **unlimited**: if $\forall r \in \mathbb{R}, |x| > r$

Example

- infinitesimal: $x = \langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle$
- unlimited: $x = \langle 1, 2, 3, 4, \ldots \rangle$
INFINITESIMAL AND UNLIMITED

Definition
An hyperreal \(x \in \mathbb{R}^* \) is

- **infinitesimal**: if \(x \neq 0 \) and \(\forall r \in \mathbb{R}, |x| < r \)
- **unlimited**: if \(\forall r \in \mathbb{R}, |x| > r \)

Example

- **infinitesimal**: \(x = \langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle \)
- **unlimited**: \(x = \langle 1, 2, 3, 4, \ldots \rangle \)

Intuition

- \(\mathbb{R}^* \) is \(\mathbb{R} \) completed with infinitesimals and unlimited.
- \(\mathbb{N}^* \) is \(\mathbb{N} \) completed with unlimited
Continuity, derivation, integration, etc. have the “expected” formulations in this framework.
NON-STANDARD SEMANTICS OF KAHN NETWORKS
The elements of the Kahn cpo are the streams:

\[\mathbb{R}^\leq \mathbb{N} \]
TOWARDS A NON-STANDARD SEMANTICS

- The elements of the Kahn cpo are the streams:

\[
\mathbb{R} \leq \mathbb{N}
\]

- The “continuous time semantics” failed:

\[
\mathbb{R} \leq \mathbb{R}^+
\]
The elements of the Kahn cpo are the streams:

\[\mathbb{R} \leq \mathbb{N} \]

The “continuous time semantics” failed:

\[\mathbb{R} \leq \mathbb{R}^+ \]

We will see those functions as sequences

\[f(0), f(\epsilon), f(2\epsilon), f(3\epsilon), \ldots \]

for some infinitesimal \(\epsilon \)

\[\mathbb{R} \leq \mathbb{N} \]
The elements of the Kahn cpo are the streams:
\[\mathbb{R} \leq \mathbb{N} \]

The “continuous time semantics” failed:
\[\mathbb{R} \leq \mathbb{R}^+ \]

We will see those functions as sequences
\[f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots \]
for some infinitesimal \(\varepsilon \)

\[\mathbb{R} \leq \mathbb{N} \]

We have to take into account infinitesimal variations!
TOWARDS A NON-STANDARD SEMANTICS

- The elements of the Kahn cpo are the streams:
 \[\mathbb{R} \leq \mathbb{N} \]

- The “continuous time semantics” failed:
 \[\mathbb{R} \leq \mathbb{R}^+ \]

- We will see those functions as sequences
 \[f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots \]
 for some infinitesimal \(\varepsilon \)

 \[\mathbb{R}^* \leq \mathbb{N} \]
TOWARDS A NON-STANDARD SEMANTICS

- The elements of the Kahn cpo are the streams:

 \[\mathbb{R}^{\leq} \mathbb{N} \]

- The “continuous time semantics” failed:

 \[\mathbb{R}^{\leq} \mathbb{R}^+ \]

- We will see those functions as sequences

 \[f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots \]

 for some infinitesimal \(\varepsilon \)

 \[\ast \mathbb{R}^{\leq} \mathbb{N} \]

But for every \(n \in \mathbb{N} \), \(n\varepsilon \) is an infinitesimal!
The elements of the Kahn cpo are the streams:
\[
\mathbb{R} \leq \mathbb{N}
\]

The “continuous time semantics” failed:
\[
\mathbb{R} \leq \mathbb{R}^+
\]

We will see those functions as sequences
\[
f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots
\]
for some infinitesimal \(\varepsilon\)

\[
*\mathbb{R} \leq *\mathbb{N}
\]

We consider hypersequences of hyperreals.
The semantics of the following net should be the constant stream f such that $\forall n \in \ast \mathbb{N}, f(n\varepsilon) = 0$:

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in \ast \mathbb{N}$!
The semantics of the following net should be the constant stream f such that $\forall n \in *\mathbb{N}, f(n \varepsilon) = 0$:

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n \varepsilon) = 0$$

The value $f(n \varepsilon)$ is not defined for unlimited hyperintegers $n \in *\mathbb{N}$!
The semantics of the following net should be the constant stream f such that $\forall n \in \ast \mathbb{N}, f(n\varepsilon) = 0$:

```
ζ
0, 0
```

