
DELOOPING
CYCLIC GROUPS

WITH

LENS SPACES
IN

HOMOTOPY TYPE THEORY
Emile Oleon

Samuel Mimram
École Polytechnique

LICS 2024
9 July 2024



Homotopy type theory

There are various levels of interpretation of logic:

-1. types are booleans
A ∨ (B ∧ C)

0. types are sets
N → (N× Z)

∞. types are spaces
Ω(ΣA ∗ ΣB)

2 / 14



Loop spaces

Suppose given a space A, i.e. a type.

⋆

Its loop space is
ΩA := ⋆ = ⋆

it looks like a group

· we can concatenate paths,
· we can take path backwards,
· etc.

excepting that it might not be a set!

3 / 14



Loop spaces

Suppose given a space A which is pointed by ⋆ : A.

⋆

Its loop space is
ΩA := ⋆ = ⋆

it looks like a group

· we can concatenate paths,
· we can take path backwards,
· etc.

excepting that it might not be a set!

3 / 14



Loop spaces

Suppose given a space A which is pointed by ⋆ : A.

⋆

Its loop space is
ΩA := ⋆ = ⋆

it looks like a group

· we can concatenate paths,
· we can take path backwards,
· etc.

excepting that it might not be a set!

3 / 14



Loop spaces

Suppose given a space A which is pointed by ⋆ : A.

⋆

Its loop space is
ΩA := ⋆ = ⋆

it looks like a group

· we can concatenate paths,
· we can take path backwards,
· etc.

excepting that it might not be a set!

3 / 14



Loop spaces

Suppose given a space A which is pointed by ⋆ : A.

⋆

Its loop space is
ΩA := ⋆ = ⋆

it looks like a group

· we can concatenate paths,
· we can take path backwards,
· etc.

excepting that it might not be a set!
3 / 14



Loop spaces

Suppose given a space A which is pointed by ⋆ : A and a groupoid.

⋆

Its loop space is
ΩA := ⋆ = ⋆

it is a group

· we can concatenate paths,
· we can take path backwards,
· etc.

excepting that it might not be a set!

3 / 14



Delooping of groups

We have a map

pointed
connected
groupoids

groups

Ω

B

Given a group G, a delooping is a space BG such that

ΩBG = G

4 / 14



Delooping of groups

Do we have a map

pointed
connected
groupoids

groups

Ω

B

Given a group G, a delooping is a space BG such that

ΩBG = G

4 / 14



Delooping of groups

Do we have a map

pointed
connected
groupoids

groups

Ω

B

Given a group G, a delooping is a space BG such that

ΩBG = G

Those are very useful:
· in order to perform group theory internally,
· to compute invariants (homology, cohomology, ...)
· etc.

4 / 14



Delooping of groups

Do we have a map

pointed
connected
groupoids

groups

Ω

B

Given a group G, a delooping is a space BG such that

ΩBG = G

In fact, B exists and the above is an equivalence!

4 / 14



Delooping of groups

Do we have a map

pointed
connected
groupoids

groups

Ω

B

Given a group G, a delooping is a space BG such that

ΩBG = G

For instance, BZ = S1:

⋆

4 / 14



Constructing deloopings

Suppose that we want to construct a delooping of Z2.

Let’s try with a higher inductive type A0 generated by

· ⋆ : A0

· a : ⋆ = ⋆

· p : aa = 1
· pa = ap

Its loop space ΩA0 is

0

5 / 14



Constructing deloopings

Suppose that we want to construct a delooping of Z2.

Let’s try with a higher inductive type A1 generated by

· ⋆ : A1

· a : ⋆ = ⋆, i.e. A1 =
⋆

a

· p : aa = 1
· pa = ap

Its loop space ΩA1 is

· · · a−1 a0 a1 a2 a3 · · ·

5 / 14



Constructing deloopings

Suppose that we want to construct a delooping of Z2.

Let’s try with a higher inductive type A2 generated by

· ⋆ : A2

· a : ⋆ = ⋆

· p : aa = 1

· pa = ap

Its loop space ΩA2 is

· · · a−1 a0 a1 a2 a3 · · ·

5 / 14



Constructing deloopings

Suppose that we want to construct a delooping of Z2.

Let’s try with a higher inductive type A2 generated by

· ⋆ : A2

· a : ⋆ = ⋆

· p : aa = 1

· pa = ap

Its loop space ΩA2 is

· · · a−1 a0 a1 a2 a3 · · ·

5 / 14



Constructing deloopings

Suppose that we want to construct a delooping of Z2.

