COHERENT PRESENTATIONS OF MONOIDAL CATEGORIES

PIERRE-LOUIS CURIEN AND SAMUEL MIMRAM

Université Paris Diderot
e-mail address: curien@pps.univ-paris-diderot.fr

Ecole Polytechnique
e-mail address: samuel .mimram@lix.polytechnique.fr

ABSTRACT. Presentations of categories are a well-known algebraic tool to provide de-
scriptions of categories by means of generators, for objects and morphisms, and relations
on morphisms. We generalize here this notion, in order to consider situations where the
objects are considered modulo an equivalence relation, which is described by equational
generators. When those form a convergent (abstract) rewriting system on objects, there
are three very natural constructions that can be used to define the category which is de-
scribed by the presentation: one consists in turning equational generators into identities
(i.e. considering a quotient category), one consists in formally adding inverses to equational
generators (i.e. localizing the category), and one consists in restricting to objects which
are normal forms. We show that, under suitable coherence conditions on the presentation,
the three constructions coincide, thus generalizing celebrated results on presentations of
groups, and we extend those conditions to presentations of monoidal categories.
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1. INTRODUCTION

Motivated by the generalization of rewriting techniques to the setting of higher-dimensional
categories, we introduce a notion of presentation of a monoidal category modulo a rewriting
system, in order to be able to present a monoidal category as generated by objects and
morphisms, quotiented by relations on both morphisms and objects. This work can somehow
be seen as an extension of traditional techniques of rewriting modulo a theory [1]: the
quotient on objects is described by a rewriting system, whose rules are called here equational,
and we want to consider objects up to those rules. In order to handle this situation, there
are mainly two possible approaches: either implicit (work on the equivalence classes modulo
equational rules) or explicit (consider equational rules as invertible operations). We provide
conditions on both the original rewriting system and the equational one, so that that the
two approaches coincide. Namely, we show that they imply some form of coherence for the
equational rewriting system, i.e. that there is essentially one way of transforming an object
into another using the equational rules, thus implying that the quotient and the localization
are equivalent. An important methodological point has to be stressed here: our aim is not
to provide the most general conditions for this to hold, but sufficient conditions, which are
applicable to a wide range of examples and can efficiently be checked on the presentation of
a (monoidal or 2-) category.

Let us further expose our motivations, which come from higher-dimensional rewriting
theory [17]. A string rewriting system P consists in an alphabet P, and a set P, C Pj" x P¥
of rules. Such a system induces a monoid ||P| = Pj/<& obtained by quotienting the free

monoid P} on P; by the smallest congruence & containing the rules in Py; when the rewriting
system is convergent, i.e. both confluent and terminating, normal forms provide canonical
representatives of equivalence classes. Given a monoid M, we say that P is a presentation
of M when M is isomorphic to || P||: in this case, the elements of P; can be seen as generators
for M, and the elements of P, as a complete set of relations for M. For instance, the additive
monoid N x N admits the presentation P with P; = {a, b} and P, = {ba = ab}: namely,
the string rewriting system is convergent, and its normal forms are words of the form aPb?,
with (p,q) € N x N, from which it is easy to build the required isomorphism.

The notion of presentation is easy to generalize from monoids to categories (a monoid
being the particular case of a category with one object): a presentation of category consists
in generators for objects and morphisms, together with rules relating morphisms in the free
category generated by the generators. Starting from this observation, the notion of presenta-
tion was generalized in order to present n-categories (computads [21, 19] or polygraphs [5]),
thus providing us with a notion of higher-dimensional rewriting system. However for dimen-
sions n > 2, this notion of presentation has important limitations. In particular, not every
n-category admits a presentation. We shall illustrate this on a simple example of a monoidal
category (which is the particular case of a 2-category with only one 0-cell).

Consider the simplicial category A whose objects are natural numbers p € N and mor-
phisms f : p — ¢ are increasing functions f : [p] — [¢] where [p] = {0,...,p —1}. This
category is monoidal, with tensor product being given by addition on objects (p®q = p+q)
and by ‘“juxtaposition” on morphisms, and it is well known that it admits the following
presentation as a monoidal category [16, 14|: its objects are generated by one object a, its
morphisms are generated by m: a® a — a and e : 0 — a, and the relations are

a:mo(m®id,) =mo (id,@m) A:mo(e®id,) =id, p:mo (id,®e) =1id,
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This means that every morphism of A can be obtained as a composite of e and m, and
that two such formal composites represent the same morphism precisely when they can be
related by the congruence generated by the above relations. As we can see on this example,
a presentation P of a monoidal category consists in generators for objects (here P, = {a}),
generators for morphisms (P> = {e, m}) together with their source and target, and relations
between composites of morphisms (Ps = {a, A, p}) together with their source and target.
Notice that such a presentation does not allow for relations between objects, and thus is
restricted to presenting monoidal categories whose underlying monoid of objects is free.

This limitation can be better understood by trying to present the monoidal cate-
gory A x A with tensor product extending componentwise the one of A: the underly-
ing monoid of objects is N x N, which is not free. If we try to construct a presentation
for this monoidal category, we are led to consider a presentation containing “two copies”
of the previous presentation: we consider a presentation P with P, = {a, b} as object
generators (where a and b respectively correspond to the objects (1,0) and (0,1)), with
Py = {m,, e;, mp, ep} as morphism generators with

my,:a®a—a e:0—a mp:bxb—b ep:0—>b

and with P3 = {aa, Aa, pa, @b, Ap, pp} as relations. If we stop here adding relations, the
presented category has {a, b}" as underlying monoid of objects, i.e. the free product of N
with itself, which is not right: recalling the above presentation for N x N, we should moreover
add a relation g : ba = ab. However, such a relation between objects is not allowed in the
usual notion of presentation (where only relations between morphisms are considered). In
order to provide a meaning to it, three constructions are available:

— restrict P to some canonical representatives of objects modulo the equivalence gen-
erated by g (typically the words of the form aPb? with (p,q) € N x N),

— quotient by g the monoidal category ||P|| presented by P, or

— formally invert the morphism g in || P||.
We show that under reasonable assumptions on the presentation, all three constructions
coincide, thus providing a notion of coherent presentation modulo. In the article, we begin
by studying the case of presentations modulo of categories and then generalize it to monoidal
categories.

This article is based on the conference article [6], extending it on two major points. First,
the assumptions on the opposite presentations turned out to be unnecessary (see the new
proof of Theorem 41), making our conditions more natural, simpler to check and applicable
to a wider range of presentations. Second, the extension to the case of presentations of
monoidal categories is new.

We begin by recalling the notion of presentation of a category (Section 2.1), then we
extend it to work modulo a relation on objects (Section 2.2), and consider the quotient and
localization wrt to the relation (Section 2.3). In order to compare those constructions, we
consider equational rewriting systems equipped with a notion of residuation (Section 3.1)
and satisfying a particular “cylinder” property (Section 3.2). We then show that, under
suitable coherence conditions, the category of normal forms is isomorphic to the quotient
(Section 4.1) and equivalent with the localization (Section 4.2). The notion of presentation
modulo is then generalized to monoidal categories (Section 5.1), as well as the residuation
techniques (Section 5.2) and cylinder properties (Section 5.3), which finally allows us to
generalize our coherence theorem to monoidal categories (Section 5.4).
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2. PRESENTATIONS OF CATEGORIES MODULO A REWRITING SYSTEM

2.1. Presentations of categories. Recall that a graph (P, so, to, P1) consists of two sets
Py and Py, of vertices and edges respectively, together with two functions sg,ty : PL = Py
associating to an edge its source and target respectively:

P S(<:O Py
to
Such a graph generates a category with Py as objects and the set Pj of (directed) paths as
morphisms. If we denote by i; : P — P;° the coercion of edges to paths of length 1, and
sg,ty ¢+ P — Py the functions associating to a path its source and target respectively, we
thus obtain a diagram as on the left below:

P1 Pl P2
S0 S50 S1
i l“ o ll/tl (2.1)
0 0
Py=—PF} Py=——PFf
£ £

in Set which is commuting, in the sense that sj o i1 = sg and ¢ 0 i1 = to.

Definition 1. A presentation
P = (P,s0to, P1,51,t1, %)

as pictured on the right of (2.1), consists in a graph (FPp, so, to, P1) as above, the elements
of Py (resp. P1) being called object (resp. morphism) generators, together with a set Py of
relations (or 2-generators) and two functions si,t; : Py — P; such that

80081 =840t tyos1 =150ty
The category || P|| presented by P is the category obtained from the category generated by the
graph (P, so, to, P1) by quotienting morphisms by the smallest congruence wrt composition

identifying any two morphisms f and g such that there exists a € P; satisfying s1(a) = f
and t1(a) = g.

In the following, we often simply write (P, P;, P») for a presentation as above, leaving the
source and target maps implicit. We write f : x — y for an edge f € P, with so(f) = =
and to(f) =y, and a: f = g for a relation with f as source and g as target. We sometimes
write a : f < ¢ to indicate that a: f = g or a: g = f is an element of P», and we denote
by < the smallest congruence such that f < g whenever there exists o : f = ¢ in Ps.

Ezample 2. The monoid N/2N (seen as a category with only one object) admits the presen-
tation P with

P():{X} Pl:{f:X—>X} PQZ{E:fOfﬁidX}


http://cathre.math.cnrs.fr/
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Instead of considering < simply as a relation, it is often useful to consider “witnesses” for this
relation. From a categorical perspective, this can be formalized as follows. A presentation P
generates a 2-category with invertible 2-cells (also called a (2,1)-category), whose underlying
category is the free category generated by the underlying graph of P, and whose set of 2-cells
is generated by P, and denoted Pj. The category presented by P can be obtained from
this 2-category by identifying 1-cells where there is a 2-cell in between [5, 14]. We write
a: f & g for such a 2-cell, which provides an explicit witness of the fact that f and g are
identified in the presented category.
It is easily seen that any category admits a presentation:

Lemma 3. Any category C admits a presentation PC, called its standard presentation,
with POC being the set of objects of C, Pf being the set of morphisms of C and PQc being the
set of pairs (fa0 f1,9) € P{* X PE* with fy, fa, g € Py such that so(f1) = s0(g), to(f2) = to(g)
and fyo fi = g in C (with projections as source and target functions).

