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Concurrent programs

We are interested in concurrent programs:
I they consist in multiple subprograms running in parallel,
I their scheduling is inherently non-deterministic.

A || B  

A

��

B

��

B �� A��

They raise specific problems:
I how can we efficiently verify those programs?
I how can we represent the state space of those programs?

(= all possible states the program can be)
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We should understand
the structure of computations,

applications will follow.
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The geometric approach
The general idea is that we are going to interpret the state space
of programs as a geometric space

Pa;Pb;Pc;Va;Pf ;Vc;Vb;Vf

|| Pd;Pe;Pa;Vd;Pc;Ve;Va;Vc

|| Pb;Pf ;Vb;Pd;Vf ;Pe;Vd;Ve

 

p1

p2

p3
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which helps programmers
I provides a way to visualize programs
I helps to come up with new methods
I allows the use of powerful invariants

(fundamental category, curvature, homology, etc.)
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The geometric approach
The general idea is that we are going to interpret the state space
of programs as a geometric space

Pa;Pb;Pc;Va;Pf ;Vc;Vb;Vf

|| Pd;Pe;Pa;Vd;Pc;Ve;Va;Vc

|| Pb;Pf ;Vb;Pd;Vf ;Pe;Vd;Ve

 

p1

p2

p3

which raises new questions
I requires adapting classical concepts in order to incorporate

the direction of time
I provides interesting classes of spaces
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Commutation of actions

In concurrent programs, some actions can be interleaved

x := 5 || x := 9

which means that we have the following executions:

x:=5

��

x:=9

��

x:=9
��

x:=5
��

In fact, the resulting x could even be different from 5 and 9!
(we should ensure that the two actions are mutually exclusive)
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Commutation of actions

In concurrent programs, some actions do commute

x := 5 || y := 9

in the sense that their order do not matter

x:=5

��

y:=9

��

y:=9
��

�

x:=5
��
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Commutation of actions

Two executions which are equivalent up to reordering of
commuting actions give rise to the same result:

we can reduce the state-space!
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Truly concurrent semantics

The control-flow graph should incorporate this information of
commutation between actions:

A

��

B

��

B
��

�

A
��

This is called true concurrency: Mazurkiewicz traces, trace
monoids, asynchronous transition systems, transition systems
with independence, automata with concurrency relations, ...
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I
—
THE
TITLE
—

(Geometric Semantics
for

Concurrent Programs)
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Concurrent programs

(Herlihy, ...)

I am interested in various notions of “concurrent programs”.

I An imperative programming language:

(if x = 3 then y := 1 else y := 2) || z := 5

y:=1

��

z:=5

��

z:=5
��

�

y:=1
��

We want to verify programs, reduce the state-space, find
invariants, find problematic code (deadlocks / dead code),
etc.
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Concurrent programs
(Herlihy, ...)

I am interested in various notions of “concurrent programs”.

I Asynchronous protocols with a shared memory:

(U1;S1)∗ || (U2;S2)∗ || . . . || (Un;Sn)∗

Ui

��

Uj

��

Uj ��

�

Ui��

Which tasks can be implemented in this model, in the
presence of failures?
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Concurrent programs

(Herlihy, ...)

I am interested in various notions of “concurrent programs”.

I Distributed version control systems:

abc

|| ##
ab′c

##

� ab′′c

{{
???

What are the atomic operations and their rules?
How to represent the states of the system in the case of
conflicting operations?
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Concurrent programs

(Herlihy, ...)

I am interested in various notions of “concurrent programs”.

I (String) rewriting systems:

sts → tst ss → 1 tt → 1

ststs

xx &&
tstts

�� �
sttst

��
tss

&&

sst

xxt

We want to show confluence, reduce the number of rules,
etc.
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GEOMETRIC
MODELS
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Geometric models

The model of asynchronous graphs is already quite geometric:

x

~~   
y1

  

� y2

~~
z

we have:
I 0-dimensional objects: the vertices
I 1-dimensional objects: the edges
I 2-dimensional objects: the commutation squares
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Geometric models
(Pratt, van Glabbeek, ...)

In fact we could also take in account commutation of n actions:

κ(a) = 0 κ(a) = 1 κ(a) = 2 κ(a) = 3

and more. In precubical sets, we have:
I 0-dimensional cubes: points
I 1-dimensional cubes: edges
I 2-dimensional cubes: squares
I . . .

