

Emile Oleon Samuel Mimram École Polytechnique

LICS 2024 9 July 2024 There are various levels of interpretation of logic:

-1. types are booleans

 $A \lor (B \land C)$

o. types are sets

 $\mathbb{N} \to (\mathbb{N} \times \mathbb{Z})$

 ∞ . types are spaces

 $\Omega(\Sigma A * \Sigma B)$

Suppose given a **space A**, i.e. a type.

Suppose given a space **A** which is **pointed** by ***** : **A**.

Suppose given a space **A** which is pointed by \star : **A**.

Its loop space is

$$\Omega A := \star = \star$$

Suppose given a space **A** which is pointed by \star : **A**.

Its loop space is

$$\Omega A := \star = \star$$

it looks like a group

- we can concatenate paths,
- · we can take path backwards,
- etc.

Suppose given a space **A** which is pointed by \star : **A**.

Its loop space is

$$\Omega A := \star = \star$$

it looks like a group

- \cdot we can concatenate paths,
- · we can take path backwards,
- · etc.

excepting that it might not be a set!

Suppose given a space **A** which is pointed by ***** : **A** and a groupoid.

Its loop space is

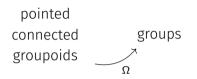
$$\Omega A := \star = \star$$

it is a group

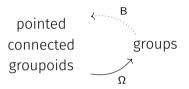
- · we can concatenate paths,
- · we can take path backwards,

· etc.

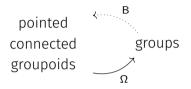
We have a map



Do we have a map



Do we have a map



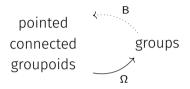
Given a group G, a delooping is a space B G such that

 $\Omega\,\mathsf{B}\,\boldsymbol{G}=\boldsymbol{G}$

Those are very useful:

- \cdot in order to perform group theory internally,
- to compute invariants (homology, cohomology, ...)
- · etc.

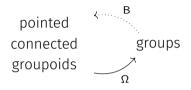
Do we have a map



Given a group G, a **delooping** is a space B G such that $\Omega \operatorname{B} G = G$

In fact, B exists and the above is an equivalence!

Do we have a map



Given a group G, a delooping is a space B G such that

 $\Omega \, \mathsf{B} \, \mathbf{G} = \mathbf{G}$

For instance, $B \mathbb{Z} = S^1$:

Suppose that we want to construct a delooping of \mathbb{Z}_2 . Let's try with a higher inductive type A_0 generated by

0

 $\cdot \star : A_0$

Its loop space ΩA_0 is

Suppose that we want to construct a delooping of \mathbb{Z}_2 . Let's try with a higher inductive type A_1 generated by

$$\cdot \star : A_1$$

$$\cdot a : \star = \star, \text{ i.e. } A_1 =$$

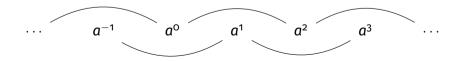
Its loop space ΩA_1 is

$$\cdots$$
 a^{-1} a° a^{1} a^{2} a^{3} \cdots

Suppose that we want to construct a delooping of \mathbb{Z}_2 . Let's try with a higher inductive type A_2 generated by

- $\cdot \star : A_2$
- $\cdot a : \star = \star$
- $\cdot p : aa = 1$

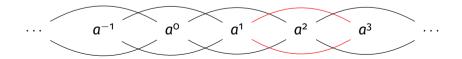
Its loop space ΩA_2 is



Suppose that we want to construct a delooping of \mathbb{Z}_2 . Let's try with a higher inductive type A_2 generated by

- $\cdot \star : A_2$
- $\cdot a : \star = \star$
- $\cdot p : aa = 1$

Its loop space ΩA_2 is



Suppose that we want to construct a delooping of \mathbb{Z}_2 . Let's try with a higher inductive type A_2 generated by

- $\cdot \star : A_2$
- $\cdot a : \star = \star$
- $\cdot p : aa = 1$

Its loop space ΩA_2 is



Suppose that we want to construct a delooping of \mathbb{Z}_2 . Let's try with a higher inductive type A_3 generated by

- $\cdot \star : A_3$
- $\cdot a : \star = \star$
- $\cdot p : aa = 1$
- $\cdot pa = ap$

Its loop space ΩA_3 is

Suppose that we want to construct a delooping of \mathbb{Z}_2 . Let's try with a higher inductive type A_3 generated by

- $\cdot \star : A_3$
- $\cdot a : \star = \star$
- $\cdot p : aa = 1$
- $\cdot pa = ap$

Its loop space ΩA_3 is

We should keep on adding identities between identities forever... But which?