In general, a category actually admits many presentations. It can be shown that two presen-
tations present the same category if and only if they are related by Tietze transformations:
those transformations generate all the operations one can do on a presentation without
modifying the presented category [22, 11]. For instance, Knuth-Bendix completions are a
particular case of those [12].

Definition 4. Given a presentation P, a Tietze transformation consists in

— adding (resp. removing) a generator f € P, and a 2-generator « : f = g € P5 with
g€ (P\{SH",

— adding (resp. removing) a 2-generator « : f = g € P, such that f and g are
equivalent wrt the congruence generated by the relations in P, \ {a}.

Proposition 5. Two presentations P and P’ are related by a sequence of Tietze transfor-
mations if and only if they present the same category, i.e. | P|| = || P'|.

In the previous proposition, when the two presentations are finite (i.e. have finite sets of
generators and relations), which is the main case of interest in this article, only a finite
sequence of Tietze transformations is needed.

2.2. Presentations modulo. In a presentation P of a category, the elements of P, generate
relations, and the presented category is obtained by quotienting the morphisms of the free
category on the underlying graph by all these relations. We now extend this notion in order
to also allow the quotienting of objects in the process of constructing the presented category.

Definition 6. A presentation modulo (P, 151) consists of a presentation P = (Py, Py, P3)
together with a set P; C P, whose elements are called equational generators.

The morphisms of P* generated by the equational generators are called equational mor-
phisms. Intuitively, the category presented by a presentation modulo should be the “quo-
tient category” || P||/ Py, as explained in the next section, where objects equivalent under P
(i.e. related by equational morphisms) are identified. We believe that the reason why presen-
tations modulo of categories were not introduced before is that they are actually unnecessary,
in the sense that we can always convert a presentation modulo into a regular presentation, see
Lemma 10 below. However, the techniques developed here extend in the case of monoidal
categories where it is not the case anymore, see Section 5, and moreover our framework
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already enables one to obtain interesting results on presented categories (such as the equiv-
alence between quotient and localization, see [6] for details). In this article, we will focus
more on the case of presentations of monoidal categories.

Definition 7. Given a presentation modulo (P, P;), we define the quotient presentation P/ P
as the (non-modulo) presentation (Ff, P, P;) where
— P} = Py/=1 where & is the smallest equivalence relation on Fy such that = y
whenever there exists a generator f :  — y in Pj, and we denote by [z] the
equivalence class of x € Py,
— the elements of P are f: [z] — [y] for f: 2 — y in P,
— the elements of Pj are of the form a: f = gfora: f=gin P, or ay: f = id [y
for f:xz=yin P

We will sometimes consider presentations modulo with “arrows reversed”:

Definition 8. Given a presentation modulo (P, ﬁ’l), the opposite presentation modulo, noted
(PP, PPP), is given by PP = (P, P{®, Py?) where P® = {f? .y =z |f:x—y€c P}
and where Py¥ = {a®P : fP = ¢°P | a: f = g} with fP = f{Po...o0 fP for f = fro...0fi
and where plo P is the subset of P{* corresponding to P,.

2.3. Quotient and localization of a presentation modulo. As explained above, we
want to quotient our presentations modulo by equational morphisms, in order for the equa-
tional morphisms to induce equalities in the presented category. Given a category C and a
set ¥ of morphisms, there are essentially two canonical ways to “get rid” of the morphisms
of ¥ in C: we can either force them to be identities, or to be isomorphisms, giving rise to
the following two notions of quotient and localization of a category. These are standard
constructions in category theory and we recall them below.

Definition 9. The quotient of a category C by a set ¥ of morphisms of C is a category C/%
together with a quotient functor @ : C — C/X sending the elements of ¥ to identities, such
that for every functor F' : C — D sending the elements of ¥ to identities, there exists a
unique functor F such that F o Q=F.

c—tE.p
Ql
c/s

Such a quotient category always exists for general reasons [2] and is unique up to isomor-
phism. Given a presentation modulo (P, ]51), the category presented by the associated
(non-modulo) presentation P/P; described in Definition 7, corresponds to considering the
category presented by the (non-modulo) presentation P and quotient it by P.

Lemma 10. For every presentation modulo (P, Py), the categories | P|/Py and || P/Py|| are
isomorphic.

Proof. 1t is enough to show that [P/ Py| is a quotient of ||P|| by P,. We define a quotient
functor @ : | P|| — ||P/P1|| on generators by Q(x) = [z] for x € Py and Q(f) = f for f € P;:
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this extends to a functor since for every 2-generator a € P» there is a corresponding 2-gen-
erator in P/P;. For every generator f € P, we immediately have Q(f) = id. Suppose
given a functor F' : ||P|| — C sending equational morphisms to identities. We define a
functor F : ||[P/Py|| — C sending an object [z] of ||[P/Py|| to F[z] = Fz. This does not
depend on the choice of the representative of the class: given two representatives y,y’ € [z],
there exists a zig-zag of equational morphisms from y to ¢/, all of which are sent by F to
identities, i.e. Fy = Fy'. Given a morphism f = fyo...0 fi in |[P/Py|| with f; € Pi, we
define Ff = Ffyo...0Ff. For similar reasons, this is also well-defined. The functor F'
satisfies F' = F o @, and it is the only such functor: given an object [x] of ||[P/Py]|, one has
necessarily F[z] = F o Q(z) = Fz and similarly, given a generating morphism f in ||P/P|,
one has necessarily Ff = F o Q(f)=Ff. ]

A second, slightly different construction, consists in turning elements of ¥ into isomor-
phisms (instead of identities):

Definition 11. The localization of a category C by a set ¥ of morphisms is a category C[~7!]
together with a localization functor L : C — C[X~!] sending the elements of ¥ to isomor-
phisms, such that for every functor F': C — D sending the elements of ¥ to isomorphisms,
there exists a unique functor F such that F o L = F.

In the case where the category is presented, its localization admits the following presentation.

Lemma 12. Given a presentation P = (Py, P1, Py) and a subset ¥ of Pp, the category
presented by P' = (Py, P|, Py) where

Pll = PlErJ{?:y—HL’}f::c—m/EE}
and B B
P, = Py{fof=id fof=id|fex}
is a localization of the category || P|| by X.

Proof. The localization functor L is defined by Lx = x for z € Py, and Lf = f for f € P}.
This functor is well-defined since for any 2-generator o : f = ¢ in P, we have that Lf = f
and Lg = g, and there is a 2-generator f = ¢ in Pj by definition. Besides, for any f in ¥,
Lf = f is an isomorphism since f is an inverse for f. Suppose given F : |P|| — C sending
the elements of 3 to isomorphisms. We define a functor F : ||P'|| — C on the generators by
Fo = Fxforx € Py, Ff = Ff for f € P, and Ff = (Ff)~'. This functor is well-defined,
since for any 2-generator « : f = ¢ in P» C Pj, we have Ff = Ff = Fg = Fg and
F(fof)=FfoFf=Ffo(Ff) ! =id and similarly F(f o f) = id. This functor satisfies
FoL = F and is the unique such functor. []
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Ezxample 13. Let us consider the category

C = z——=

with two objects and two non-trivial morphisms. Its localization by ¥ = {f, g} is equivalent
to the category with one object and Z as set of morphisms (with addition as composition),
whereas its quotient by X is the category with one object and only the identity as morphism.
Notice that they are not equivalent.

The description of the localization of a category provided by the universal property is often
difficult to work with. When the set ¥ has nice properties, the localization admits a much
more tractable description |10, 4].

Definition 14. A set X of morphisms of a category C is a left calculus of fractions when
(1) the set X is closed under composition : for f and g composable morphisms in 3,
go fisin X.
(2) ¥ contains the identities id, for z in Py.
(3) for every pair of coinitial morphisms u : z — y in ¥ and f : z — z in C, there exists
a pair of cofinal morphisms v : 2 — ¢in ¥ and g : y — t in C such that vo f = gou.

t
9 4 %

yxx/;z

(4) for every morphism u : x — y in ¥ and pair of parallel morphisms f,g : y — z such
that f ou = g o u there exists a morphism v : z — ¢ in ¥ such that vo f =vog.
f

u v
rT—Yy__—=<z >1

Remark 15. Note that the last condition is always satisfied when every morphism u € ¥ is
epi, since in this case we can take v to be the identity.

Theorem 16 (|10, 4]). When X is a left calculus of fractions for a category C, the localiza-
tion C[¥71] can be described as the category of fractions, whose objects are the objects of C
and morphisms from x to y are equivalence classes of pairs of cofinal morphisms (f,u) with
frx—=ieCandu:y — i€ X under the equivalence relation identifying two such pairs
(f1,u1) and (f2,u2) when there exists two morphisms wi, wy € X such that wy ou; = wg o usg
and w1 o f1 = wsy o fa, as shown on the left below:

1 k

fi uy 4w
N2 VYA
2

The identity on an object x is the equivalence class of (id,,id,) and the composition of two
morphisms (f,u) : x — y and (g,v) : y — z is the equivalence class of (ho fywov):x — z
where the morphisms h and w are provided by property 1 of Definition 14, as shown on the

(2.2)
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right above. The localization functor L : C — C[X71] is the identity on objects and sends an
morphism f 1 x — y to (f,idy).

Example 17. This construction draws its name from the following example. Consider the
category Z with one object %, whose morphisms are integers n € 7Z, composition is given
by multiplication and identity is 1. The set ¥ = Z \ {0} of all morphisms excepting 0 is
a left calculus of fractions since (1) it is closed under multiplication, (2) it contains 1, (3)
every pair of non-zero integers admits a non-zero common multiple, and it satisfies (4) by
Remark 15 since every element can be canceled. The associated localization Z[X~!] is the
category with one object *, morphisms being rational numbers in @, with multiplication as
composition: a morphism (f,u) in the localization corresponds to the fraction f/u and the
quotient to the usual one, identifying (fw)/(vw) with f/u.

Given a presentation modulo, when the (abstract) rewriting system on objects given by
the equational generators is convergent, normal forms for objects provide canonical repre-
sentatives of objects modulo equational generators, and therefore we are actually provided
with three possible and equally reasonable constructions for the category presented by a
presentation modulo (P, P;):

(1) the full subcategory || P||JP; of || P|| whose objects are normal forms wrt P,

(2) the quotient category ||P|/Py,

(3) the localization || P||[P[}].
The aim of the following two sections is to provide reasonable assumptions on the presen-
tation modulo ensuring that the first two categories are isomorphic (normal forms provide
a concrete description of the quotient), and equivalent to the third one (which captures the
coherence of equational morphisms). We introduce these assumptions gradually in the next
section. We first give some examples illustrating the fact that those constructions are not
the same in general.