These can be defined as a suitable presheaf category �̂: each
n-cube has a source and target in dimension i for 0 ≤ i < n.
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Geometric models
(Pratt, Goubault, Raussen, Haucourt, . . . )

These models are still very algebraic in nature. However, we can
realize them as topological spaces:

|−| : �̂→ Top

For instance:

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pa

Pb

Pb

Vb

Vb

Va

Va

� �

� �
 

Pa Pb Vb Va

Pb

Pa

Va

Vb

dipath = execution
dihomotopy = equivalence
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Geometric models
(Pratt, Goubault, Raussen, Haucourt, . . . )

These models are still very algebraic in nature. However, we can
realize them as directed topological spaces:

|−| : �̂→ dTop

For instance:

Pb
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Pb

Pa
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Geometric models
In order to be able to speak about quantitative properties, one
would also like to consider metric models

|−| : �̂→Met

For instance:

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pa

Pb

Pb

Vb

Vb

Va

Va

� �

� �
 

Pa Pb Vb Va

Pb

Pa

Va

Vb

dipath = execution
dihomotopy = equivalence
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Geometric models
(Burroni, ...)

Presentations of (higher-)categories, called polygraphs, involve
relations which are not necessarily squares:

〈s, t | st ⇒ ts, sts ⇒ tst〉

can be depicted as

s

}}
t

!!

t !!

⇒
s}}

s
��

t
��

t
��
⇒ s

��

s �� t��
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I will present some aspects of these models and
focus on some important results:
I give an overview of the methods in the field
I give an overview of their possible applications
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II
—

MUTEXES
AND THE
CUBE

PROPERTY
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Control flow graphs
To any program one can associate a control flow graph:

x := 43;
while x != 1 do (

if x mod 2 != 0 then
(x := 3*x; x := x+1)

else
x := x/2

);
print("Reached 1!")

sp

x:=43

x!=1

x:=3*x

x:=x+1

x := x/2

¬(x!=1)

print("Reached 1!")

tp
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How can we extend these to concurrent programs?
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Mutexes
In order to prevent incompatible actions from running in parallel,
one uses mutexes, which are resources on which two actions are
available
I Pa: take the resource a
I Va: release the resource a

and implementation
I guarantees that a resource has been taken at most once at

any moment,
I forbids releasing a resource which as not been taken.

Our earlier program should be rewritten as

Pa;x:=5;Va || Pa;x:=9;Va
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Mutexes

In the program

Pa;x:=5;Va || Pa;x:=9;Va

the possible executions are

Pa

zz
Pa

$$
x:=5

zz
Pa
$$

�
Pa
zz

x:=9

$$
Va

zz
Pa
$$

�
x:=5
zz

x:=9
$$

�
Pa
zz

Va

$$

Pa $$

�
Va
zz $$

x:=9
$$

�
x:=5
zz

Va
$$

�

Pazz

x:=9 $$

�
Va
zz

Va
$$

�

x:=5zz

Va $$

�

Vazz
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Mutexes

In the program

Pa;x:=5;Va || Pa;x:=9;Va

the possible executions are

Pa

zz
Pa

$$
x:=5

zz
x:=9

$$
Va

zz
Va

$$

Pa $$ Pazz

x:=9 $$ x:=5zz

Va $$ Vazz
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The cubical semantics
Definition
The cubical semantics Čp of a program p is
I the precubical set Cp associated to p by induction:

Cp||q = Cp ⊗ Cq

I with forbidden vertices removed (and iterated cofaces)
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The cubical semantics
Definition
The cubical semantics Čp of a program p is
I the precubical set Cp associated to p by induction:

Cp||q = Cp ⊗ Cq

I with forbidden vertices removed (and iterated cofaces)

Lemma
The dipaths starting from the initial vertex are in bijection with
possible executions of the program.

Č... =

Pa

zz
Pa

$$
x:=5
zz

x:=9
$$

Va

zz
Va

$$

Pa $$ Pazz

x:=9 $$ x:=5zz

Va $$ Vazz 22 / 73



Dihomotopy between dipaths

Definition
The dihomotopy relation ∼̂ between dipaths is the smallest
congruence such that A .B ∼̂ B ′ .A′ whenever A .B � B ′ .A′:

A

��

B ′

��

B
��

�

A′
��

Proposition
For “coherent” programs, two dihomotopic executions lead to the
same state.
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III
—

HOMOTOPY
VS

DIHOMOTOPY
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Dipaths

From a topological point of view, instead of considering directed
paths (or dipaths)

A // B // C // or A .B .C

it is more natural to consider paths

A // oo B C // or A .B .C

where arrows can occur backward.
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Homotopy

