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HYBRID SYSTEMS

A model for systems operating in continuous time t € R™.

A controller to cruise control a car:

I(t) = Kpe(t)

> error: e(t) = Vdesired — Vactual
> intensity of the engine: /

> parameters of the control: K,
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HYBRID SYSTEMS

A model for systems operating in continuous time t € R™.

A PID-controller to cruise control a car:

t d
I(t) = er(t)—i—K;/ e(t)dt—i—Kdd—j
0

> error: e(t) = Vdesired — Vactual
> intensity of the engine: /

» parameters of the control: K, K;, Ky

We also want to have discontinuities!

N)
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A model for systems operating in continuous time t € R™.
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HYBRID SYSTEMS

A model for systems operating in continuous time t € RT.

—

How can we define a semantics for those systems?

The streams f : R™ — R on the wires could
> be integrable / derivable
» have discontinuities (zero-crossings)
» exhibit complex behaviors such as Zeno

» be approximated. ..



Let’s take inspiration
from discrete time semantics.
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KAHN PROCESS NETWORKS

A semantics for distributed asynchronous computations:
processes exchanging sequences of data on channels.

/ [}.j, .‘\\\ Fig.3. A parallel program schema.

G. Kahn. The semantics of a simple language for parallel programming. Information processing, 74:471-475, 1974.

1,2,3,...—>@—>2,4,6,...
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KAHN NETWORKS IN CONTINUOUS TIME

It is difficult to define a semantics for hybrid systems.
Can we adapt the works on Kahn networks?
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KAHN NETWORKS IN CONTINUOUS TIME

It is difficult to define a semantics for hybrid systems.
Can we adapt the works on Kahn networks?

The sampling principle
We can to consider a continuous stream t — x; (with t € R™)
as a discrete stream x; (with / € N)
where the data x; occurs at time je, with ¢ infinitesimal.

y

X

A continuous stream sampled at every € seconds.

6
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NON-STANDARD ANALYSIS

In the 60s, Robinson introduced an extension *R of R
(the hyperreals)
in which one can formally consider infinitesimals.

y

f'(x) = /t:TO f(e)dt = > f(i)e

with ¢ infinitesimal

/33



1. Define Kahn networks and their semantics
» formalization of Kahn networks
» Kahn networks form a free fixpoint category

2. A non-standard semantics for Kahn networks
» non-standard semantics using internal cpo

THE PLAN
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THE PLAN

1. Define Kahn networks and their semantics
» formalization of Kahn networks
» Kahn networks form a free fixpoint category

2. A non-standard semantics for Kahn networks
» non-standard semantics using internal cpo

Related works:
1. Semantics of Kahn networks
» Kahn

> categorical structure:
Hildebrandt, Panangaden, Winskel, Stark, ...

2. Using non-standard analysis to model hybrid systems
» Bliudze, Krob
» Benveniste, Caillaud, Pouzet
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EXAMPLES OF KAHN NETWORKS

> Prepend a O:

1,2,3,... 0,1,2,3,...

» Add two discrete streams:

X0y X1y X2, .« -

(%0 +30): (1 +31), - -
Yo, Y1,Y2,. ..
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SEMANTICS OF KAHN NETWORKS

Definition
The Kahn domain (K, C) is the complete partial order whose
elements are a the finite or infinite lists of elements in R, ordered

by prefix.
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SEMANTICS OF KAHN NETWORKS

Definition
The Kahn domain (K, C) is the complete partial order whose
elements are a the finite or infinite lists of elements in R, ordered

by prefix.

To each generator o : m — n

we associate a Scott-continuous function K™ — K",
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SEMANTICS OF KAHN NETWORKS

The semantics of a composed net is given by associating a set of
equations to the network

£ig.7. The program P and the associated system »,

P’

and taking the unique minimal solution (which exists).
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A semantics of what?

Fig.3. A parallel program schema.
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semantics of what?

Fig.3. A parallel program schema.

is formalized by
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A UNIVERSAL DESCRIPTION OF NETS

We can define the category Nety of nets on a set ¥ of generators.
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We can define the category Nety of nets on a set ¥ of generators.

Definition
A fixpoint category is a category with
» cartesian products

> 3a trace.

Theorem
The category Nety is the free fixpoint category containing a
Y -object (i.e. an interpretation of the generators).
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A UNIVERSAL DESCRIPTION OF NETS

We can define the category Nety of nets on a set ¥ of generators.

Theorem
The category Nety is the free fixpoint category containing a
Y -object (i.e. an interpretation of the generators).

Any interpretation of the generators in a fixpoint category
canonically induces
an interpretation of all Kahn nets.

» We can give semantics of KN in other fixpoint categories.

» Avoids some technical details (solving systems of equations).

14 /33
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A SEMANTICS OF HYBRID SYSTEMS?