Example 18. Consider the category C with two objects and two non-identity morphisms
depicted on the left:

C= o % y T =y Q id N=y Q 0,1,2,... Z=y Q =1,0,1,...

It admits a presentation P with Py = {z,y}, PP ={f:2 = y,9: 2z — y} and P, = (). We
also write T for the terminal category (with one object and one identity morphism) and N
(resp. Z) for the category with one object and the additive monoid N (resp. Z) as monoid
of endomorphisms. Taking P; = {f, g}, we have (see also Example 13)

IPIVPy = | PIl/Pr=T =z
Taking P, = {f}, we have
IPIVAL =T = |Pl/P=N

Thus the three constructions are not equivalent in general. Note that in both cases, P
(or its closure under composition and identities) is not a left calculus of fractions, because
condition (3) of Definition 14 is not satisfied.

Example 19. Consider the category admitting a presentation P with
Py = {x,:):’,y,y’} P = {f:x—)x',g:x—)y,g':y—>x,h:y—>y’}
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i.e. graphically

f —=\ h
Pt e Ty ey (2.3)
g/

and relations

Py={fog og= f,hogog = h}
This presentation is a direct translation in our setting of the classical example in abstract
rewriting systems showing that local confluence does not necessarily imply confluence [13].
Consider the set P; = {g, ¢’} of equational morphisms. The quotient category is

IPl/B = o <loalay

The localization admits the presentation given by Lemma 12, with morphism generators

fix—2 gix—y Jdiy—2x h:iy—y G:y—z Gix—y

and relations

foglog=f hogog' = h  gog=id, gog = idy gog = id, g o7 = id,
By Knuth-Bendix completion, these relations can be completed with the following derivable
relations:

fog=fog  hog=hog

(for instance the first relation can be derived by fog = fog ogog = f o), giving
rise to a convergent rewriting system. The localization has the normal form ¢’ o g : 2 — x

as non-trivial on z endomorphism, whereas all endomorphisms of the quotient are trivial:
hence here too, quotienting is not equivalent to localizing.

3. CONFLUENCE PROPERTIES

In this section, we introduce local conditions that can be seen as a generalization of classical
local confluence properties in our context, in which rewriting rules correspond to equational
generators only, and in which we keep track of 2-cells witnessing local confluence.

3.1. Residuation. We begin by extending to our setting the notion of residual, which is
often associated to a confluent rewriting system in order to “keep track” of rewriting steps
once others have been performed [15, 3, 9].

Assumption 1. We suppose fixed a presentation modulo (P, ]51) such that
(1) for every pair of distinct coinitial generators f : 2 — y; in P; and g : & — yo in Py,
there exist a pair of cofinal morphisms ¢’ : y1 — z in Pf and f': yo — z in P} and
a 2-generator a: g’ o f < fogin Py:

!

g
Y1 >z

fT PRV (3.1)

T—g Y2

(2) there is no infinite path with generators in P;.
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These assumptions ensure in particular that the (abstract) rewriting system on vertices
with ]51 as set of rules is convergent. Given a vertex = € Py, we write & for the associated
normal form, i.e. the unique object Z such that there is a morphism f : z —  in f’l* and
there is no generator of the form f : & — 2/ in P;. The classical Newman’s lemma, [18] holds
in our framework:

Lemma 20. For any pair of coinitial morphisms [ : x — y1 in ]51* and g : x — y2 in Py,
there exist a pair of cofinal morphisms ¢’ : y1 — z in Py and f':ys — z in 151* and a 2-cell
a:gof S flogin Py
For every pair of distinct morphisms (f,g) as in the Assumption 1, we suppose fixed an
arbitrary choice of a particular triple (¢, o, f’) associated to it, and write g/f for ¢, f/g
for f" and py 4 for a

" g/f -

A

fT 2ha i f/g

[L‘HyQ

g
The morphism g/ f (resp. f/g) is called the residual of g after f (resp. f after g): intuitively,
g/ f corresponds to what remains of g once f has been performed. It is natural to extend
this definition to paths as follows:

Deﬁnition~ 21. Given two coinitial paths f : * — y and ¢ : © — 2z and P} such that either f
or g is in Py, we define the residual g/f of g after f as above when f and g are distinct
generators, and by means of the following rules:

flf=idy g/idy =g id, /f = id,

(g2091)/f = (92/(f/g91)) o (g1/f)  g/(fao f1) = (9/F1)] 2

(by convention the residual g/ f is not defined when neither f nor g belongs to .f’l* ). Graph-
ically,

f/(g2091)
id f QQT y ng/(f/gn) fi/g f2/(g/f1)
HT Tg/id=g idT Tid/f=id ik QT g/flT T(g/fl)/ﬁ
- 7 " Tgl/f R
f

The above rules, when applied from left to right, provide a non-deterministic algorithm
for computing residuals of paths along paths. We will show in Lemma 28 that, under an
additional assumption, this algorithm teminates and that the result does not depend on the
order in which the above rules are applied. Moreover, it can be checked that residuation is
compatible with associativity and identity laws, so that altogether the notion of residuation
is well-defined on paths.

Remark 22. In condition (1) of Assumption 1, in order for Newman’s lemma (and in fact also
all subsequent properties) to hold, it would be enough to suppose that we have ¢’ o f & flog
instead of requiring that there is exactly one 2-generator o mediating the two morphisms.
However, this would makes some formulations more involved, without bringing more gener-
ality in practice.
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Remark 23. It might seem at first that Assumption 1 is sufficient to ensure that quotienting
by Py or localizing wrt P; give rise to equivalent categories, but Example 19 shows that
this is not the case and more assumptions are needed. In particular termination, which is
introduced below.

To ensure that the definition of residuation is well-founded, and thus always defined,
we will make the following additional assumption. We first recall that a poset (N, <) is
noetherian if there is no infinite descending chain ng > ny > ngo > ... of elements of V;
the typical example of such a poset is (N, <). A noetherian monoid (N,+,0,<) is a (non-
necessarily commutative) monoid (N, +,0) together with a structure of noetherian poset
(N, <), such that for every z,y,y',z € N,

y>vy implies rHyt+z>a+y +z
and 0 is the minimum element. Again, a typical example of such a monoid is (N, +,0, <).
Assumption 2. There is a weight function w; : P — N, where (N, +,0, <) is a noetherian

monoid, such that for every generator g € P; and f € Py, we have wi(g/f) < wi(g), where
we extend w; on elements of P;" by wi(go f) = wi(g) + wi(f) and w;(id) = 0.

Remark 24. Note in particular that, with the previous assumption, we always have

wi(g) <wi(h) +wi(g) +wi(f) =wi(hogo f)

for composable morphisms f, g and h.

In order to study confluence of the rewriting system provided by equational morphisms,
through the use of residuals, we first introduce the following category, which allows us to
consider, at the same time, both residuals g/ f and f/g of two coinitial morphisms f and g.

Definition 25. The zig-zag presentation associated to the presentation modulo (P, P;) is

the presentation Z = (Zy, Z1, Z3) with Zy = P, Z1~: PyP (generators in P, are of the
form f : B — A for any generator f : A — B in Pj) and relations in Zy are of the form

gof=(f/g9)o(g/f)
g/f

Yy —>=

fJ/ - lf/g

T—g Y2
or fof = id, for any pair of distinct coinitial generators f : x — y € Piandg: 2 — z € Py.
Lemma 26. The rewriting system on morphisms in Z] with Zy as rules is convergent.
Given two coinitial morphisms f : x — y in P and g : x — z in P, the normal form

of go fis (f/g9)o(9/f)-
Proof. We extend the weight function of Assumption 2 to morphisms in Z} by setting

wi(f) =0 for fin Py. This ensures that the rewriting system on morphisms in Z7 with Zs

as rules is terminating. Moreover, because the left members of rules are of the form g o f

with g € P, and f € P, there are no critical pairs (a morphism of the form g o f cannot
non-trivially overlap with a morphism of the form ¢’ o f’), which implies that the rewriting
system is confluent. Given two coinitial morphisms f : x — y in P and g : * — 2z in P}, we

prove by well-founded induction on wi(g o f) that the normal form of go f is (f/g) o (g/f).
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If either f or ¢ is an identity, this is direct. Otherwise, f = foo fi and g = g2 0 g1 where fi,
f2, g1 and go are non-identity morphisms.

(91/f1)/f2 g2/(f/g1)

fo| & | f2/(91/f1)
a/h = (f/91)/92
Al & | fAi/;a
g1 g2

By induction, we have

giofi= (fi/g)o(a/fr) and  (q1/f1) o fa = (fo/(91/f1)) o ((91/f1)/ f2)

because

wi(giofi) < wilgzogiofiofs) = wilgof)
and

willp/f)ef) < wi(ge(fifgo@/f)of,) < wigof)

Therefore,

gof = go(fi/g1)o(g1/f1)o fs
= go(fi/g) o (f2/(g1/F1) o ((91/11)]f2)
= go(f/g)o(a1/f)
Similarly, _
wi(g2o (f/q1) o (f2/(91/f1))) < wilgof)
therefore

g20(f/lg) o (fo/(0i/Fr)) = ((F/91)/92) © (g2/(f/ 1))

and we have

gof = gao(f/g1)o(g1/f)
= ((f/91)/g2) o (92/(f/91)) o (91/f)

= (f/g)o(g/f)

from which we conclude. L]

Remark 27. The termination Assumption 2 is not the only possible one. For instance, an
abstract rewriting system is called strongly confluent when x — y; and x — yo implies that
there exists z such that y; — z (or y; = z) and y» % z. Such an abstract rewriting system
is always confluent [13]. This translates to our setting: if, in every residuation relation of
the form (3.1), we have that f/g (resp. g/f) is always a generator or an identity, then the

rewriting system on Z} with Zs as rules is confluent and g o f rewrites to (f/g) o (9/f).

