DELOOPING
CYCLIC GROUPS

WITH

LENS SPACES

HOMOTOPY I'INYPE THEORY

sssssssssssss

Homotopy type theory

There are various levels of interpretation of logic:

-1. types are booleans
AV (BAC)

0. types are sets
N — (N xZ)

oo. types are spaces
Q(TA + ¥B)

2/

Loop spaces

Suppose given a space A, i.e. a type.

3/

Loop spaces

Suppose given a space A which is pointed by x : A.

3/

Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is

3/

Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is

it looks like a group

- we can concatenate paths,
- we can take path backwards,
- etc.

3/

Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is

it looks like a group

- we can concatenate paths,
- we can take path backwards,
- etc.

excepting that it might not be a set!

3/

Loop spaces

Suppose given a space A which is pointed by x : A and a groupoid.

Its loop space is

itis a group

- we can concatenate paths,
- we can take path backwards,
- etc.

3/

Delooping of groups

We have a map

pointed
connected groups

groupoids "
Q

N

Delooping of groups

Do we have a map

pointed)
connected groups

groupoids "
Q

N

Delooping of groups

Do we have a map

pointed)
connected groups

groupoids "
Q

Given a group G, a delooping is a space B G such that
QBG=G
Those are very useful:
- in order to perform group theory internally,
- to compute invariants (homology, conomology, ...)
- etc.

N

Delooping of groups

Do we have a map

pointed)
connected groups

groupoids "
Q

Given a group G, a delooping is a space B G such that

QBG=G

In fact, B exists and the above is an equivalence!

N

Delooping of groups

Do we have a map

pointed)
connected groups

groupoids "
Q

Given a group G, a delooping is a space B G such that

QBG=G

For instance, BZ = S™

N

Constructing deloopings

Suppose that we want to construct a delooping of Z,.

Let's try with a higher inductive type A, generated by

'*:Ao

Its loop space QAq is

5/14

Constructing deloopings

Suppose that we want to construct a delooping of Z,.

Let's try with a higher inductive type A, generated by

-k :A1
a
Ak =K e A= F
Its loop space QA, is
a’ a® a a?

5/14

Constructing deloopings

Suppose that we want to construct a delooping of Z,.
Let's try with a higher inductive type A, generated by

'*:Az
- Alx =%
- p:aa=1

Its loop space QA, is

5/14

Constructing deloopings

Suppose that we want to construct a delooping of Z,.
Let's try with a higher inductive type A, generated by

'*:Az
- Alx =%
- p:aa=1

Its loop space QA, is

5/14

Constructing deloopings

Suppose that we want to construct a delooping of Z,.
Let's try with a higher inductive type A, generated by

'*:Az
- Alx =%
- p:aa=1

Its loop space QA, is

5/14

Constructing deloopings

Suppose that we want to construct a delooping of Z,.

Let's try with a higher inductive type A; generated by
-k :A3
Ak =%
- p:aa="1
- pa=ap

Its loop space QA; is

5/14

Constructing deloopings

Suppose that we want to construct a delooping of Z,.
Let's try with a higher inductive type A; generated by

- x 1Az

S Ak =%
- p:aa=1
- pa=ap

Its loop space QA; is

We should keep on adding identities between identities forever... But which?

If we stop after n steps, we obtain an “approximation” A, of BG up to dimension n.

An.4 is obtained from A, by making the canonical map A, — Z, “more injective”.

5/14

Constructing deloopings

One way to handle this is to use truncation (Finster-Licata, LICS"14):
Theorem
The following type A is a delooping of Z,:

- x:A

- Ak =%

- p:aa=1

- isGroupoid(A)

6/14

Constructing deloopings

One way to handle this is to use truncation (Finster-Licata, LICS"14):

Theorem
The following type A is a delooping of Z,:
- x:A
- Ak =%
- p:aa=1
- isGroupoid(A)

Problem: because truncation is formal, it's very difficult to use in practice.

6/14

Delooping Z, using real projective spaces

The real projective spaces
RP" = {lines in R"}
are the “topological analogous” of the n-approximation and we can define

B Zz — RPOO

7114

Delooping Z, using real projective spaces

The real projective spaces
RP" = {lines in R"}
are the “topological analogous” of the n-approximation and we can define

B Zz - RPOO

Those were defined in homotopy type theory (Buchholtz-Rijke, LICS"17).