» We want to be able to derivate those streams: we restrict to
piecewise smooth functions (with a finite number of
discontinuities)

These do not form a cpo!

fo fi f f3
[0,1/2] [0,3/4] [0,7/8] [0, 15/16]

... because of the Zeno effect.

16
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NON-STANDARD ANALYSIS

In order to give a meaning to the infinitesimals, we replace reals by
hyperreals which are sequences (x;);cn of reals.

» A real x is seen as the constant sequence (x).

v

An infinitesimal number is a sequence converging towards O.

v

An “infinite” number is a sequence converging towards +oo.

v

The usual operations are extended pointwise on sequences:
(xi) x (vi) = (xi X yi)
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NON-STANDARD ANALYSIS

In order to give a meaning to the infinitesimals, we replace reals by
hyperreals which are sequences (x;);cn of reals.

>

>

A real x is seen as the constant sequence (x).

An infinitesimal number is a sequence converging towards O.
An “infinite” number is a sequence converging towards +oo.
The usual operations are extended pointwise on sequences:
(xi) % (yi) = (xi X yi)

What is the inverse of (0,1,0,1,0,1,...)?

In order to recover usual properties one has to consider
equivalence classes of sequences.

18/33



HYPERREALS

We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(x) = (vi) whenever {ieN|x;=yi} eF
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HYPERREALS

We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(x) = (vi) whenever {ieN|x;=yi} eF

The set F should satisfy properties:

> two sequences equal at every index excepting a finite number
should be equal: F should contain all cofinite sets

> two sequences are either equal (equivalent) or different:

VU CN, UeF or N\UeF
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HYPERREALS

We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(x) = (vi) whenever {ieN|x;=yi} eF

The set F should be a non-principal ultrafilter on N.
Definition
An ultrafilter F on N is a collection of subsets of N such that
1. intersection: YU,V € F, unverF
2. supersets: YU € F,VV CN, UCV=VeF
3. proper: ) & F
4. complement: YU C N, UeF or N\UeF

(with AC such an F exists).
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HYPERREALS

We will define a collection F of subsets (called large) of N and
consider the equivalence relation such that

(x) = (vi) whenever {ieN|x;=yi} eF

Definition
» The field of hyperreals *R is RY/ =.
» The ring of hyperintegers *N is N/ =,

19/33



INFINITESIMAL AND UNLIMITED

Definition

An hyperreal x € *R is
» infinitesimal: if x #0 and Vr € R, |x| < r
> unlimited: if Vr e R, |x| > r

Example
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INFINITESIMAL AND UNLIMITED

Definition

An hyperreal x € *R is
» infinitesimal: if x #0 and Vr € R, |x| < r
> unlimited: if Vr e R, |x| > r

Example

Intuition

» *R is R completed with infinitesimals and unlimited.

» *N is N completed with unlimited

20/33



NON-STANDARD ANALYSIS

Continuity, derivation, integration, etc.
have the “expected” formulations
in this framework.



NON-STANDARD
SEMANTICS

OF KAHN NETWORKS
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TOWARDS A NON-STANDARD SEMANTICS

» The elements of the Kahn cpo are the streams:
RN
> The “continuous time semantics” failed:
R<F"
» We will see those functions as sequences
£(0), f(e), f(2¢), f(3e),...

for some infinitesimal &

R=N
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» The “continuous time semantics” failed:
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» We will see those functions as sequences
£(0), f(e), f(2¢), f(3e),...

for some infinitesimal &
RN

We have to take in account infinitesimal variations!
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TOWARDS A NON-STANDARD SEMANTICS

» The elements of the Kahn cpo are the streams:
R=N

» The “continuous time semantics” failed:
R<F"

» We will see those functions as sequences
£(0), f(e),f(2¢), f(3¢),...

for some infinitesimal &

But for every n € N, ne is an infinitesimal!
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TOWARDS A NON-STANDARD SEMANTICS

» The elements of the Kahn cpo are the streams:
R=N

» The “continuous time semantics” failed:
R<F"

» We will see those functions as sequences
£(0), f(e), f(2¢), f(3e),...

for some infinitesimal &
*

We consider hypersequences of hyperreals.
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FIXPOINTS IN *R="N

The semantics of the following net should be the constant
stream f such that Vn € *N, f(ne) = 0:

However, if we compute its semantics using the fixpoint
construction we get the stream f such that

Vne N, f(ne) =0

The value f(ne) is not defined for unlimited hyperintegers n € *N!
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FIXPOINTS IN *R="N

The semantics of the following net should be the constant
stream f such that Vn € *N, f(ne) = 0:

0,0,0,...

However, if we compute its semantics using the fixpoint
construction we get the stream f such that

Vne N, f(ne) =0

The value f(ne) is not defined for unlimited hyperintegers n € *N!
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INTERNAL THINGS

From (D; C R);en we can define a subset D C *RR:

>

| 4
>
| 4

Do = {0, y0, 20, - -
Dy = {x1,y1,21,..
D2 == {X27y2722,..

