A cartesian bicategory of polynomial functors in homotopy type theory

Samuel Mimram
June 18, 2021
This is joint work with Eric Finster, Maxime Lucas and Thomas Seiller.
Part I

Polynomials and polynomial functors
A polynomial is a sum of monomials

\[P(X) = \sum_{0 \leq i < k} X^{n_i} \]

(no coefficients, but repetitions allowed)
A polynomial is a sum of monomials

\[P(X) = \sum_{0 \leq i < k} X^{n_i} \]

(no coefficients, but repetitions allowed)

We can categorify this notion: replace natural numbers by elements of a set.

\[P(X) = \sum_{b \in B} X^{E_b} \]
This data can be encoded as a **polynomial** P, which is a diagram in \textbf{Set}:

$$
E \xrightarrow{p} B
$$

where

- $b \in B$ is a monomial
- $E_b = P^{-1}(b)$ is the set of instances of X in the monomial b.

![Diagram of polynomial functor]({})
Polynomial functors

This data can be encoded as a polynomial P, which is a diagram in Set:

$$
\begin{array}{c}
E \\
\xrightarrow{p} \\
B
\end{array}
$$

where

- $b \in B$ is a monomial
- $E_b = P^{-1}(b)$ is the set of instances of X in the monomial b.

It induces a polynomial functor

$$
[P] : \text{Set} \to \text{Set}
$$

$$
X \mapsto \sum_{b \in B} X^{E_b}
$$
Polynomial functors

For instance, consider the polynomial corresponding to the function

\[E \xrightarrow{p} B \]

\[\bullet \]

The associated polynomial functor is

\[\llbracket P \rrbracket (X) : \text{Set} \to \text{Set} \]

\[X \leftrightarrow X \times X \sqcup X \times X \times X \]
Polynomial functors

For instance, consider the polynomial corresponding to the function

\[
\begin{array}{c}
\mathbb{N} \\
\vdots \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}
\xrightarrow{p} 1
\]

The associated polynomial functor is

\[
[P](X) : \textbf{Set} \to \textbf{Set}
\]

\[
X \mapsto X \times X \times X \times \ldots
\]
Polynomial functors

For instance, consider the polynomial corresponding to the function

\[
\mathbb{N} \xrightarrow{p} 1
\]

\[
\vdots
\]

\[
\bullet
\]

\[
\bullet
\]

\[
\bullet
\]

The associated polynomial functor is

\[
\lbrack P \rbrack(X) : \textbf{Set} \to \textbf{Set}
\]

\[
X \mapsto X \times X \times X \times \ldots
\]

A polynomial is \textbf{finitary} when each monomial is a finite product.
We will more generally consider a “typed variant” of polynomials \(P \)
\[
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J
\]
this means that

- each monomial \(b \) has a “type \(s(b) \in J \)”,
- each occurrence of a variable \(e \in E \) has a type \(s(e) \in I \).
Polynomial functors: typed variant

We will more generally consider a “typed variant” of polynomials P

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$$

this means that

- each monomial b has a “type $s(b) \in J$”,
- each occurrence of a variable $e \in E$ has a type $s(e) \in I$.

It induces a polynomial functor

$$[[P]](X) : \text{Set}^I \rightarrow \text{Set}^J$$

$$(X_i)_{i \in I} \mapsto \left(\sum_{b \in t^{-1}(j)} \prod_{e \in p^{-1}(b)} X_{s(e)} \right)_{j \in J}$$
The category of polynomial functors

Given a set I, we have an “identity” polynomial functor:

$$
\begin{array}{c}
I \\
\downarrow^\text{id} \\
I
\end{array} \quad \begin{array}{c}
I \\
\downarrow^\text{id} \\
I
\end{array} \quad \begin{array}{c}
I \\
\downarrow^\text{id} \\
I
\end{array}
$$
The category of polynomial functors

Given a set \(I \), we have an “identity” polynomial functor:

\[
\begin{array}{ccc}
I & \xleftarrow{id} & I \\
\end{array}
\]

\[
\begin{array}{ccc}
I & \xrightarrow{id} & I \\
\end{array}
\]

\[
\begin{array}{ccc}
I & \xrightarrow{id} & I \\
\end{array}
\]

Proposition

The composite of two polynomial functors is again polynomial:

\[
\text{Set}^I \xrightarrow{[P]} \text{Set}^J \xrightarrow{[Q]} \text{Set}^K
\]

\[
[Q] \circ [P]
\]
The category of polynomial functors

Given a set I, we have an “identity” polynomial functor:

$$I \xleftarrow{id} I \xrightarrow{id} I \xrightarrow{id} I$$

Proposition

The composite of two polynomial functors is again polynomial:

$$\text{Set}^I \xrightarrow{[P]} \text{Set}^J \xrightarrow{[Q]} \text{Set}^K$$

Proof.