Let’s try with a higher inductive type A2 generated by

· ⋆ : A2

· a : ⋆ = ⋆

· p : aa = 1

· pa = ap

Its loop space ΩA2 is

⋆ ⋆

⋆ ⋆

a

aa p
refl

a

=

⋆ ⋆

⋆ ⋆

a

p
refl

aa

a
5 / 14



Constructing deloopings

Suppose that we want to construct a delooping of Z2.

Let’s try with a higher inductive type A3 generated by

· ⋆ : A3

· a : ⋆ = ⋆

· p : aa = 1
· pa = ap

Its loop space ΩA3 is

⋆ ⋆

⋆ ⋆

a

aa p
refl

a

=

⋆ ⋆

⋆ ⋆

a

p
refl

aa

a
5 / 14



Constructing deloopings

Suppose that we want to construct a delooping of Z2.

Let’s try with a higher inductive type A3 generated by

· ⋆ : A3

· a : ⋆ = ⋆

· p : aa = 1
· pa = ap

Its loop space ΩA3 is

We should keep on adding identities between identities forever... But which?

If we stop after n steps, we obtain an “approximation” An of BG up to dimension n.

An+1 is obtained from An by making the canonical map An → Z2 “more injective”.
5 / 14



Constructing deloopings

One way to handle this is to use truncation (Finster-Licata, LICS’14):

Theorem
The following type A is a delooping of Z2:

· ⋆ : A
· a : ⋆ = ⋆

· p : aa = 1
· isGroupoid(A)

Problem: because truncation is formal, it’s very difficult to use in practice.

6 / 14



Constructing deloopings

One way to handle this is to use truncation (Finster-Licata, LICS’14):

Theorem
The following type A is a delooping of Z2:

· ⋆ : A
· a : ⋆ = ⋆

· p : aa = 1
· isGroupoid(A)

Problem: because truncation is formal, it’s very difficult to use in practice.

6 / 14



Delooping Z2 using real projective spaces

The real projective spaces

RPn = {lines in Rn}

are the “topological analogous” of the n-approximation and we can define

BZ2 = RP∞

Those were defined in homotopy type theory (Buchholtz-Rijke, LICS’17).

7 / 14



Delooping Z2 using real projective spaces

The real projective spaces

RPn = {lines in Rn}

are the “topological analogous” of the n-approximation and we can define

BZ2 = RP∞

Those were defined in homotopy type theory (Buchholtz-Rijke, LICS’17).

7 / 14



Delooping Zm using real projective spaces

Here, we define lens spaces

Lnm = quotient of S2n−1 ⊆ Cn under some rotations

which are such that
BZm = L∞m

The general approach is the same as for projective spaces
although generalization is not straightforward.

8 / 14



Delooping Zm using real projective spaces

Here, we define lens spaces

Lnm = quotient of S2n−1 ⊆ Cn under some rotations

which are such that
BZm = L∞m

The general approach is the same as for projective spaces
although generalization is not straightforward.

8 / 14



The general approach

The general approach is as follows:

· we know that a type BZm exists
· we iteratively construct a family of types An together maps

fn : An → BZm

which are (n−1)-connected:

∥ fib(fn)∥n−1 = 1

9 / 14



Getting started

As first approximation to BZm (a pointed connected groupoid), we can take

f0 : 1 → BZm

Note: any map X → BZm would actually work as long as X contains a point

10 / 14



Getting started

As first approximation to BZm (a pointed connected groupoid), we can take

f0 : 1 → BZm

Note: any map X → BZm would actually work as long as X contains a point

10 / 14



The inductive step

In order to compute fn+1, we compute

ker(fn) =
∑

(x : An).(fn(x) = ⋆)

An+1 = An/ ker(fn)

which corresponds to

ker fn

1

An

An+1

BZm

⌟

⌜

fn

fn+1

11 / 14



The inductive step

In order to compute fn+1, we compute

ker(fn) =
∑

(x : An).(fn(x) = ⋆)

An+1 = An/ ker(fn)

which corresponds to

ker fn 1

An

An+1

BZm

⌟

⌜

fn

fn+1

11 / 14



The inductive step

In order to compute fn+1, we compute

ker(fn) =
∑

(x : An).(fn(x) = ⋆)

An+1 = An/ ker(fn)

which corresponds to

ker fn 1

An An+1

BZm

⌟

⌜

fn

fn+1

11 / 14



The inductive step

In order to compute fn+1, we compute

ker(fn) =
∑

(x : An).(fn(x) = ⋆)

An+1 = An/ ker(fn)

which corresponds to

ker fn 1

An An+1

BZm

⌟

⌜

fn

fn+1

11 / 14



Lens spaces

Definition
If we begin with a map

S1 → BZm

and iterate the same construction, we obtain types Ln which correspond to
lens spaces.