3
3
3
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INTERNAL THINGS

From (D; C R);en we can define a subset D C *RR:
» Do = {x0, Y0, 720, - - -}
» Dy ={xi,y1,21,...}
> D2 = {Xz,yz,ZQ, .. }
>

D= {<20,X1,y2, .. .>, .. }
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INTERNAL THINGS

From (D; C R);en we can define a subset D C *RR:
» Do = {x0, Y0, 720, - - -}
» Dy ={xi,y1,21,...}
> D2 = {Xz,yz,ZQ, .. }

> ..

D= {<20,X1,y2, .. .>, .. }

Definition
An internal set D C *R is a set such that there exists a family
(Di € R)jen for which

D = (D) = {{x)]|VieN,x €D}

Internal functions f = (f;), internal relations, etc. are defined
similarly.
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THE TRANSFER PRINCIPLE

Proposition

The transfer principle:
a first-order formula is satisfied for R
iff
it is satisfied for *R,
if we suppose that all the sets, etc in the formula to be internal

26
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THE TRANSFER PRINCIPLE

Proposition

The transfer principle:
a first-order formula is satisfied for R
iff
it is satisfied for *R,
if we suppose that all the sets, etc in the formula to be internal

Lemma
Internal induction principle: if D is an internal subset of *N s.t.

»0eD
»VYneD,n+1leD
then D = *N.

26
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NON-STANDARD FIXPOINTS

This suggests that

we should consider internal cpo!
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Proposition

An internal Scott-continuous function f between two internal cpo
admits a least (internal) fixpoint

fix(f) = \{F(L)|ne N}
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NON-STANDARD FIXPOINTS

This suggests that

we should consider internal cpo!

Proposition

An internal Scott-continuous function f between two internal cpo
admits a least (internal) fixpoint

fix(f) = \{F(L)|ne N}

Remark
An internal cpo (D, <) is not necessarily a cpo!

27 /33



THE INFINITESIMAL-TIME DOMAIN

Definition
» The category ICPO:
internal cpo and internal Scott-continuous functions

» The infinitesimal-time domain /T € ICPO:
the internal cpo of internal functions in *R<"N
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THE INFINITESIMAL-TIME DOMAIN

Definition
» The category ICPO:
internal cpo and internal Scott-continuous functions

» The infinitesimal-time domain /T € ICPO:
the internal cpo of internal functions in *R<"N

Proposition
The category ICPO is a fixpoint category.

A X -object in this category canonically induces
a semantics of Kahn networks

28 /33



EXAMPLE - THE CONSTANT STREAM

If we interpret
0

(si) . , (si)

then the net

0,0,0,...

is interpreted as the constant stream s : *R™N such that

Vie*N, s=0

29/33



EXAMPLE - DERIVATION

If we interpret

(si) a3 (si-1)
U SE (s1/2)
/e ——»

(t/) (tf)

(with ¢ infinitesimal) then the net

=

is interpreted as the function
D - *R*N N *R*N
. Si—Si—1
(s) = (=2=)

30/33



D
The function

operator for streams.

EXAMPLE - DERIVATION
*R*N N *R*N

e acts as a derivation
(si) (75’ 55'71>
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EXAMPLE - DERIVATION

D - *R*N N *R*N
The function si—s,_1\ acts as a derivation
() = (*22)
operator for streams.

Definition

In order to compare
» CT =R=R": the continuous time model
» IT = *RS"N: the infinitesimal time model

we introduce

sampling ‘ standardisation
S . CT — IT T - IT - CT

s — (S(iE)),’E*N (Si)ie*N — t'—)St(SLt/EJ)
Proposition

For any continuously differentiable s € CT, T(D(S(s))) = s'.

31/33



NON-STANDARD SEMANTICS
GOING FURTHER

In this way, we give a non-standard semantics for hybrid systems:
> we can interpret all the common building blocks
(derivation, integration, zero-crossing, etc.)
> we relate it to the “continuous time model” through S and T
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NON-STANDARD SEMANTICS
GOING FURTHER

In this way, we give a non-standard semantics for hybrid systems:

>

>

we can interpret all the common building blocks
(derivation, integration, zero-crossing, etc.)
we relate it to the “continuous time model” through S and T

A fist step to study hybrid systems:

>

| 4
| 4

we have a well-defined semantics
we can study when solutions exist
we can study when solutions s are reasonable:
» we should have T o S5(s) =s
» definitions should be independent of the infinitesimal ¢
(in particular, Zeno effects are “non-reasonable”)

we have a built-in notion of approximation

» NSA enables us to use discrete techniques for continuous:

continuous-time bisiumlations, game semantics, etc.?

32/33



THANKS!

Any questions?