Basically the usual one:

$$[Q] \circ [P](X_i) = \sum \prod \prod \prod X_i$$

$$\equiv \sum \sum \prod \prod X_i$$

$$\equiv \sum \prod X_i$$
The category of polynomial functors

We can thus build a category PolyFun of sets and polynomial functors:

- an object is a set I,
- a morphism $F : I \to J$

is a polynomial functor

$$[[P]] : \text{Set}^I \to \text{Set}^J$$
A polynomial P

\[I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J \]

induces a polynomial functor

\[[P] : \text{Set}^I \to \text{Set}^J \]

We have mentioned that composition is defined for polynomials. However, on polynomials, it is not strictly associative: we can build a bicategory Poly of sets and polynomial functors.

This suggests that 2-cells are an important part of the story!
Morphisms between polynomials

A morphism between two polynomials is

\[
\begin{array}{c}
I \\ \\
\downarrow \varepsilon \\
E \\
\downarrow \\
B \\
\downarrow \beta \\
J
\end{array}
\quad \quad
\begin{array}{c}
I \\ \\
\downarrow \varepsilon' \\
E' \\
\downarrow \\
B' \\
\downarrow \\
J
\end{array}
\]

We send operations to operators, preserving typing and arities:

\[
\begin{array}{c}
\begin{array}{c}
\vdots \\
b
\end{array} \\
\downarrow \\
i
\end{array}
\quad \quad
\begin{array}{c}
\begin{array}{c}
\vdots \\
\beta(b)
\end{array} \\
i
\end{array}
\]
Morphisms between polynomials

A morphism between two polynomials is

\[
\begin{array}{ccc}
I & \xleftarrow{s} & E \\
\downarrow{\varepsilon} & \downarrow{\iota} & \downarrow{\beta} \\
I & \xleftarrow{s'} & E'
\end{array}
\quad \rightarrow \quad
\begin{array}{ccc}
B & \xrightarrow{t} & J \\
\downarrow{\beta} & & \\
B' & \xrightarrow{t'} & J
\end{array}
\]

We send operations to operators, preserving typing and arities:

\[
\begin{array}{cccc}
j_1 & j_2 & \cdots & j_n
\end{array}
\mapsto
\begin{array}{c}
\beta(b)
\end{array}
\]

We can build a bicategory \textbf{Poly} of sets, polynomials and morphisms of polynomials.
Morphisms between polynomial functors

A morphism between polynomial functors

$$[P], [Q] : \text{Set}^I \to \text{Set}^J$$

is a “suitable” natural transformation, and we can build a 2-category PolyFun.
The category PolyFun is cartesian. Namely, given two polynomial functors in Poly

\[P : I \to J \quad \text{and} \quad Q : I \to K \]

i.e., in Cat,

\[[P] : \text{Set}^I \to \text{Set}^J \quad \text{and} \quad [Q] : \text{Set}^I \to \text{Set}^K \]

we have, in Cat,

\[\langle P, Q \rangle : \text{Set}^I \to \text{Set}^J \times \text{Set}^K \cong \text{Set}^{J \sqcup K} \]

and the constructions preserve polynomiality: in PolyFun,

\[\langle P, Q \rangle : I \to (J \sqcup K) \]
For the closed structure, we can hope for the same: given, in PolyFun,

\[P : I \sqcup J \to K \]

i.e., in Cat,

\[P : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[\text{Set}^{I \sqcup J} \to \text{Set}^K \]

which suggests defining the closure as

\[\llbracket J, K \rrbracket = \text{Set}^J \times K \]

for LL-people: this looks like \(\not\).