As a direct corollary of the convergence of the rewriting system, one can show that Defini-
tion 21 makes sense:

Lemma 28. The residuation operation does not depend on the order in which equalities of
Definition 21 are applied.
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Moreover, a “global” version of the residuation property (Assumption 1) holds:

Proposition 29. Given two coinitial morphisms f : x — y in Pl* and g : x — z in Py,
there exists a 2-cell a: (g/f) o f & (f/g)og.

Proof. By Lemma 26, there exists a rewriting path 8 : go f = (f/g) o (¢/f) in Z;. By
induction on its length, we can construct a 2-cell a: (g/f) o f & (f/g) o g in the following
way. The case where § is empty is immediate, otherwise we have f = foo fi and g = goo ¢y
where f is in P} (resp. go in P) and f; is a generator in P (resp. g in P;). We distinguish
two cases depending on the form of the first rule of 3:

g/f
g/f=g2/f2
sz _ f2 f2/(g/f1)
_d, f/9=r2/92
) g1/fi g92/(f1/91)
f1 = id
‘>g1 Hgg f1 = Tﬁ/gl:ﬁ fl/g

g1 g2

If fi = g1, i.e. if the first step of B corresponds to rewriting gz © g1 0 fi o f2 to g2 o fo
by applying the rewriting rule f; o fij = id of Zy (we necessarily have f; = ¢1), then by
induction hypothesis, there exists a 2-cell

*

o o (g2/f2)ofr & (f2/g2) 002
Since fa/ga = f/g and g2/ fa = g/ f, this means that there exists a 2-cell

(g/fef & (flg9)og

Otherwise fi # g1, and g2 0 g1 © fi o fa rewrites to g2 o (fi/g1) © (91/f1) o f2 by applying
the rewriting rule g1 o fi = (f1/g91) o (91/f1) of Z3. By definition of the 2-generators in Zs,
there exists a 2-generator

(1i/fi)ofi & (fi/g1)om

in P». Moreover, by Lemma 26, the morphism g20( f1/g1) in Z7 rewrites to (f1/g)o(g2/(f1/91)),
and therefore by induction hypothesis, there exists a 2-cell

(g2/(fr/g1) o (fr/gr) & ((fi/g1)/g2) 0 9o
in Py. This means that there is a 2-cell in P3
(g/f)efi = (g2/(fr/g))e(g/f)efi & ((Ai/g)/g)ogaeq = (fi/g)oyg

Similarly, by lemma 26, (g/f1)o fa rewrites to (f2/(g/f1)o(g/f) by rules in Z,, which means
that there exists a 2-cell

(g/f)ofr &  (f2/(9/f1) o (9/fr)

in Py and therefore, there exists a 2-cell in P5:

(g/f)of=(g/f)o fao fr & (f2/(9/f1)) 0 (fi/9) o g = (f/g)oyg

from which we conclude, as indicated in the above diagram. ]
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3.2. The cylinder property. In Section 3.1, we have studied residuation, which enables
one to recover a residual g/f of a morphism ¢ after a coinitial equational morphism f
(and similarly for f/g). We now strengthen our hypothesis in order to ensure that if two
morphisms are equal (wrt the equivalence generated by Py) then their residuals after a same
morphism are equal, i.e. equality is compatible with residuation.

Assumption 3. The presentation (P, Pl) satisfies the cylinder property: for every triple
of coinitial morphism generators f : & — ’ in Py (resp. in P;) and ¢1,92 : * — y in Py
(resp. in P;) such that there exists a generating 2-cell a : g1 < ga, we have f/g1 = f/go
and there exists a 2-cell g1/f & go/f. We write a/f for an arbitrary choice of such a 2-cell.

A
s 92/f Far=f/gs (3.2)

As in the previous section, we would like to extend this “local” property (f and « are
supposed to be generators) to a “global” one (where f and a can be composites of cells):

Proposition 30 (Global cylinder property). Given coinitial morphisms f : x — 2’ in 151*
(resp. in Pf) and g1,g2: x — y in P{ (resp. in Pf) such that there exists a composite 2-cell
a: g1 S g, we have f/g1 = f/go and there exists a 2-cell g1/ f < go/ f.

The proof of the previous proposition requires generalizing, in dimension 2, the termination
condition (Assumption 2) and the construction of the zig-zag presentation (Definition 25).

Definition 31. The 2-zig-zag presentation associated to (P, P)) is Y = (Yp, Y1, Ys) with
-Yo=h,
~Y; = PRlw PY where Pll = PY = Py, the superscripts “H” and “V” being used to
distinguish between the two copies of the disjoint union: the morphisms of PlH are
called horizontal, and noted fH : A — B for some morphism f: A — B in P;, and
similarly for the morphisms in P which are called vertical, and
— the 2-cells in Y2 = Y WY, are either

— horizontal 2-cells: Y31 = Pl EH (i.e. 2-generators in P taken forward or
backward, and decorated by H),

— vertical 2-cells: given two generators f : x — y and g : * — z in P; such that f
or g belongs to P, we have a 2-generator p}/’g S (g/HB o fV = (f/g)V o gl

: \%
in Y,".

We consider the following rewriting system on the 2-cells in Y5": for every 1-cell f:x — 2
in P; and coinitial generating 2-cell a : g1 < g9 : * — y in Py, such that either f or both ¢;



COHERENT PRESENTATIONS OF MONOIDAL CATEGORIES 17

and g9 belong to P, ~* , there is a rewriting rule
((f/gl) oayepy — = py,e((@/f)ofY)

g1/ f8 (g1/H)F
oy \(O‘/_f/?y 23
Y H .
f"T o T gV | @) T (f/g1)V (3:3)
pf92
x\_/y xvy

where o (resp. @) denotes horizontal (resp. vertical) composition in a 2-category.
In order to ensure the termination of the rewriting system, we suppose the following.

Assumption 4. There is a weight function wy : Pi — N, where N is a noetherian commu-
tative monoid, such that for every a : g1 = go in Pi! and f in P; such that a/f exists, we

have wa(av/ f) < wa(a), where ws is extended to (PQH S EH> by wa (@) = wa(a), wa(id) = 0,
and both horizontal and vertical compositions are sent to addition.

The assumption that the ordered monoid N is commutative ensures that the definition of wo
is compatible with the axioms of 2-categories, such as associativity or exchange law.

Corollary 32. The rewriting system (3.3) is convergent.

Remark 33. In a similar way as in Remark 27, the Assumption 4 is not the only possible
one. Depending on the presentation, variants can be more adapted. For instance, if the
residual f/g1 = f/g2 of the vertical morphism f in a cylinder (3.2) is always a generator or
an identity, then the rewriting system (3.3) is confluent, which is weaker than the previous
corollary but sometimes sufficient in practice. Also, notice that there are really two kinds of
cylinders (3.2) considered here: those for which f is equational and those for which g; and
g2 are both equational. Both cases can be handled separately, i.e. two different weights (or
methods) can be used to handle each of the two cases.

Proposition 30 follows easily, by a reasoning similar to Proposition 29.

The cylinder property has many interesting consequences for the residuation operation,
as we now investigate.
Proposition 34. In the category || P||, every equational morphism is epi.
Proof. Suppose given f :x — y in Pl*, and g1,g2 : y — 2z in P} such that g; o f &S goof.
By Proposition 30, we have

*
g = (of)/f & (RoNf = g

from which we conclude. ]
Our axiomatization can also be used to show the following proposition, which will not be
used in the rest of the article:

Proposition 35 ([6]). In the category ||P||, every morphism g admits a pushout along a
coinitial equational morphism f given by g/ f.

Remark 36. The careful reader will have noticed that, so far, we have only used the cylinder
property in the case where the “vertical morphism” f is equational. The case where both g;
and go are equational will be used in the proof of Theorem 38.
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4. COMPARING PRESENTED CATEGORIES

4.1. The category of normal forms. We first show that with our hypotheses on the
rewriting system, the quotient category || P||/P; can be recovered as the following subcate-
gory of ||P||, whose objects are those which are in normal form for P;.

Definition 37. The category of normal forms || P|{ Py is the full subcategory of | P|| whose
objects are the normal forms of elements of Py wrt rules in P;. We write I : | P||{P; — ||P||
for the inclusion functor.

For every object x of || P||, we shall denote the associated normal form by Z, and for every
such object x we shall fix a choice of an equational morphism u, from x to its normal form.
Note that, by Newman’s Lemma 20, if u/, : x — & is another choice of such a morphism

then there is a 2-cell u, < ul,. Also, we always have uz = id;.
Theorem 38. The category | P|||P, is isomorphic to the quotient category || P||/P;.

Proof. We show that the category ||P|{P; is a quotient of P by P;. We define a func-
tor N : ||P|| — ||P||{P; as the functor associating to each object x its normal form &
under P1, and to each morphism f : z — y, the morphism f T — ¢ where f =y o (f/uz)
with ' being the target of f/u,:

U=y
f 7
Tuy’
A flua ’
r——>YY
T

Notice that, a priori, this definition depends on a choice of a representative in P for f, and
in 151* for u, and u,/, in the equivalence classes of morphisms modulo the relations in /. The
global cylinder property shown in Proposition 30 ensures that the definition is independent of
the choice of such representatives (in particular, for u, we use the consequence of Newman’s
lemma mentioned above and the cylinder property in the case where the basis is equational).
Given two composable morphisms f:x — y and g : y — z we have

s
N(QOf) Ng U1
NgoNf = uyo(g/uy)ouy o (f/u) S gy
= 0 (g/(ty © (ua)[))) 0 1y 0 (f/t12) EEES S
— w21 0 (9/ () £)) /1y © Uy o (f Juz) CNg T wy /(g (el )
= w0y /(g/(ue/ ) 0 9/(ue/ D) o (F/us) g | sy |
=uzr o ((go f)/ug) z Y z
= N(gof) uT Tux/f e/ (g0f)
o

;YT 7

The image of an equational morphism u : * — y under the functor N is an identity. Namely,
we have Nu = 4 = uy o (u/uy), with u/u, : & — y': since u/u, is an equational morphism



COHERENT PRESENTATIONS OF MONOIDAL CATEGORIES 19

(as the residual of an equational morphism) whose source is a normal form, necessarily
u/uy =idg, ¥ = & and u, = id;. In particular, N preserves identities.