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in \ast \mathbb{N}$!
The semantics of the following net should be the constant stream f such that $\forall n \in \mathbb{N}, f(n\varepsilon) = 0$:

$$\varepsilon 0,0,0$$

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in \mathbb{N}$!
The semantics of the following net should be the constant stream f such that $\forall n \in \ast \mathbb{N}, f(n\varepsilon) = 0$:

$$0, 0, 0, \ldots$$

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in \ast \mathbb{N}$!
INTERNAL THINGS

From \((D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}\) we can define a subset \(D \subseteq \ast \mathbb{R}\):

- \(D_0 = \{x_0, y_0, z_0, \ldots\}\)
- \(D_1 = \{x_1, y_1, z_1, \ldots\}\)
- \(D_2 = \{x_2, y_2, z_2, \ldots\}\)
- \(\ldots\)
From \((D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}\) we can define a subset \(D \subseteq \ast \mathbb{R}\):

- \(D_0 = \{x_0, y_0, z_0, \ldots\}\)
- \(D_1 = \{x_1, y_1, z_1, \ldots\}\)
- \(D_2 = \{x_2, y_2, z_2, \ldots\}\)
- \(\ldots\)

\[D = \{\langle z_0, x_1, y_2, \ldots \rangle, \ldots \}\]
From \((D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}\) we can define a subset \(D \subseteq \ast \mathbb{R}\):

- \(D_0 = \{x_0, y_0, z_0, \ldots\}\)
- \(D_1 = \{x_1, y_1, z_1, \ldots\}\)
- \(D_2 = \{x_2, y_2, z_2, \ldots\}\)
- \(\ldots\)

\[D = \{\langle z_0, x_1, y_2, \ldots \rangle, \ldots \}\]

Definition

An **internal set** \(D \subseteq \ast \mathbb{R}\) is a set such that there exists a family \((D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}\) for which

\[D = \langle D_i \rangle = \{\langle x_i \rangle \mid \forall i \in \mathbb{N}, x_i \in D_i\}\]

Internal functions \(f = \langle f_i \rangle\), *internal relations*, etc. are defined similarly.
THE TRANSFER PRINCIPLE

Proposition

The transfer principle: a first-order formula is satisfied for \mathbb{R} iff it is satisfied for $^*\mathbb{R}$, if we suppose that all the sets, etc in the formula to be internal.
Proposition

The transfer principle:

a first-order formula is satisfied for \mathbb{R}

iff

it is satisfied for $\ast\mathbb{R}$,

if we suppose that all the sets, etc in the formula to be internal

Lemma

Internal induction principle: if D is an internal subset of $\ast\mathbb{N}$ s.t.

- $0 \in D$
- $\forall n \in D, \ n + 1 \in D$

then $D = \ast\mathbb{N}$.
This suggests that

we should consider **internal** cpo!
This suggests that we should consider internal cpo!

Proposition

An internal Scott-continuous function f between two internal cpo admits a least (internal) fixpoint

$$\text{fix}(f) = \bigvee \{ f^n(\bot) \mid n \in \ast \mathbb{N} \}$$
This suggests that we should consider internal cpo!

Proposition

An internal Scott-continuous function \(f \) between two internal cpo admits a least (internal) fixpoint

\[
\text{fix}(f) = \bigsqcup \{ f^n(\perp) \mid n \in \ast \mathbb{N} \}
\]

Remark

An internal cpo \((D, \leq)\) is not necessarily a cpo!
THE INFINITESIMAL-TIME DOMAIN

Definition

- The category **ICPO**: internal cpo and internal Scott-continuous functions
- The **infinitesimal-time domain** \(IT \in ICPO \): the internal cpo of internal functions in \({}^*\mathbb{R} \leq {}^*\mathbb{N} \)
THE INFINITESIMAL-TIME DOMAIN

Definition

- The category **ICPO**: internal cpo and internal Scott-continuous functions
- The **infinitesimal-time domain** \(IT \in \text{ICPO} \): the internal cpo of internal functions in \(\mathbb{R}^{\leq} \mathbb{N} \)

Proposition

The category ICPO is a fixpoint category.