[i4]
For the closed structure, we can hope for the same: given, in PolyFun,

\[P : I \sqcup J \rightarrow K \]

i.e., in Cat,

\[P : \text{Set}^{I \sqcup J} \rightarrow \text{Set}^K \]

we have

\[
\frac{
\text{Set}^{I \sqcup J} \rightarrow \text{Set}^K \\
\text{Set}^I \times \text{Set}^J \rightarrow \text{Set}^K
}{
\text{Set}^I \rightarrow (\text{Set}^K)^{\text{Set}^J}
}
\]
For the closed structure, we can hope for the same: given, in \textbf{PolyFun},

\[P : I \sqcup J \to K \]

i.e., in \textbf{Cat},

\[P : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[
\begin{align*}
\text{Set}^{I \sqcup J} & \to \text{Set}^K \\
\text{Set}^I \times \text{Set}^J & \to \text{Set}^K \\
\text{Set}^I & \to (\text{Set}^K)^{\text{Set}^J}
\end{align*}
\]
For the closed structure, we can hope for the same: given, in PolyFun,

\[P : I \sqcup J \to K \]

i.e., in Cat,

\[P : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[
\begin{align*}
\text{Set}^{I \sqcup J} & \to \text{Set}^K \\
\text{Set}^I \times \text{Set}^J & \to \text{Set}^K \\
\text{Set}^I & \to (\text{Set}^K)^{\text{Set}^J} \\
\text{Set}^I & \to \text{Set}^{\text{Set}^J \times K}
\end{align*}
\]
Closed structure

For the closed structure, we can hope for the same: given, in **PolyFun**,

\[P : I \sqcup J \to K \]

i.e., in **Cat**,

\[P : \text{Set}^{I \sqcup J} \to \text{Set}^K \]

we have

\[
\begin{align*}
\text{Set}^{I \sqcup J} & \to \text{Set}^K \\
\text{Set}^I \times \text{Set}^J & \to \text{Set}^K \\
\text{Set}^I & \to (\text{Set}^K)^{\text{Set}^J} \\
\text{Set}^I & \to \text{Set}^{\text{Set}^J \times K}
\end{align*}
\]

which suggests defining the closure as

\[[J, K] = \text{Set}^J \times K \]
For the closed structure, we can hope for the same: given, in PolyFun,

$$P : I \sqcup J \to K$$

i.e., in Cat,

$$P : \text{Set}^{I \sqcup J} \to \text{Set}^K$$

we have

$$\text{Set}^{I \sqcup J} \to \text{Set}^K$$

which suggests defining the closure as

$$[J, K] = \text{Set}^J \times K$$

for LL-people: this looks like $!J \otimes K$.
In terms of operations, the intuition behind the bijection

$$\text{PolyFun}(I \sqcup J, K) \cong \text{PolyFun}(I, \text{Set}^J \times K)$$

is that we can formally transform operations as follows
In terms of operations, the intuition behind the bijection

\[\text{PolyFun}(I \sqcup J, K) \cong \text{PolyFun}(I, \text{Set}/J \times K) \]

is that we can formally transform operations as follows
There are two problems with our closure. The first one is that

$$[I, J] = \text{Set}/I \times J$$

is too large to be an object of our category.
There are two problems with our closure. The first one is that

\[[I, J] = \text{Set}/I \times J \]

is too large to be an object of our category.

One can restrict to polynomial functors which are \textit{finitary}: we can then take

\[[I, J] = \text{Set}_{\text{fin}}/I \times J \]
Closed structure

There are two problems with our closure. The first one is that

$$[I, J] = \textbf{Set}/I \times J$$

is too large to be an object of our category.

One can restrict to polynomial functors which are \textbf{finitary}: we can then take

$$[I, J] = \textbf{Set}_{\text{fin}}/I \times J$$

or rather

$$[I, J] = \mathbb{N}/I \times J$$
There are two problems with our closure. The first one is that
\[[I, J] = \text{Set}/I \times J \]
is too large to be an object of our category.

One can restrict to polynomial functors which are \textbf{finitary}: we can then take
\[[I, J] = \text{Set}_{\text{fin}}/I \times J \]
or rather
\[[I, J] = \mathbb{N}/I \times J \]

Finitary polynomial functors are also known as \textbf{normal functors} (introduced by Girard).

Theorem

The category PolyFun is cartesian closed.
Theorem
The category PolyFun is cartesian closed.