Suppose given a functor F' : ||P|| — C sending the equational morphisms to identities.
We have to show that there exists a unique functor G : | P||{P; — C such that Go N = F.
Writing I : ||P||{P, — || P|| for the inclusion functor, it is easy to show I is a section of F
iee Nol = IdHPlluf’l’ and we define G = F o [.

|P| ——c
- a
[ P[Py

Since F' sends equational morphisms to identities, it is easy to check that Go N = F": given
an object x, we have

GoN(z)=G(2)=Fol(%)=F(z) = F(x)

the last equality, being due to the fact that F'(u;) = idps) = idp(s), and similarly for mor-
phisms. Finally, we check the uniqueness of the functor G. Suppose given another functor
G’ : ||P|{Py — C such that G'oN = F = GoN. We have G’ = G'oNol = GoNol =G.[]

4.2. Equivalence with the localization. We now show that the two previous construc-
tions (quotient and normal forms) also coincide with the third possible construction which
consists in formally adding inverses for equational morphisms.

Definition 39. A presentation modulo (P, Py) is called coherent when the categories || P||/ Py
and ||P||[P; '] are equivalent.

First, notice that we can use the description of the localization |P||[P; '] as a category of
fractions given in Theorem 16:

Lemma 40. The set P{/Py of equational morphisms of |P|| is a left calculus of fractions.

Proof. We have to show that the set of equational morphisms satisfies the four conditions
of Definition 14: the first two (closure under composition and identities) are immediate,
the third one follows from Proposition 29, and the last one is ensured by the fact that all
equational morphisms are epi by Proposition 34, see Remark 15. []

Theorem 41. A presentation modulo (P, 152) which satisfies assumptions 1 to 4 is coherent.

Proof. By Theorem 38, the statement can be rephrased as the claim that ||P|{P; and
| P||[P;!] are equivalent categories.
Suppose given a morphism (f,u) from z to ¢ in the category of fractions HPH[Pfl],

where ¢ is a normal form under P;, as on the left below
f i
u
REN
r gy
w
AN
22

. u
r——1<—1
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Since u is equational and g is a normal form, one necessarily has i = § and u = idy.
Similarly, given two equivalent morphisms (fi,u1) and (f2,us) whose targets are both a
normal form g, as on the right above, one has i1 = i3 = § and u; = us = wy = we = idy,
and therefore f; = fo. Now, consider the functor F : ||P||}P; — ||P||[P;}] defined as the
composite of the inclusion functor I : || P|||P, — || P||, see Definition 37, with the localization
functor L : | P|| — ||P||[P;], see Definition 11:

F

1P|Py 1Pl

A

1P

The functor F' sends a morphism f : & — ¢ in the category of normal forms to the mor-
phism (f,idy) in the category of fractions. The preceding remarks imply immediately that
the functor F' is full and faithful. Finally, given an object y € ||P||[P;'], there is a mor-
phism u : y — ¢ in P; to its normal form which induces an isomorphism y 2 § in || P||[P;}].
The functor F' is thus an equivalence of categories. L]

An illustration of this theorem is provided in [6], on the presentation of a “dihedral cate-
gory” (note that the assumptions on the opposite presentation P°P mentioned there were
superfluous, as shown by the new proof of the above theorem). Here, in Section 5, we will
provide a detailed example, in the refined setting of a presentation of a monoidal category.

4.3. Embedding into the localization. In this section, we show another direct appli-
cation of our techniques. It is sometimes useful to show that a category embeds into its
localization. When the category is equipped with a calculus of fractions, this can be shown
using the following proposition [4, Exercise 5.9.2]:

Proposition 42. Given a left calculus of fractions ¥ for a category C, all the morphisms
of ¥ are mono if and only if the inclusion functor L : C — C[X™1] is faithful.

Proof. Suppose that the elements of ¥ are monos. Given two morphisms fi, fo:x — yinC
such that Lf; = Lfs, we have a diagram as on the left of (2.2) with u; = up = idy, and
therefore wi = wo. Commutation of the left part of the diagram gives wi o fi = wo o fy and
therefore f; = fo since w1 = wo is mono. The functor L is faithful.

Conversely, suppose that L is faithful. Given morphisms w, fi; and fs such that w € X
and wo f; = wo fy, one has Lf; = Lfy and therefore fi = f. The morphism w is thus
mono. []

Showing that the elements of 3 are monos can however be difficult. In the case where C = || P||
and ¥ = Py, for some presentation modulo (P, P;), it can be proved as follows.

Lemma 43. Suppqse given a presentation modulo (P, 151) such that the opposite presenta-
tion modulo (NPOP,POP) satisfies Assumptions 1, 2, 8 and 4. Then the localization functor
|P|| — P[P Y] is faithful.

Proof. By dual of Proposition 34, all equational morphisms are mono, and we apply Propo-
sition 42. []
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Again, an example of application is provided in [6].

Remark 44. The result in the previous proposition is close to Dehornoy’s theorem, see [8]
and |9, Section I1.4], stating that a monoid with a presentation satisfying suitable conditions
(our assumptions are variants of those) embeds into the enveloping groupoid. Dehornoy’s
setting is more restricted, since taking the enveloping groupoid corresponds to localizing
wrt every morphism, while we consider localization with respect to a class of morphisms.
However, we also need stronger conditions: in Assumption 1, we require the equational
rewriting system to be terminating, which is never the case for presentations of monoids
since they have only one object when seen categories. Dehornoy’s conditions also impose
termination properties (called there Noetherianity), but only “locally”. A detailed compari-
son, together with conditions unifying the two approaches, is left for future work.

5. COHERENT PRESENTATIONS OF MONOIDAL CATEGORIES

5.1. Presentations of monoidal categories. We now turn our attention to presentations
of monoidal categories and describe how the previous developments can be adapted to this
setting. Only strict and small such categories will be considered in this article. We start from
premonoidal categories [20], which will be of some use later on. In fact, all the developments
performed in this section could have been carried out in the slightly more general setting of 2-
categories. However, we feel that the shift in dimension would have obscured the comparison
with the previous sections.

Definition 45. A (strict) premonoidal category (C,®,I) consists of a category C together
with
(1) for every object x € C, a functor x ® — : C — C called left action,

(2) for every object x € C, a functor — ® x : C — C called right action,
(3) an object I € C, called unit object,

such that

— the left and right actions coincide on objects: for every objects x,y € C, x ® y is the
same whether the ® operation is the left or the right action, thus justifying the use
of the same notation,

— the set of objects of C is a monoid when equipped with ® as multiplication and I as
neutral element: for every objects x,y, z € C,

(TRY)Rz=2® (y® 2) Ir=c=21
— the left action is a monoid action: for every objects x,y € C and morphism f,
@y f)=(ey)f Ief=f
— the right action is a monoid action: for every objects x,y € C and morphism f,
(fer)ey=[fo@oy) fel=f
— the left and right actions are compatible: for every objects x,y € C and morphism f,

(R fley=z2 (f®y)
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A (strict) monoidal category is a premonoidal category as above satisfying the exchange law:
for every morphisms f:z — 2’ and g:y — v/,

(@' @g)o(fey) =({foy)o(rayg)
allowing us to denote by f ® g this morphism, and for every objects x,y € C,
T ®idy = idggy = id; ®y
We sometimes omit the tensor and simply write zy instead of x ® y.

Definition 46. A monoidal functor F : C — D between two (pre)monoidal categories
is a functor equipped with a morphism 7 : Ip — F(I¢) and a natural transformation of
components

pay  F@)epFly) — Fl@dcy)
making the following diagrams commute for every z,y, z € C:

Fla)® Fly) ® F(2) 2% F(a) @ Fly© 2)

uz,y®F(Z)i i“%y@z

Flex®cy) @ F(z) ————=Flz@y©z)
[ ® F(z) ——— F(z) @ | ——— F(x)
o) o
F(I)® F(z) —— F(I 1) F(z)® F(I) —— F(z @ 1)

A monoidal functor is strong (resp. strict) when n and p, 4, are isomorphisms (resp. identi-
ties).

Since giving a monoidal structure on a category adds a structure of monoid on the objects,
this suggests introducing the following generalization of graphs and presentations, in order
to present monoidal categories.

Definition 47. A monoidal graph (Py, so,to, P1) consists of a diagram

By

in Set, where Fj is the free monoid on Fy and iy : Py — FJ is the canonical injection
(sending an element to the corresponding word with one letter).

Note that a monoidal graph is simply another name for the data of a string rewriting system:
the set Py is the alphabet, with Py as set of words over it, and P is the set of rewriting rules
along with their source and target respectively indicated by the functions sg and tg. This
allows us to consider classical notions in string rewriting theory (such as critical pairs) in
this context, see [1, 3| for details about those.
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A monoidal graph freely generates a monoidal category. If we write P} for its set of
morphisms i; : P; — P; for the canonical injection of generators into morphisms, and
55, ty + P — P for the source and target maps, we obtain a diagram

where sjoi1 = sg and {joi; = tg. An explicit description of the morphisms in P is given by
the following lemma: the morphisms of the free premonoidal category are easy to describe
and those of the free monoidal category can be obtained by explicitly quotienting by axioms
imposing that the exchange law holds.

Lemma 48. Suppose fired a monoidal graph P.

(1) The underlying category of the free premonoidal category generated by P is the free
category generated (in the sense of Section 2.1) by the graph Q
— with Qo = Py as vertices
— edges in Q1 are triples
(x,f,2) : ayz — wy'z
with x,z € P§ and f:y =y in Py.
and s equipped with the expected premonoidal structure, whose left and right actions
are given by
Y@ f2)07 = (2, f,27)
In the following, we write x @ f ® z, or even xfz, instead of (z, f, z) for edges, and
the morphisms in Q7 will be denoted by P{X’.
(2) The underlying category of the free monoidal category generated by P is the category

presented (in the sense of Definition 1) by Q = (Qo, Q1, Q2), where Q2 is the set of
all relations

Xoifoozage (217 2223924) 0 (21 f2223y2a) = (21fz023y'24) © (122023924)  (5.1)
called exchange relations, where z1 fz2, 23924 € Q1, with f :x — 2’ and g : y —

in Pr. We write & for the equivalence relation generated by Q2. The monoidal
structure on this category is induced by the previous premonoidal structure.

Example 49. Consider the monoidal graph with Py = {a} and P, = {m:aa — a}. The
following are morphisms in the free (pre)monoidal category:

ma o maao aaam am o maa o maaa

and can be represented using string diagrams as

a a a a a a a a a a
a a a a
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These are equal in the free monoidal category, but not in the free premonoidal category:
one needs the exchange rules in order to transform one into the other.