A \(\Sigma \)-object in this category canonically induces a semantics of Kahn networks
EXAMPLE – THE CONSTANT STREAM

If we interpret

\[(s_i)\] 0, (s_i)

then the net

\[0, 0, 0, \ldots\]

is interpreted as the constant stream \(s : \ast \mathbb{R}^{\ast \mathbb{N}}\) such that

\[\forall i \in \ast \mathbb{N}, \quad s_i = 0\]
If we interpret

\[
(s_i) (s_{i-1})
\]

(with \(\varepsilon\) infinitesimal) then the net

is interpreted as the function

\[
D : *\mathbb{R}^* N \rightarrow *\mathbb{R}^* N
\]

\[
(s_i) \mapsto \left(\frac{s_i - s_{i-1}}{\varepsilon} \right)
\]
The function \(D : \ast \mathbb{R}^\ast \mathbb{N} \to \ast \mathbb{R}^\ast \mathbb{N} \) acts as a derivation operator for streams.

\[
(s_i) \mapsto \left(\frac{s_i - s_{i-1}}{\varepsilon} \right)
\]
EXAMPLE – DERIVATION

The function

\[D : \ast \mathbb{R}^* \mathbb{N} \rightarrow \ast \mathbb{R}^* \mathbb{N} \]

acts as a derivation operator for streams.

Definition

In order to compare

- \(CT = \mathbb{R}^{\leq} \mathbb{R}^+ \): the continuous time model
- \(IT = * \mathbb{R}^{\leq} * \mathbb{N} \): the infinitesimal time model

we introduce

<table>
<thead>
<tr>
<th>sampling</th>
<th>standardisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S : CT \rightarrow IT)</td>
<td>(T : IT \rightarrow CT)</td>
</tr>
<tr>
<td>(s \mapsto (s(i\varepsilon))_{i \in \ast \mathbb{N}})</td>
<td>((s_i){i \in \ast \mathbb{N}} \mapsto t \mapsto st(s{\lfloor t/\varepsilon \rfloor}))</td>
</tr>
</tbody>
</table>

Proposition

For any continuously differentiable \(s \in CT \), \(T(D(S(s))) = s' \).
In this way, we give a non-standard **semantics** for hybrid systems:

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- we relate it to the “continuous time model” through S and T
- definitions should be independent of the infinitesimal ε (in particular, Zeno effects are “non-reasonable”)
- we have a built-in notion of approximation
- NSA enables us to use discrete techniques for continuous: continuous-time bisimulations, game semantics, etc.
In this way, we give a non-standard **semantics** for hybrid systems:

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- we relate it to the “continuous time model” through S and T

A first step to study hybrid systems:

- we have a well-defined semantics
NON-STANDARD SEMANTICS
GOING FURTHER

In this way, we give a non-standard semantics for hybrid systems:
➤ we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
➤ we relate it to the “continuous time model” through S and T

A fist step to study hybrid systems:
➤ we have a well-defined semantics
➤ we can study when solutions exist
In this way, we give a non-standard **semantics** for hybrid systems:

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- we relate it to the “continuous time model” through S and T

A fist step to study hybrid systems:

- we have a well-defined semantics
- we can study when solutions exist
- we can study when solutions s are reasonable:
 - we should have $T \circ S(s) = s$
 - definitions should be independent of the infinitesimal ε
 (in particular, Zeno effects are “non-reasonable”)

NON-STANDARD SEMANTICS
GOING FURTHER
NON-STANDARD SEMANTICS
GOING FURTHER

In this way, we give a non-standard semantics for hybrid systems:
▶ we can interpret all the common building blocks
 (derivation, integration, zero-crossing, etc.)
▶ we relate it to the “continuous time model” through S and T

A first step to study hybrid systems:
▶ we have a well-defined semantics
▶ we can study when solutions exist
▶ we can study when solutions s are reasonable:
 ▶ we should have $T \circ S(s) = s$
 ▶ definitions should be independent of the infinitesimal ε
 (in particular, Zeno effects are “non-reasonable”)
▶ we have a built-in notion of approximation
In this way, we give a non-standard semantics for hybrid systems:
- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- we relate it to the “continuous time model” through S and T

A first step to study hybrid systems:
- we have a well-defined semantics
- we can study when solutions exist
- we can study when solutions s are reasonable:
 - we should have $T \circ S(s) = s$
 - definitions should be independent of the infinitesimal ε
 (in particular, Zeno effects are “non-reasonable”)
- we have a built-in notion of approximation
- NSA enables us to use discrete techniques for continuous: continuous-time bisimulations, game semantics, etc.?
Any questions?