Remark (Girard)
The 2-category PolyFun is not cartesian closed.
Failure of the cartesian closed structure

We would like to have an equivalence of categories

\[\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K) \]
Failure of the cartesian closed structure

We would like to have an equivalence of categories

$$\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K)$$

but consider the polynomial functor

$$\lbrack P \rbrack(X) = X^2$$
We would like to have an equivalence of categories

$$\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K)$$

but consider the polynomial functor

$$\lbrack P \rbrack(X) = X^2$$

which is induced by the polynomial

$$1 \leftarrow 2 \rightarrow 1 \rightarrow 1$$
Failure of the cartesian closed structure

We would like to have an equivalence of categories

\[\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K) \]

but consider the polynomial functor

\[\{P\}(X) = X^2 \]

which has two automorphisms

\[
\begin{array}{c}
1 \leftrightarrow 2 \longrightarrow 1 \longrightarrow 1 \\
\tau \downarrow \text{id} \downarrow \\
1 \leftrightarrow 2 \longrightarrow 1 \longrightarrow 1
\end{array}
\]

(two elements on the left, one on the right because 0 is initial)
Failure of the cartesian closed structure

We would like to have an equivalence of categories

$$\text{PolyFun}(I \sqcup J, K) \simeq \text{PolyFun}(I, \mathbb{N}/J \times K)$$

but consider the polynomial functor

$$\llbracket P \rrbracket(X) = X^2$$

which has two automorphisms

The equivalence fails:

$$\text{PolyFun}(0 \sqcup 1, 1) \not\simeq \text{PolyFun}(0, \mathbb{N}/1 \times 1)$$

(two elements on the left, one on the right because 0 is initial)
Fixing the cartesian closed structure

The failure of the equivalence

\[\text{PolyFun}(0 \sqcup 1, 1) \not\cong \text{PolyFun}(0, \mathbb{N}/1 \times 1) \]

can be interpreted as being due to the fact that \(2 \in \mathbb{N}/1\) has no non-trivial isomorphism.

This suggests moving to **groupoids**!
Fixing the cartesian closed structure

The failure of the equivalence

\[\text{PolyFun}(0 \sqcup 1, 1) \not\cong \text{PolyFun}(0, \mathbb{N}/1 \times 1) \]

can be interpreted as being due to the fact that \(2 \in \mathbb{N}/1\) has no non-trivial isomorphism.

This suggests moving to groupoids!

More precisely, we should replace \(\mathbb{N}\) by the groupoid \(\mathbb{B}\) of all symmetric groups.
The notion of polynomial functor generalizes in any locally cartesian closed category.
The notion of polynomial functor generalizes in any locally cartesian closed category.

...but the category Gpd is not cartesian closed!
The notion of polynomial functor generalizes in any locally cartesian closed category.

...but the category \textbf{Gpd} is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy (slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.
Polynomial functors in groupoids

The notion of polynomial functor generalizes in any locally cartesian closed category.

...but the category Gpd is not cartesian closed!

Kock has identified that if we perform all the usual constructions up to homotopy (slice, pullbacks, etc.), we recover a suitable setting to define polynomial functors.

This requires properly defining and using all the usual constructions in a suitable 2-categorical sense.
Polynomial functors in groupoids

Given a polynomial P

$$E \xrightarrow{p} B$$

the induced polynomial functor

$$\left[P \right] : \text{Gpd} \to \text{Gpd}$$

$$X \mapsto \int_{b \in B} E_b$$

where E_b is the homotopy fiber of p at b and

$$\int_{b \in E} E_b = \sum_{b \in \pi_0(B)} X_b / \text{Aut}(b)$$

where the quotient is to be taken homotopically...
Part II

Formalization in Agda
There is a framework in which everything is constructed up to homotopy for free: homotopy type theory.