Theorem

L∞ = BZm

12 / 14



Lens spaces

Definition
If we begin with any map

S1 → BZm

and iterate the same construction, we obtain types Ln which correspond to
lens spaces.

Theorem

L∞ = BZm

12 / 14



Results and applications

Theorem
We have a pushout

(BZ2)∗S1n S1

Ln Ln+1
⌜

from which we can (hope to)

· define actions of G on higher types

BG→ U

· compute cohomology of Zm

Hn(Zm) := ∥BZm → K(Z,n)∥0

13 / 14



Questions?

14 / 14



Join of maps

Given two maps

, their join is

A×X B

B

A

A ∗X B

X

⌟

⌜
g

f

f∗g

Lemma
If f is m-connected and g is n-connected then f ∗ g is (m+n)-connected.

Lemma
Given f : A→ B where A has a point, f ∗n converges toward an equivalence.

1 / 4



Join of maps

Given two maps

, their join is

A×X B B

A

A ∗X B

X

⌟

⌜
g

f

f∗g

Lemma
If f is m-connected and g is n-connected then f ∗ g is (m+n)-connected.

Lemma
Given f : A→ B where A has a point, f ∗n converges toward an equivalence.

1 / 4



Join of maps

Given two maps

, their join is

A×X B B

A A ∗X B

X

⌟

⌜
g

f

f∗g

Lemma
If f is m-connected and g is n-connected then f ∗ g is (m+n)-connected.

Lemma
Given f : A→ B where A has a point, f ∗n converges toward an equivalence.

1 / 4



Join of maps

Given two maps, their join is

A×X B B

A A ∗X B

X

⌟

⌜
g

f

f∗g

Lemma
If f is m-connected and g is n-connected then f ∗ g is (m+n)-connected.

Lemma
Given f : A→ B where A has a point, f ∗n converges toward an equivalence.

1 / 4



Join of maps

Given two maps, their join is

A×X B B

A A ∗X B

X

⌟

⌜
g

f

f∗g

Lemma
If f is m-connected and g is n-connected then f ∗ g is (m+n)-connected.

Lemma
Given f : A→ B where A has a point, f ∗n converges toward an equivalence.

1 / 4



Join of maps

Given two maps, their join is

A×X B B

A A ∗X B

X

⌟

⌜
g

f

f∗g

Lemma
If f is m-connected and g is n-connected then f ∗ g is (m+n)-connected.

Lemma
Given f : A→ B where A has a point, f ∗n converges toward an equivalence.

1 / 4



Future application: defining actions on higher types

An action of a group G on a set X is a map

G× X → X(a, x) 7→ a · x

satisfying

a · (b · x) = (a× b) · x 1 · x = x

. . .

2 / 4



Future application: defining actions on higher types

An action of a group G on a type X is a map

G× X → X(a, x) 7→ a · x

satisfying

a · (b · x) = (a× b) · x 1 · x = x . . .

2 / 4



Future application: defining actions on higher types

An action of a group G on a type X is a map

f : BG→ U

with X := f (⋆).

f

BZ

3 / 4



Future application: defining actions on higher types

An action of a group G on a type X is a map

f : BG→ U

with X := f (⋆).

With the definition of BG as a HIT, we have isGroupoid(BG) and we can only elimi-
nate to a groupoid, e.g. define

f : BG→ Set

3 / 4



Future application: defining actions on higher types

An action of a group G on a type X is a map

f : BG→ U

with X := f (⋆).

Theorem
We have a pushout

R∗S1n S1

Ln Ln+1

U

⌜

with R = BZ2. 3 / 4



Future application: defining actions on higher types

An action of a group G on a type X is a map

f : BG→ U

with X := f (⋆).

Theorem
We have a pushout

R∗S1n S1

Ln Ln+1

U

⌜

with R = BZ2. 3 / 4



Future application: defining actions on higher types

An action of a group G on a type X is a map

f : BG→ U

with X := f (⋆).

Theorem
We have a pushout

R∗S1n S1

Ln Ln+1

U

⌜

with R = BZ2 and a map BZm → U is the limit of maps Ln → U. 3 / 4



Future application: computing cohomology groups

The n-th cohomology group of Zm is

Hn(Zm) := ∥BZm → K(Z,n)∥0

4 / 4


	Appendix