If we stop after n steps, we obtain an "approximation" A_n of B G up to dimension n.

 A_{n+1} is obtained from A_n by making the canonical map $A_n \to \mathbb{Z}_2$ "more injective".

One way to handle this is to use **truncation** (Finster-Licata, LICS'14):

Theorem

The following type A is a delooping of \mathbb{Z}_2 :

- * : A
- $\cdot a : \star = \star$
- $\cdot p : aa = 1$
- · isGroupoid(A)

One way to handle this is to use **truncation** (Finster-Licata, LICS'14):

Theorem

The following type A is a delooping of \mathbb{Z}_2 :

- * : **A**
- $\cdot a : \star = \star$
- $\cdot p : aa = 1$
- · isGroupoid(A)

Problem: because truncation is formal, it's very difficult to use in practice.

Delooping \mathbb{Z}_2 using real projective spaces

The real projective spaces

 $\mathbb{R}\mathsf{P}^n = \{ \text{lines in } \mathbb{R}^n \}$

are the "topological analogous" of the n-approximation and we can define

 $B\mathbb{Z}_2 = \mathbb{R}P^\infty$

Delooping \mathbb{Z}_2 using real projective spaces

The real projective spaces

 $\mathbb{R}\mathsf{P}^n = \{ \text{lines in } \mathbb{R}^n \}$

are the "topological analogous" of the n-approximation and we can define

 $B\mathbb{Z}_2 = \mathbb{R}P^\infty$

Those were defined in homotopy type theory (Buchholtz-Rijke, LICS'17).

Delooping \mathbb{Z}_m using real projective spaces

Here, we define **lens spaces**

 L_m^n = quotient of $S^{2n-1} \subseteq \mathbb{C}^n$ under some rotations

which are such that

$$\mathsf{B}\mathbb{Z}_m = \mathsf{L}_m^\infty$$

Delooping \mathbb{Z}_m using real projective spaces

Here, we define **lens spaces**

 L_m^n = quotient of $S^{2n-1} \subseteq \mathbb{C}^n$ under some rotations

which are such that

$$B\mathbb{Z}_m = L_m^{\infty}$$

The general approach is the same as for projective spaces although generalization is not straightforward.

The general approach is as follows:

- \cdot we know that a type $\mathbb{B}\mathbb{Z}_m$ exists
- \cdot we iteratively construct a family of types A_n together maps

$$f_n: \mathsf{A}_n \to \mathsf{B}\,\mathbb{Z}_m$$

which are (*n*-1)-connected:

 $\| \operatorname{fib}(f_n) \|_{n-1} = 1$

Getting started

As first approximation to $\mathbb{B}\mathbb{Z}_m$ (a pointed connected groupoid), we can take

 $f_{\mathsf{O}}: \mathsf{1} o \mathsf{B} \, \mathbb{Z}_m$

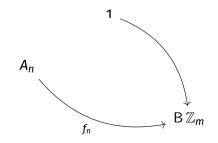
Getting started

As first approximation to $\mathbb{B}\mathbb{Z}_m$ (a pointed connected groupoid), we can take

 $f_{\mathsf{O}}: \mathsf{1} o \mathsf{B} \, \mathbb{Z}_m$

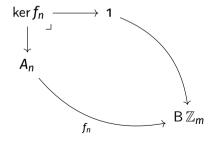
Note: any map $X \to B \mathbb{Z}_m$ would actually work as long as X contains a point

In order to compute f_{n+1} , we compute



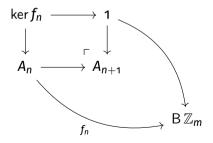
In order to compute f_{n+1} , we compute

$$\ker(f_n) = \sum (x : A_n).(f_n(x) = \star)$$



In order to compute f_{n+1} , we compute

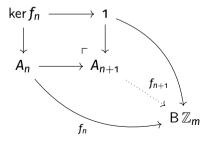
$$egin{aligned} & \ker(f_n) = \sum (x:\mathsf{A}_n).(f_n(x) = \star) \ & \mathsf{A}_{n+1} = \mathsf{A}_n/\ker(f_n) \end{aligned}$$



In order to compute f_{n+1} , we compute

$$\ker(f_n) = \sum (x : A_n).(f_n(x) = \star)$$

 $A_{n+1} = A_n / \ker(f_n)$



Lens spaces

Definition

If we begin with a map

$$S^1 \to B \mathbb{Z}_m$$

and iterate the same construction, we obtain types L_n which correspond to lens spaces.

Theorem

$$L_{\infty} = \mathsf{B} \, \mathbb{Z}_m$$

Lens spaces

Definition

If we begin with **any** map

$$S^1 \to B \mathbb{Z}_m$$

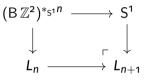
and iterate the same construction, we obtain types L_n which correspond to lens spaces.