With the notations of the previous lemma, a generator zfz : xyz — xy'z in Q1 can also
be called a rewriting step: it corresponds to the rewriting rule f : y — ¢’ used in a context
with the word = on the left and z on the right. We sometimes write

Q. = PPB;

for the set of rewriting steps. From this point of view, the morphisms in P{X’ are rewriting
paths and the morphisms in P are rewriting paths up to commutation of independent

rewriting steps, i.e. up to the equivalence relation &
Definition 50. A monoidal presentation P = (P, so, to, P1, s1,t1, P2) consists of a diagram

Py Py Py

S0 S1
10 i1
ssto t1

P;=—P;
t*
0

in Set, where

— Py is a set of object generators;

— Py is the free monoid on Fy and ig : By — Fj is the canonical injection;

— Py is a set of morphism generators, with sg,to : P — Fj indicating their source and
target;

— Py is as in Lemma 48, with corresponding source and target maps s§, ¢ : P — Fj.

— P, is a set of relations (or 2-cell generators), with s1,t; : P, — P; indicating their
source and target, which should be such that sjos; = sjot; and tjo sy =tjoty.

The monoidal category ||P|| presented by P is the monoidal category with PJ as set of
objects and whose morphisms are the elements of P}, quotiented by the smallest congruence
(wrt both composition and tensor product) identifying any two morphisms f and g such that
there is a relation «a : f = g.

We also introduce the notation Pj (resp. P5’) for the set of 2-cells in the monoidal (2,1)-
category (resp. premonoidal (2,1)-category) whose underlying monoidal (resp. premonoidal)
category is freely generated by the underlying monoidal graph of P, and 2-cells are generated
by P». We do not detail these constructions: all the reader needs to remember for the sequel
is that these 2-cells are formal (vertical) composites of 2-cells of the form

raz : xfz = wxg9z : wyz — Yz (5.2)

for z,z € Pf and a : f = g : y — ' in P, or their inverses. The set of 2-cells of the
form (5.2) is denoted Pj PPy .

Note that a presented monoidal category has an underlying monoid of objects which
is free. Therefore, not every monoidal category admits a presentation, e.g. the category
with N/2N as monoid of objects and only identities as morphisms. In this setting, the
use of coherent presentation is really necessary: there is no associated notion of “quotient
presentation” (as in Definition 7).

Definition 51. A monoidal presentation modulo consists of a monoidal presentation to-
gether with a set P, C Py of equational generators (notation (P, Py)).
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As before, we say that a morphism in P} (or in P{) is equational when it can be ob-
tained by composing and tensoring equational generators and identities. We write ]51* C Py
(or PP C PP) for the set of equational morphisms.

We now generalize the notions of quotient and localization to monoidal categories.

Definition 52. The quotient of a monoidal category C by a set ¥ of morphisms is a monoidal
category C/¥ together with a strict monoidal functor C — C/¥ sending elements of ¥ to
identities, which is universal with this property.

Definition 53. The localization of a monoidal category C by a set ¥ of morphisms is
a category C[¥7!] together with a strict monoidal functor L : C — C[¥~!] sending the
elements of ¥ to isomorphisms, which is universal with this property.

The localization of a presented monoidal category always admits a monoidal presentation
as in Lemma 12. Moreover, the description as a category of fractions (Theorem 16) is still
valid [7]:

Proposition 54. Suppose given a left calculus of fractions ¥ for a monoidal category C,
which is closed under tensor product, i.e. for every f,g € 3, we have f @ g € X. The
associated category of fractions is canonically monoidal and isomorphic to the localization
in the sense of Definition 53.

Proof. The unit object is the one of C, and given two morphisms (f,u) and (g,v) in the
category of fractions C[X ], we define their tensor product as (f,u)®(f',u') = (fRf, uxu’).
Suppose that (f1,u1) and (f2,uz2) (resp. (f1,u}) and (f4,uh)) are two representatives of the
same morphism, i.e. that we have mediating morphisms as on the left and the middle below:

’ | f// Z/l YLI hef 1@ 1/1 u1 @u,

1 ul 1 1 1 Loy 1
fun b Pl TN

x/J\y ! .7"1 Y rexr jej Yoy

2 19

i2®i/2

/

The diagram on the right shows that (f1,u1) ® (f],u}) and (fa2,u2) ® (f4, uh) represent the
same morphism. The fact that the axioms of a monoidal category are satisfied is easily
deduced from the fact that C does satisfy those axioms and from the closure of ¥ under
tensor product. ]

5.2. Residuation in monoidal presentations. We now explain how to extend the resid-
uation techniques developed in Section 3 to presentations of monoidal categories. By
Lemma 48, a presentation of a monoidal category can be seen as a presentation of a pre-
monoidal category together with explicit exchange rules x,. The general strategy is thus
to apply the previous constructions and to show that they are compatible with the exchange
law: this strategy turns out to work in our running example, but we explain in Section 5.5
that further generalizations of the axioms are sometimes needed, requiring to deal explicitly
with exchange relations. From now on, we thus consider that P, contains relations of the
form (5.1). This of course makes the presentation infinite; however, these relations will be
handled in a specific way, and we will only need to consider a finite number of those (by
only considering “critical situations”).
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Remark 55. In fact, it is easily shown that we can restrict to relations of the form (5.1) with
21, z3 and z4 empty (all the others can be deduced). We will do so in the sequel in order to
simplify computations.

As an illustrative example, we will study a presentation of a category simpler than the
example of A x A mentioned in the introduction, in order to have a smaller number of
conditions to check. We consider the category Ag whose objects are natural numbers p € N
and morphisms f : p — ¢ are surjective functions f : [p] — [¢], with [p] = {0,...,p — 1}. As
in the case of A, this category is monoidal with tensor product given on objects by addition,
and with 0 as neutral element (such a category is often called a PRO). As a simple variation
on the example of A, this category admits the following presentation.

Lemma 56. The category Ag admits the monoidal presentation P with
Py ={a} Py ={m:aa— a} Py ={a:mo(ma)= mo (am)}
Example 57. We are interested in presenting the category Ag X Ag using a presentation

modulo. For reasons explained in the introduction, it is natural to expect that this category
admits the monoidal presentation modulo P with generators

Py ={a, b} Pr={m:aa—an:bb— b,g:ba— ab}

and relations in P» being

a : mo(ma) = o (am)
B : no(nb) = no(bn)
¥y : gobm = mboagoga
0 : gona = anogbobg

(plus the mandatory exchange relations) which can be depicted, in categorical notation, as

baa bba
aaa bbb bm ga na bg

ny o Yn / \ ba / \ aba ba / \
aa = aa

S e
k«a% \ / x /aab g Aabb

In string-diagrammatic notation, the generators m, n and g can be respectively drawn as

bab

a a b b b a

L =

a b a b
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(the notation is the same for the first two, but the typing of wires makes the notation
unambiguous), and the relations can be depicted as

a aa aa a b bb bb b
L LY
a a b b
b a a b a a b b a b b a
ot N Me

a b a b a b a b

The set of equational generators is P, = {g}.

First, consider Assumption 1 on our presentation modulo. The first condition of this
assumption asserts that coinitial rewriting steps are confluent whenever one of them is
equational. However, we now have a monoidal structure and the exchange axioms provide
obvious ways to close diagrams in many cases. For instance, given an equational generator
f:x — 2’ and a generator g : y — v, we can always show the confluence of the pair (fy, zg)
of coinitial morphisms:

a:'y re_ m'y’
A
fyT Xa py (5.3)
/
LY —g 1Y
Moreover, whenever there is a diagram as on the left, there is also one as on the right:

! /

g / zg'z
Y1 >y TY12 >XTY 2z
A A
fT LT xsz LG PP (5.4)
Y=g Y2 LYz ~gz TY2%

For this reason, one only has to ensure that diagrams can be closed for pairs of coinitial
morphisms which are “minimal” (wrt left and right context) and not in exchange position.
This observation is well-known in rewriting theory, and used to show that, in a string rewrit-
ing system, the confluence of critical pairs implies local confluence, which is reformulated in
Lemma 60 below. This suggests adapting Assumption 1 as follows.

Definition 58. A pair of coinitial rewriting steps f : © — y and g : * — z is called a critical
pair when
— f and g are distinct,
— for every pair of coinitial rewriting steps f’ : 2’ — 3/ and ¢’ : 2’ — 2’ and words u
and v such that f = uf'v and g = ug'v, the words u and v are empty,
— there is no pair of rewriting steps f' : 2’ — ¢/ and ¢’ : " — 2’ such that f = f'z”
and g = 2'¢/,
— the previous condition also holds if we exchange the roles of f and g.
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Assumption 1. We suppose fixed a presentation modulo (P, P;) such that
(1) for every pair of coinitial rewriting steps f :  — y; in P{)k]51P(’)k and g : © — 1o
in Py P, Pj forming a critical pair, there exists a pair of cofinal morphisms g/f : y1 — 2
in P? and f/g:ys — z in P and a generating 2-cell v : g/f o f & f/gogin Pu:

g/f
1 >z

fT P (5.5)

I‘HyQ

g
(2) there is no infinite path in PZ.
Ezxample 59. In Example 57, the two critical pairs between an equational rewriting rule and
another rule correspond to the relations  and ¢, and we have
bm/ga = mbo ag ga/bm=g na/bg = anogb bg/na=g (5.6)

Given a word x in Fj, its transposition number is the sum, over each occurrence of a in x,
of the number of occurrences of b before that a. For instance the transposition number
of babbaa is 1 +3 + 3 = 7. Given any morphism of the form zgy : xbay — zaby, the
transposition number of xbay is strictly greater than the one of xaby, which shows that
there is no infinite rewriting path in ]51® Hence Assumption 1 is verified.

By the previous discussion, the existence of residuals on critical pairs implies the existence
of residuals of any pair of coinitial rewriting steps.