Let’s formally develop the theory of polynomials in this setting.
Some notations

Notations:

- **Type**: the type of all types
Some notations

Notations:

- **Type**: the type of all types
- **$t \equiv u$**: equality between terms t and u
Some notations

Notations:

- **Type**: the type of all types
- **$t \equiv u$**: equality between terms t and u
- **$A \simeq B$**: equivalence between types A and B
Some notations

Notations:

- Type: the type of all types
- $t \equiv u$: equality between terms t and u
- $A \simeq B$: equivalence between types A and B

Axiom:

- univalence: $(A \equiv B) \simeq (A \simeq B)$
Notations:

- **Type**: the type of all types
- **$t \equiv u$**: equality between terms t and u
- **$A \simeq B$**: equivalence between types A and B

Axiom:

- **univalence**: $(A \equiv B) \simeq (A \simeq B)$

Homotopy levels (type = space):
Some notations

Notations:

- **Type**: the type of all types
- **t ≡ u**: equality between terms t and u
- **A ≃ B**: equivalence between types A and B

Axiom:

- **univalence**: \((A ≡ B) ≃ (A ≃ B)\)

Homotopy levels (type = space):

- **propositions**: \(\text{is-prop } A = (x, y : A) \to x ≡ y\)
Some notations

Notations:

- Type: the type of all types
- $t \equiv u$: equality between terms t and u
- $A \simeq B$: equivalence between types A and B

Axiom:

- univalence: $(A \equiv B) \simeq (A \simeq B)$

Homotopy levels (type = space):

- propositions: $\text{is-prop } A = (x \ y : A) \to x \equiv y$
- sets: $\text{is-set } A = (x \ y : A) \to \text{is-prop } (x \equiv y)$
Some notations

Notations:

- **Type**: the type of all types
- **$t \equiv u$**: equality between terms t and u
- **$A \simeq B$**: equivalence between types A and B

Axiom:

- **univalence**: $(A \equiv B) \simeq (A \simeq B)$

Homotopy levels (**type** = **space**):

- **propositions**: $\text{is-prop } A = (x \ y : A) \to x \equiv y$
- **sets**: $\text{is-set } A = (x \ y : A) \to \text{is-prop } (x \equiv y)$
- **groupoids**: $\text{is-groupoid } A = (x \ y : A) \to \text{is-set } (x \equiv y)$
A polynomial is

\[I \leftrightarrow^s E \rightarrow^p B \rightarrow^t J \]

We are tempted to formalize it as

```haskell
record Poly (I J : Type) : Type₁ where
  field
  B : Type
  E : Type
  t : B \rightarrow J
  p : E \rightarrow B
  s : E \rightarrow I
```

but this is not very good because operations on those involve many handling of equalities.
Formalizing polynomials

A polynomial is

\[I \leftarrow^s E \rightarrow^p B \rightarrow^t J \]

We formalize it as a container:

record Poly (I J : Type) : Type₁ where
 field
 Op : J → Type
 Pm : (i : I) → {j : J} → Op j → Type
A polynomial is

\[I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J \]

We formalize it as a **container**:

```
record Poly (I J : Type) : Type₁ where
  field
    Op : J → Type
    Pm : (i : I) → {j : J} → Op j → Type
```

The identity is

\[
\text{Id} : \text{Poly } I I
\]

\[
\text{Op } \text{Id } i = \top
\]

\[
\text{Pm } \text{Id } i \{j = j\} \text{ tt } = i \equiv j
\]
A polynomial is

\[I \leftarrow^s E \xrightarrow{p} B \xrightarrow{t} J \]

We formalize it as a \textbf{container}:

\begin{verbatim}
record Poly (I J : Type) : Type₁ where
 field
 Op : J → Type
 Pm : (i : I) → \{j : J\} → Op j → Type
\end{verbatim}

We sometimes write

\[I \rightsquigarrow J = \text{Poly} \ I \ J \]
The polynomial functor induced by a polynomial P is

\[[_] : I \rightsquigarrow J \to (I \to \text{Type}) \to (J \to \text{Type}) \]

\[[_] P \times j = \Sigma (\text{Op } P j) (\lambda c \to (i : I) \to (p : Pm P i c) \to (X i)) \]
The polynomial functor induced by a polynomial \(P \) is

\[
\lfloor _ \rfloor : I \leadsto J \to (I \to \text{Type}) \to (J \to \text{Type})
\]

\[
\lfloor _ \rfloor \; P \; X \; j = \Sigma \; (\text{Op} \; P \; j) \; (\lambda \; c \to (i : I) \to (p : \text{Pm} \; P \; i \; c) \to (X \; i))
\]