Theorem

$$L_{\infty} = \mathsf{B} \, \mathbb{Z}_m$$

Results and applications

Theorem We have a pushout



from which we can (hope to)

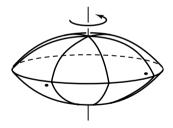
 \cdot define actions of **G** on higher types

 $\mathsf{B}\, \textbf{G} \to \mathcal{U}$

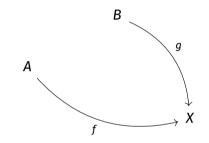
 \cdot compute cohomology of \mathbb{Z}_m

$$H^n(\mathbb{Z}_m) := \| \operatorname{\mathsf{B}} \mathbb{Z}_m o K(\mathbb{Z},n) \|_{\operatorname{\mathsf{O}}}$$

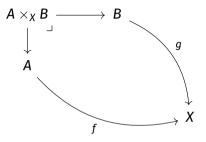
Questions?



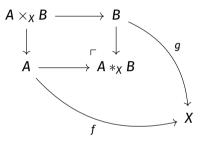
Given two maps



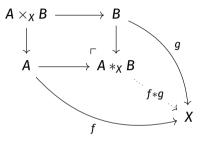
Given two maps



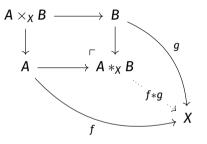
Given two maps



Given two maps, their **join** is



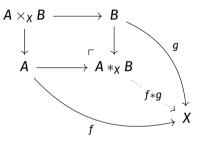
Given two maps, their join is



Lemma

If f is m-connected and g is n-connected then f * g is (m+n)-connected.

Given two maps, their join is



Lemma

If f is m-connected and g is n-connected then f * g is (m+n)-connected.

Lemma

Given $f : A \rightarrow B$ where A has a point, f^{*n} converges toward an equivalence.

An **action** of a group **G** on a set **X** is a map

$$G \times X \to X(a, x) \qquad \mapsto a \cdot x$$

satisfying

$$a \cdot (b \cdot x) = (a \times b) \cdot x$$
 $1 \cdot x = x$

An **action** of a group **G** on a type **X** is a map

$$G \times X \to X(a, x) \qquad \qquad \mapsto a \cdot x$$

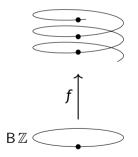
satisfying

$$a \cdot (b \cdot x) = (a \times b) \cdot x$$
 $1 \cdot x = x$...

An **action** of a group **G** on a type **X** is a map

 $f:\mathsf{B}\,\mathsf{G} o\mathcal{U}$

with $X := f(\star)$.



An **action** of a group **G** on a type **X** is a map

$$f:\mathsf{B}\,\mathsf{G} o\mathcal{U}$$

with $X := f(\star)$.

With the definition of B *G* as a HIT, we have isGroupoid(B *G*) and we can only eliminate to a groupoid, e.g. define

$$f: \mathsf{B} G \to \mathbf{Set}$$

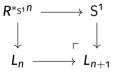
An **action** of a group **G** on a type **X** is a map

$$f: \mathsf{B}\,\mathsf{G}
ightarrow \mathcal{U}$$

with $X := f(\star)$.

Theorem

We have a pushout



with $\mathbf{R} = \mathbf{B} \mathbb{Z}^2$.

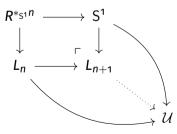
An **action** of a group **G** on a type **X** is a map

$$f: \mathsf{B} \operatorname{\mathsf{G}}
ightarrow \mathcal{U}$$

with $X := f(\star)$.

Theorem

We have a pushout



with $\mathbf{R} = \mathbf{B} \mathbb{Z}^2$.

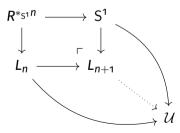
An **action** of a group **G** on a type **X** is a map

$$f: \mathsf{B} \operatorname{\mathsf{G}}
ightarrow \mathcal{U}$$

with $X := f(\star)$.

Theorem

We have a pushout



with $R = B \mathbb{Z}^2$ and a map $B \mathbb{Z}_m \to \mathcal{U}$ is the limit of maps $L_n \to \mathcal{U}$.

Future application: computing cohomology groups

The *n*-th cohomology group of \mathbb{Z}_m is

$$H^n(\mathbb{Z}_m) := \| \operatorname{\mathsf{B}} \mathbb{Z}_m o \operatorname{\mathsf{K}}(\mathbb{Z},n) \|_{\operatorname{\mathsf{O}}}$$