Lemma 60. Any pair of coinitial rewriting steps, one of them being equational, admits a
residual, given as follows:
— given f :x — y1 and g : x — y2 forming a critical pair, one of them being equational,
their residuals are given by Assumption 1,
— gwen f:x— 2" and g :y — 1y, we have the residual

(xg)/(fy) = 1 (92)/(wf) = of
with the corresponding relation as in (5.3),
— given f:y = y1, g:y — y2 and an object x and z, we have the residual

(2g2)/(2f2) = wlg/f)

with the corresponding relation as in (5.4).
Finally, we extend residuation to any pair of coinitial rewriting paths, by Definition 21.
Ezxample 61. In our Example 57, consider the morphism

f = bmonaa : bbaa — ba
Its residuals with bga : bbaa — baba are
f/bga = mboagoanaogba bga/f = &g

the first one being computed by

(bmo naa)/bga = (bm/(bga/naa)) o (naa/bga) = (bm/(bg/na)a) o (na/bg)a

= (bm/ga) o (ano gb)a= mbo agoanao gba
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using the residuation rules of Definition 21 and relations (5.6) (this is also illustrated in the
third cylinder of Example 66). In string diagrammatic form, we have

b a b a
b ba a
YU e
a b

Note that residuation is defined on rewriting paths (in P{), but we did not claim it was
well-defined on morphisms in P;. In fact, it is not generally compatible with exchange as
we now illustrate. Obviously, the morphism f above is equivalent, up to exchange, to the
morphism f' = nao bbm. But the residuals f/bga and f’/bga are not:

f'/bga = anogbobmbobbm
(see again Example 66 for details). Graphically,

b b a a
SUY
a b

We recall that, in order for the definition of residual to make sense (i.e. for Lemma 28 and
Proposition 29 to hold), we need a termination assumption, which directly translates as
follows in the monoidal setting;:

a b

a b

Assumption 2. There is a weight function wy : BfPiFy — N, where N is a noether-
ian monoid, such that for every rewriting step f € FyP1Fy and g € FyP1F;, we have
w1(g/f) < wi(g), where we extend the weight as a function w; : P — N on rewriting paths
by wi(go f) = wi(g) +wi(f) and wi(id) = 0.
Ezxample 62. For our example, we define a weight function

w1 P1® — NxN
with N x N equipped with the pointwise sum and lexicographic ordering. The weight is
defined on rewriting steps by

— wi(xmy) = (p,0) where p is the number of occurrences of b in x,
— wi(xny) = (p,0) where p is the number of occurrences of a in y,
— wi(xzgy) = (0, q) where g is the transposition number of xy.

It is easily checked that the residuals in (5.6) are strictly decreasing:
(1,0) = wi(bm) > wi(bm/ga) = wi(mbo ag) = (0,0)
(1,0) = wi(na) > wi(na/bg) = wi(ano gb) = (0,0)
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Moreover, this also holds for the residuals along equational rewriting steps which are obtained
by exchange cells, e.g. in

abxm
abraa —— abzxa

gzaaT ng,m Tgxa

baxaa —— baxa
baxrm

we have wy (baxm) > wi(abxrm) because the first component is the same but the transposition
number decreases. Also, the order is compatible with left and right actions in the sense that
wi(f) > wi(g) implies wi(zfy) > wi(xgy). Thus the weight w, fulfills our assumption.

5.3. The cylinder property. In the previous section, we have explained how the monoidal
structure could help us to handle more easily the existence of residuals: one only has to
ensure that they exist for critical pairs in order to have their existence for pairs of coinitial
rewriting steps. The situation is very similar for the cylinder property. For instance, suppose
that we have a cylinder as on the left.

» /1
I 22’z /P T 2y
............... =Y ne A
f 92/f flai=£/g2 zfz’T Z(Tg/z/z 2(f/g1)7'=2(f/92)2"  (5.7)
g1 -
= 2922’

Then for every O-cells 2z and 2/, we also have a cylinder as on the right, which shows that
we only have to show the cylinder property for those which are minimal wrt contexts on the
left and on the right.

Similarly, consider a situation as above where the bottom cell « is an exchange rule

Xo1.g2 ©  (Wg2)o(giza) = (qiy2)o(w1g2) : T2 — Y12
with g1 : x1 = y1 and g9 : 9 — ys. Also, suppose that the vertical arrow on the left is of

the form fxo : 129 — zjzo with f : z1 — 2. In this case, one can always complete the
cylinder on the left

Tyw2 S TITY S
A A
fsz (y102)0(g122) (f/g1)y2 -TlfT (s192)0(g122) y1(f/92) (5.8)
—_— Y = —_— Y =
T1T2  Xove2  _ Y1Y2 T1T2  Xove2  _ Y1Y2
(g1y2)o(z192) (g1y2)o(x192)

as follows (the same argument will of course apply to a cylinder as on the right). We write

a = (qn/flof = (flg)egr = 2t = W
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for the 2-cell mediating f and g; with their residual, obtained by Assumption 1. The missing
cells above are as follows:

y/1332
(f/d\\l)xz\ Y122
(g1/f)z2 Y129 Y192 {4 )
s /<71x2/7 \L/192\U*Xf/91792 (5}//‘ x2 9192\
T) Ty <fro— 2122 < Xg1.02 P yry2 (Floy=y1ya  ~ )T Xg1/ 5,00 Y1y2
AN
Wtan 192\&\ ///g1y2 vz zh g2 (gl/fﬁz
7192 T1Y2 (g1/f)y2 “\ e
\ fg2 / Y2
VY2

Remark 63. The above diagram should be read as follows, in reference to the notations
of the cylinder diagram on the left of (5.7) (we detail this here since this convention will
be used again in the following). In the center of each picture on the left is figured the
2-cell o (which is here Xy, /f.4,), and the morphisms f and f/g1 = f/go are represented
horizontally as pointing to the left and the right, respectively. The rest of the picture on
the left exhibits g;/f and go/f. The residual o/ f is displayed on the matching picture on
the right:

g1/f g1/f
/F\ /\
91
RN
x/ <f7 x Ja Y ﬂ y/ ~ x! la/f y/
~_ 7 [l
92
\\/
g2/ f g2/f

The “~~” sign between the two diagrams indicates here that the diagram on the right is the
“top” of the cylinder whose “bottom” and “walls” are shown on the left; it does not indicate
an equality between cells, since the diagram on the left cannot be composed and thus does
not even denote a 2-cell.

The above discussion motivates the introduction of the following definition and adaptation
of the cylinder property.

Definition 64. Suppose given a morphism f : 2 — 2’ and a 2-cell @ : g1 = g2 : @ — y
in PjP,Pj (consisting of one relation in context), as in the left of (5.7). Such a pair is
critical when

— f is different from both g; and g,

— it is minimal wrt contexts: if there is another such pair (f’, /) and z, 2’ € Py such
that f = zf’2 and a = za’Z’ then z and 2’ are both empty,

— it is not of the form (5.8).

Remark 65. The critical pairs, in the sense of the previous definition, can easily be computed
by an adaptation of the usual critical pair algorithm for string rewriting systems. This is
illustrated in Example 66.
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Assumption 3. The presentation (P, ]51) satisfies the cylinder property: for every rewriting
step f:x — 2’ in P0*151P6‘ (resp. in PyP1P}) and 2-cell @ : g1 < g2 : @ — y in PfPPy
with g; and gy in PP, Py (resp. B} ]51P0* ) which are critical in the sense of Definition 64,
we have f/g1 = f/go and there exists a 2-cell g1/f < g2/ f. We write o/ f for an arbitrary
choice of such a 2-cell.

A
fT 92/f fla1=f/g2 (5.9)

We have restricted the cylinder property to critical pairs in order to have less computations
to perform, but the previous discussion shows that the cylinder property holds even for
non-critical pairs when the assumption is valid.

Ezxample 66. The presentation of Example 57 satisfies the cylinder property. The critical
cylinder diagrams are

aba aba
/mba/ ;‘9 \g\ /ﬂaa \g\
aaba baa aab aaba Uxm,g aab
/ag/ ya /bma/ \:m\ 1y \mt\ /ag/ \ax /mab/1 \mlx\
abaa <gaa— baaa\\‘ b //1ba g;i;ab ~>  abaa aaaé\\ lab 5/1ab
\Xg,m balx /)m Yy /m \ fray am{\ /m
ab baa aab ab aab
;f /a/ /a/
aba aba
bab bab
bF gb\ \gb\
a bba abb na abb
%Xn,g /b.a/ \nx 1o \an / Usb /nb/ \n\
bbab <bbg— bbba UBa aggg%>ab ~o bbab abbb lap ab
\bgb Ubé\ K /n/ Ud / \bgb\ /b/ abx /a/
babb bba abb babb Ixg.n abb
X‘\ ¥ o \7\ /gb/

bab bab
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aba aba
ana/ g,j\a \g ana/ \g
yd \ AN e AN
abba baa aab abba las aab
/gb/ﬂéa /aa/ \bm\ ™y \mK /gb/aﬁg a%n\ml\
baba <bga— bbaa $xn,m ba—e—=ab ~>  baba Ixeg abab agh aabbfxmn ab
\bag\\ Myy\bbg /na/ Ué /a/ \baK gib m\fb /a/
baab bba abb baab b abb
N \ S N e
bm% bvg /gb bmg /gb
bab bab

Let us explain how these were computed. Given a critical cylinder as in (5.9), either the
vertical morphism (f) or the horizontal arrows (g; and go at the source and target of the
relation «) are equational:

— if the vertical arrow is equational, then it is of the form xgy : xbay — xaby; therefore
the horizontal relation should have a 0-source which “intersects” ba in a non-trivial
way; this source thus either

— begins by an a: this gives rise to the first cylinder,
— ends by a b: this gives rise to the second cylinder,
— contains ba: this gives rise to the third cylinder.

— if the horizontal arrows are equational, then the horizontal relation is necessarily an
exchange between two morphisms of the form zgy, because no generating relation
has equational source and target. We can then examine all the possibilities for x
and y, and vertical rewriting steps, and show that they are all trivial, for instance

baba baba
nabaT bmbaT
bbaba __ bxge _ babab baaba __ Xeae _ abaab

are both of the form (5.8).

In order for the global cylinder property to hold (Proposition 30), we need again a termina-
tion assumption, which can be reformulated as follows in the monoidal setting.

Assumption 4. There is a weight function wo : Py PP — N, where N is a noetherian
commutative monoid, such that for every a : g1 = g2 in P» and f in P; such that o/ f exists,
we have wa(a/f) < wa(ar), where wy is extended to arbitrary 2-cells by acting the same on
inverses, sending both compositions to addition and identities to the neutral element.