The composite of two functors is

\[
_ \cdot _ : I \leadsto J \to J \leadsto K \to I \leadsto K
\]

\[
\text{Op} \; (P \cdot Q) = \lfloor Q \rfloor \; (\text{Op} \; P)
\]

\[
\text{Pm} \; (_ \cdot _ \; P \; Q) \; i \; (c, a) = \Sigma \; J \; (\lambda \; j \to \Sigma \; (\text{Pm} \; Q \; j \; c) \; (\lambda \; p \to \text{Pm} \; P \; i \; (a \; j \; p)))
\]
Morphisms of polynomials

The type of morphisms between two polynomials is

```lean
record Poly→ (P Q : Poly I J) : Type where
  field
  Op→ : {j : J} → Op P j → Op Q j
  Pm≃ : {i : I} {j : J} {c : Op P j} → Pm P i c ≃ Pm Q i (Op→ c)
```
Theorem

We can build a pre-bicategory of types, polynomials and their morphisms.
Theorem
We can build a pre-bicategory of types, polynomials and their morphisms.

Theorem
We can build a bicategory of groupoids, polynomials in groupoids and their morphisms.
Theorem

This bicategory is cartesian.
Theorem

This bicategory is cartesian.

The product is \sqcap on objects, left projection is

$$\text{proj}_l : (I \sqcap J) \rightsquigarrow I$$

$\text{Op} \ \text{proj}_l \ i = \top$

$\text{Pm} \ \text{proj}_l \ (\text{inl} \ i) \ {i'} \ \text{tt} = i \equiv i'$

$\text{Pm} \ \text{proj}_l \ (\text{inr} \ j) \ {i'} \ \text{tt} = \bot$

and pairing is

$$\text{pair} : (I \rightsquigarrow J) \to (I \rightsquigarrow K) \to I \rightsquigarrow (J \sqcap K)$$

$\text{Op} \ (\text{pair} \ P \ Q) \ (\text{inl} \ j) = \text{Op} \ P \ j$

$\text{Op} \ (\text{pair} \ P \ Q) \ (\text{inr} \ k) = \text{Op} \ Q \ k$

$\text{Pm} \ (\text{pair} \ P \ Q) \ i \ {\text{inl} \ j} \ c = \text{Pm} \ P \ i \ c$

...
In order to define the 1-categorical closure, the plan was:

\[
\text{Set} \xrightarrow{\sim} \text{Set}_{\text{fin}} \xrightarrow{\sim} \mathbb{N}
\]
In order to define the 1-categorical closure, the plan was:

\[\text{Set} \rightsquigarrow \text{Set}_{\text{fin}} \rightsquigarrow \mathbb{N} \]

For the 2-categorical closure the plan is

\[\text{Gpd} \rightsquigarrow \text{Gpd}_{\text{fin}} \rightsquigarrow \mathbb{B} \]

Here, \(\mathbb{B} \) is the groupoid with \(n \in \mathbb{N} \) as objects and \(\Sigma_n \) as automorphisms on \(n \).
We write $\text{Fin } n$ for the canonical finite type with n elements: its constructors are 0 to $n-1$.
We write \(\text{Fin } n \) for the canonical finite type with \(n \) elements: its constructors are 0 to \(n-1 \).

\[
\text{data Fin : } \mathbb{N} \to \text{Set where}
\]
\[
\text{zero : } \{n : \mathbb{N}\} \to \text{Fin (suc n)} \\
\text{suc : } \{n : \mathbb{N}\} (i : \text{Fin n}) \to \text{Fin (suc n)}
\]
Finite types

The predicate of being finite is

\[
is\text{-finite} : \text{Type} \to \text{Type} \\
is\text{-finite} \ A = \Sigma \mathbb{N} (\lambda n \to \parallel A \simeq \text{Fin} \ n \parallel)
\]
Finite types

The predicate of being finite is

$$\text{is-finite} : \text{Type} \to \text{Type}$$
$$\text{is-finite } A = \Sigma \mathbb{N} (\lambda n \to \parallel A \simeq \text{Fin } n \parallel)$$

The type of finite types is

$$\text{FinType} : \text{Type}_1$$
$$\text{FinType} = \Sigma \text{Type} \text{ is-finite}$$
The predicate of being finite is

\[\text{is-finite} : \text{Type} \to \text{Type} \]
\[\text{is-finite} \ A = \Sigma \ N \ (\lambda \ n \to \ |\ A \simeq \text{Fin} \ n |) \]

The type of finite types is

\[\text{FinType} : \text{Type}_1 \]
\[\text{FinType} = \Sigma \ \text{Type} \ \text{is-finite} \]