7114

Delooping Z,, using real projective spaces

Here, we define lens spaces

L = quotient of S*"~" C C" under some rotations

which are such that

8/14

Delooping Z,, using real projective spaces

Here, we define lens spaces

L = quotient of S*"~" C C" under some rotations

which are such that

The general approach is the same as for projective spaces
although generalization is not straightforward.

8/14

The general approach

The general approach is as follows:

- we know that a type BZp, exists

- we iteratively construct a family of types A, together maps
fn:An — BZm
which are (n—1)-connected:

[fib(fn)lln—1 = 1

9/

Getting started

As first approximation to B Zn, (a pointed connected groupoid), we can take

f0:1_>BZm

10/ 14

Getting started

As first approximation to B Zn, (a pointed connected groupoid), we can take
fo 11— BZm

Note: any map X — B Zp, would actually work as long as X contains a point

10/ 14

The inductive step

In order to compute f,14, we compute

which corresponds to

\M ey

n

1/ 14

The inductive step

In order to compute f,14, we compute

ker(fa) = 37 (- An).(fa(x) = %)

which corresponds to

1/ 14

The inductive step

In order to compute fy4, Wwe compute
ker(fa) = (X : An)-(fa(x) = *)
An+1 - An/ ker(n)
which corresponds to

kerfn —— 1

—

An —> An+1

XM 87

n

1/ 14

The inductive step

In order to compute f,14, we compute

ker(fn) = Z(X 2 An).(fn(x) = %)
Aniq = An/ ker(fn)

which corresponds to

kerfn —— 1

—

An —> An+1

e fota

4

BZm

fn

1/ 14

Lens spaces

Definition
If we begin with a map
S' - BZm

and iterate the same construction, we obtain types L, which correspond to
lens spaces.
Theorem

Lo = BZm

12 /14

Lens spaces

Definition
If we begin with any map
S' - BZm

and iterate the same construction, we obtain types L, which correspond to
lens spaces.
Theorem

Lo = BZm

12 /14

Results and applications

Theorem
We have a pushout

(B Z2)*S1n S1

L

Ly —— Lpsa
from which we can (hope to)

- define actions of G on higher types
BG—-U

- compute cohomology of Zn

H"(Zm) := || BZm — K(Z,n)|lo

13/

Questions?

>

VS

N

Join of maps

Given two maps

Join of maps

Given two maps

Join of maps

Given two maps

AxxB — B

N

A— AxB

Join of maps

Given two maps, their join is

AxxB — B

L

A— AxB

Join of maps

Given two maps, their join is

AxxB — B

L

A— AxB

Lemma
If f is m-connected and g is n-connected then f % g is (m-+n)-connected.

Join of maps

Given two maps, their join is

AxxB — B

L

A— AxB

Lemma
If f is m-connected and g is n-connected then f % g is (m-+n)-connected.

Lemma
Given f : A — B where A has a point, f*" converges toward an equivalence.

Future application: defining actions on higher types

An action of a group G on a set X is a map
G x X — X(a,x)
satisfying

a-(b-x)=(axb)-x 1-X=X

Future application: defining actions on higher types

An action of a group G on a type X is a map
G x X — X(a,x)
satisfying

a-(b-x)=(axb)-x 1-X=X

Future application: defining actions on higher types

An action of a group G on a type X is a map

f:BG—=U

i

S ——

with X := f(x).

34

Future application: defining actions on higher types

An action of a group G on a type X is a map
f:BG—=U
with X := f(*).

With the definition of BG as a HIT, we have isGroupoid(B G) and we can only elimi-
nate to a groupoid, e.g. define
f:BG— Set

34

Future application: defining actions on higher types

An action of a group G on a type X is a map
f:BG—=U
with X := f(*).

Theorem
We have a pushout

R*51 n S1

-

Ly — Lnga

with R = BZ2.

3/4

Future application: defining actions on higher types

An action of a group G on a type X is a map

f:BG—=U

with X := f(x).

Theorem
We have a pushout

with R = BZ2.

3/4

Future application: defining actions on higher types

An action of a group G on a type X is a map

f:BG—=U

with X := f(x).

Theorem
We have a pushout

with R = BZ? and a map BZm, — U is the limit of maps L, — U.

34

Future application: computing cohomology groups

The n-th cohomology group of Zp, is

H"(Zm) := | BZm — K(Z,n)|o

4y

	Appendix