Ezxample 67. Going back to Example 66, we define ws : Po» — N X N in a similar way as in
Example 62 by

— wa(ray) = (p,0) where p is the number of occurrences of b in z,

— wa(xzPy) = (p,0) where p is the number of occurrences of a in y,

— wa(xxy) = (0, q) where ¢ is the transposition number of xy.

) =
) =

It is easy to check that this interpretation is compatible with contexts, i.e. wa(a) > wa(3)
implies wo(zay) > we(xPy), that the cylinders of Example 66 are strictly decreasing (the
“top” is smaller than the “bottom”), and that residual of exchange relations are decreasing.
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The global cylinder property folllows from these assumptions (replacing P;* by ]51® in Propo-
sition 30, see Example 61), as well as other properties mentioned in Section 3.2. Moreover,
Theorem 38 holds in our context, in a way which is compatible with monoidal structure.
Namely, the category of normal forms is monoidal with the tensor product defined on objects
by -

Ty = zy
and the action of objects Z and 2 on a morphism f : y — ¢ is defined (similarly to the proof
of Theorem 38) by

TR f®Z = uyo(Tf2/ uzys)

where y” is the target of & fZ/uzg:. Graphically,

z

Similarly, the quotient category is monoidal as a quotient of a monoidal category by a
congruence respecting tensor product.

Theorem 68. The category || P||| Py is isomorphic to the quotient category || P||/ Py through
a pair of strict monoidal functors.

5.4. The coherence theorem. We can finally extend the coherence Theorem 41, by veri-
fying that it is compatible with the monoidal structure of the categories:

Theorem 69. A presentation modulo (P, ]52) which satisfies Assumptions 1 to 4 is coherent,
in the sense that there exists a pair of functors

% H—1
Fo P/ = PP 2 G
forming an equivalence of categories, with F' strong monoidal and G strict monoidal.

Proof. The functors are constructed in the proofs of Theorems 38 and 41; we only have to
check that they are monoidal. We have F(I) = I, so we can take n = id;. Given two
objects & and ¢ in || P||{P; (which is monoidally isomorphic to || P||/P; by Theorem 68), we
have F(2) ® F(y) =2y and F(Z ® g) = #7). There exists a normalization path u : 2 — &7
in ||P| and we define ., = Lu, where L : |P|| — ||P|[P;"!] is the localization functor,
and fi, is invertible because u is equational. The axioms for monoidal functors are easily
verified by convergence of the equational rewriting system (Assumption 1). For instance,
the first diagram of Definition 46 boils down to

o~ —

Z——2yz
*
=

—

Z——2yZ

2>

L —>

z
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which follows from Newman’s Lemma 20. Conversely, the functor G is defined on objects
by G(z) = & so that we have G(I) = I and

Gr)oGly) = 2 = = GlEoy)
from which we deduce that we can take n = id; and p 5 = idg. []

In particular, the presentation of Example 57 is coherent.

5.5. A variant of the cylinder property. As we saw in Example 61, residuation is not
in general compatible with exchange, so that we cannot expect the cylinder property (and
Assumption 3 in particular) to hold in every case. In fact, a reasonable generalization of the
global cylinder property (Proposition 30) could be: given coinitial morphisms f : 2 — 2/
in Py (resp. in P}) and g1, g2 : & — y in P} (vesp. in P;) such that there exists a composite
2-cell a: g1 & go, we have /g & f/go and there exists a 2-cell g1/f < g2/ f.

AN
f gZiff/gli¢¢§f/92

e >y
92
Note that we do not require g1/ f and g2/ f to be equal, but only merely equivalent. However,
such a general global cylinder property seems to be difficult to be deduced from a local
property that would generalize Assumption 3 and could easily be checked in practice, so
that we have to restrict to particular cases for now. As an illustration, in this section, we
study the dual of the presentation modulo of Example 57 and show that it can be handled
using a a different local cylinder property.

Example 70. We write now P for the opposite of the presentation of Example 57: it has set
of generators for objects Py = {a, b} and the generators for morphisms are the dual of those
of Example 57 (we write f for the dual of a generator f):

P = {m:a—aan:b— bb,g:ab— ba}
where g is the only equational generator: P; = {g}. We would like to show that this pre-
sentation satisfies Assumptions 1 to 4, in order to be able to apply our main Theorem 69.
Notice that, here, it is important that the termination assumptions are restricted to equa-

tional morphisms, since there is no hope to have a terminating rewriting system with all
generators. For instance, we have

m ‘ma, ‘maa
a—>aa—»aaa —» aaaa — ...

The relations in P, are the dual of those of Example 57:

a maom = amom

B : mnbhon = bnon

o' bmog = gaoagomb
§ : Tnaog = bgoghboan

The orientation of the source (resp. target) cell has been reversed, and the orientation of
the relation does not really matter here since we are interested in the generated equivalence
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relation (here, we chose to keep the same orientation). Assumption 1 can be checked by
constructing the two critical residuation squares:

2ab—%+ aba—5° baa abb -2+ bab -2 bba

mbT <Z> Tbm anT g Tna

ab — ba ab — ba
g g

Termination of the equational rewriting system is easily checked using a transposition num-
ber as before (counting now the number of occurrences of b after occurrences of a). As-
sumption 2 can be checked by a variation of Example 62 (obtained by exchanging the role
of a and b in wy). However, there is no hope that Assumption 3 will hold. Namely, consider
the “cylinder” formed by g and xm 7 as depicted below:

m aF.
aab 128 abba
m/ aan\ abg gba
ba<z— ab Ixm,m aabb -agb> abab Xz.Z baba -bga> bbaa
\ar\ /mbb/ bag
18 abb le baab
. 2 -
n v /bmb
bab Iy
.
bba

baa
~>  ba N, bbaa (5.10)

bba
This is not a proper cylinder because we have
g/(aanomb) = bgaoghaoabgoagh +# bgaobagogaboagh = g/(mbbo an)
The two morphisms in the middle are not equal, they are only equivalent up to exchange

(up to the relation é) Also notice that the residual of the exchange relation xm7 after g
is an exchange relation (xsm as pictured on the right in the above figure).

This example suggests modifying Assumption 3 to
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Assumption 3’. The presentation (P, P;) satisfies the following conditions.
(1) The cylinder property holds up to & for every rewriting step f : x — 2’ in P§ ]5ng
(resp. in PfP1Py) and 2-cell a : g1 & g2 : ¢ — y in PyP,P; with g1 and go in
PyPi Py (resp. PyP1P§) which are critical in the sense of Definition 64, we have

f/g1 & f/go and there exists a 2-cell g1/f & go/f. We write a/f for an arbitrary
choice of such a 2-cell.

g1/7
AR -
RN
fT " i s s/
r——]
g2

(2) Residuation is compatible with the relation €: in the cases above where o is an
exchange cell in context, its residual «/f is also a composite of exchange cells in
context.

Note that the second condition implies that we can consider morphisms up to exchange, and
compute their residuals:

Lemma 71. For every coinitial morphisms f, f' and g,¢' such that f & f and ¢ & ¢,
with f and f' equational, we have g/f & ¢/ f'.

Remark 72. In the presentation of Example 57, residuation is not compatible with exchange
because the last cylinder of Example 66 shows that an exchange relation can have a residual
which does not consist of exchange relations (in context) only. Thus, while first condition of
Assumption 3’ is a relaxed version of Assumption 3, the second condition is a strengthening,
and the two assumptions are thus incomparable.

Ezample 73. In our Example 70, one easily checks that the only critical cylinder is (5.10).
The only residuals of exchange relations are thus of the form (5.8) (in context) and are
therefore exchange relations in context: residuation is compatible with & As mentioned
before, the critical cylinder (5.10) is of the right shape, up to exchange. For the termination
Assumption 4, we distinguish two cases depending on whether the vertical arrow is equational
or not, as explained in Remark 33. When the vertical arrow is equational (i.e. of the form
xgY), termination is shown using the variant of Example 67 obtained by exchanging the role
of a and b in we. However, this same weight wo will not work when the vertical arrow is not
equational. For instance, the residual of the relation

abxggz : abbagoabgab = abgbaoababg : ababab —  abbaba
after the morphism
mbabab : ababab — aababab
is
aabxggz : aabbagoaabgab = aabgbaoaababg : aababab —  aabbaba
and we have
(0,1) = wi(abxgg) # wilaabxgg) = (0,2)

Intuitively, in abyxgz there is one transposition left to do in the context, whereas after
residuation the a was duplicated and therefore there are two transpositions left in the context
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in aabxgzz. However, it can be noticed that in cases of the form (5.8) (in context) the residual
of the vertical rewriting step is always a rewriting step (as opposed to a rewriting path) and
therefore the global cylinder property can be shown as explained in Remark 33. Finally, it
can be shown as in Theorem 69 that the presentation modulo (P, P;) is coherent.

6. CONCLUSION

We have introduced a notion of presentation of a (monoidal) category modulo an “equational”
rewriting system, and provided coherence conditions ensuring that the equational rules are
well-behaved wrt the generators. In particular, we show that, under those assumptions, all
the three possible natural constructions for the presented category are equivalent. These
assumptions are “local” in the sense that they are given directly on the presentations, and
can thus be used in practice in order to perform computations, as illustrated in the article.

In the future, we would like to investigate more applications, by studying generic sit-
uations. For instance, given two monoidal categories with a coherent presentation, can we
always construct a monoidal presentation of their product? Having more illustrative ex-
amples is also important to evaluate how generic the assumptions we proposed are. As we
have explained in Section 5.3, the general methodology seems to be quite stable, but there
are many possible local conditions in order to implement it (e.g. local cylinder assumptions
such as Assumptions 3 or 3’ in order to show the global cylinder property). In particular,
we would like to have more general conditions which would encompass both Assumptions 3
and 3’. On the practical side, it would be interesting to study extensions of the Knuth-
Bendix procedure which could transform a presentation in order to hopefully complete it
into one satisfying our assumptions. Finally, we would like to study applications to coher-
ence of various algebraic structures: presentations modulo allow one to turn some of the
generators into isomorphisms, while remaining equivalent to the situation where those gen-
erators are identities, which is what the coherence theorems (such as MacLane’s theorem
for monoidal categories) ensure, in a slightly different formal context.
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