(note that this is a large type)
A polynomial is **finitary** when, for each operation, the total space of its parameters is finite:

\[
\text{is-finitary} : (P : I \to J) \to \text{Type}
\]

\[
\text{is-finitary } P = \{j : J\} \ (c : \text{Op } P \ j) \to \text{is-finite } (\Sigma I (\lambda i \to \text{Pm } P \ i \ c))
\]
A small model for finite types

The type of integers is

data \(\mathbb{N} \) : Type where
 zero : \(\mathbb{N} \)
 suc : \(\mathbb{N} \to \mathbb{N} \)
The type \(\mathcal{B} \) is

\[
\text{data } \mathcal{B} : \text{Type where }
\begin{align*}
\text{obj} & : \mathbb{N} \to \mathcal{B} \\
\text{hom} & : \{m, n : \mathbb{N}\} \ (\alpha : \text{Fin } m \cong \text{Fin } n) \to \text{obj } m \equiv \text{obj } n \\
\text{id-coh} & : (n : \mathbb{N}) \to \text{hom } \{n = n\} \cong \text{refl} \equiv \text{refl} \\
\text{comp-coh} & : \{m, n, o : \mathbb{N}\} \ (\alpha : \text{Fin } m \cong \text{Fin } n) \ (\beta : \text{Fin } n \cong \text{Fin } o) \to \\
& \quad \text{hom } (\cong \text{-trans } \alpha \ \beta) \equiv \text{hom } \alpha \cdot \text{hom } \beta
\end{align*}
\]

(this is a small higher inductive type!)
The type B is

\[
\text{data } B : \text{Type where }
\begin{align*}
\text{obj} & : \mathbb{N} \to B \\
\text{hom} & : \{m, n : \mathbb{N}\} (\alpha : \text{Fin } m \simeq \text{Fin } n) \to \text{obj } m \equiv \text{obj } n \\
\text{id-coh} & : (n : \mathbb{N}) \to \text{hom } \{n = n\} \simeq \text{refl } \equiv \text{refl} \\
\text{comp-coh} & : \{m, n, o : \mathbb{N}\} (\alpha : \text{Fin } m \simeq \text{Fin } n) (\beta : \text{Fin } n \simeq \text{Fin } o) \to \\
& \quad \text{hom } (\simeq \text{-trans } \alpha \beta) \equiv \text{hom } \alpha \cdot \text{hom } \beta
\end{align*}
\]

(this is a small higher inductive type!)

Theorem
\[
\text{FinType } \simeq B.
\]
The closure

We define

\[\text{Exp} : \text{Type} \to \text{Type}_1 \]
\[\text{Exp } I = I \to \text{Type} \]

Theorem

Ignoring size issues, for polynomials we have

\[(I \sqcup J) \Rightarrow K \simeq I \Rightarrow (\text{Exp } J \times K) \]
The closure

We define

\[\text{Exp} : \text{Type} \rightarrow \text{Type}_1 \]
\[\text{Exp } I = \Sigma (I \rightarrow \text{Type}) (\lambda F \rightarrow \text{is-finite} (\Sigma I F)) \]

Theorem

Ignoring size issues, for finitary polynomials we have

\[(I \sqcup J) \sim K \simeq I \sim (\text{Exp } J \times K) \]
The closure

We define

\[\text{Exp} : \text{Type} \to \text{Type}_1 \]

\[\text{Exp } I = \Sigma \text{FinType} (\lambda N \to \text{fst } N \to I) \]

Theorem

Ignoring size issues, for finitary polynomials we have

\[(I \sqcap J) \rightsquigarrow K \simeq I \rightsquigarrow (\text{Exp } J \times K) \]
We define

$\text{Exp : Type } \rightarrow \text{Type}$

$\text{Exp } I = \Sigma B (\lambda b \rightarrow B\text{-to-Fin } b \rightarrow A)$

Theorem

For finitary polynomials we have

$$(I \sqcup J) \leadsto K \simeq I \leadsto (\text{Exp } J \times K)$$
Note that

\[\text{Exp} : \text{Type} \to \text{Type} \]
\[\text{Exp} \; I = \Sigma \; B \; (\lambda \; b \to \; B\text{-to-Fin} \; b \to \; A) \]

is the free pseudo-commutative monoid!