Similarly, one would usual consider homotopy ∼ between paths:
the smallest congruence, containing dihomotopy ∼̂ and such that
for every edge

x A // y

we have
idx ∼ A .A A .A ∼ idy

Remark
Clearly f ∼̂ g implies f ∼ g, but converse is not generally true.
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Homotopy vs dihomotopy
(Fahrenberg)

Consider the following “matchbox”:

C1

��

B1

��

A1 //

C4

��

B4

��

C2

��

A4 //

C3

��

A2 //

B2 ��
B3

��
A3

//

where every square is filled excepting the top one:

((((((((hhhhhhhhA1 .B4 � B1 .A4
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Homotopy vs dihomotopy
(Fahrenberg)

Consider the following “matchbox”:

C1

��

B1

��

A1 //

C4

��

B4

��

C2

��

A4 //

C3

��

A2 //

B2 ��
B3

��
A3

//

We have

A1 .B4 ∼ B1 .A4 but not A1 .B4 ∼̂ B1 .A4
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Homotopy vs dihomotopy

C1

��

B1

��

A1 //

C4

��

B4

��

C2

��

A4 //

C3

��

A2 //

B2 ��
B3

��
A3

//

A1 .B4

∼ C1 .C1 .A1 .B4

∼ C1 .A2 .C4 .B4

∼ C1 .A2 .B3 .C3

∼ C1 .B2 .A3 .C3

∼ B1 .C2 .A3 .C3

∼ B1 .A4 .C3 .C3
∼ B1 .A4

This example cannot be obtained as the semantics of a program!
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Binary conflicts

In a situation such as

Pa||Pa||B =

Pa

yy
B
��

Pa

&&

B
��

Pa %%yy %%
Payy

B
��

Pa $$

x

B
�� Pazz
y

the vertex x is forbidden (and has to be removed).

In this case, the vertex y has to be removed too, because B 6= Va!
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The cube property

Proposition
Semantics of programs satisfy the cube property:

A

�� ��

C ′

��

B
��

�

�� ��

�

B ′

��

C ��

�

A′��

⇔

A

��

C ′

��

B
�� ��

�

��
B ′

��

C ��

�

��

�

A′��

(and other more minor properties).

31 / 73



Homotopy vs dihomotopy

Theorem
In a precubical set satisfying the cube property, two dipaths are
dihomotopic if and only if they are homotopic: the inclusion
functor

~Π1(C ) ↪→ Π1(C )

is faithful.

Proof.
Uses 2-dimensional rewriting techniques!
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Some consequences

From this follows many interesting properties:
I normal forms for dihomotopy classes of paths,
I an easy definition of universal covers,
I ...
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IV
—

NON-POSITIVELY
CURVED

PRECUBICAL
SETS
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Metric semantics

A semantics in metric spaces is desirable:
I we want to have a notion of length of paths

(corresponding to the duration of an execution),
I interesting notions, such as curvature are available in this

context.
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Geometric realization

In order to define a geometric realization |−| in metric spaces, we
should use the usual formula

|C | =

∫ n∈�
Cn · I n

However, the category of metric spaces does not have enough
colimits.

We should consider Lawvere’s generalized metric spaces!
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Generalizing metric spaces
Definition
A metric space is a space X equipped with a metric
d : X × X → [0,∞] such that, given x , y , z ∈ X ,

(1) point equality: d(x , x) = 0
(2) triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)
(3) finite distances: d(x , y) <∞
(4) separation: d(x , y) = 0 implies x = y
(5) symmetry: d(x , y) = d(y , x)

We consider contracting maps f : X → Y :

dY (f (x), f (x ′)) ≤ dX (x , x ′)

Unfortunately, the resulting category is not cocomplete!
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Generalizing metric spaces
Definition
A metric space is a space X equipped with a metric
d : X × X → [0,∞] such that, given x , y , z ∈ X ,

(1) point equality: d(x , x) = 0
(2) triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)
(3) finite distances: d(x , y) <∞
(4) separation: d(x , y) = 0 implies x = y
(5) symmetry: d(x , y) = d(y , x)

Intuitively, X + Y should be such that

d(x , y) = ∞

for x ∈ X and y ∈ Y .
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Generalizing metric spaces
Definition
A metric space is a space X equipped with a metric
d : X × X → [0,∞] such that, given x , y , z ∈ X ,

(1) point equality: d(x , x) = 0
(2) triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)
(3) finite distances: d(x , y) <∞
(4) separation: d(x , y) = 0 implies x = y
(5) symmetry: d(x , y) = d(y , x)

Consider the relation ≈ on X identifying a family of points (xi)i∈N
such that d(xi , y) = 1/i for some y

x1 x2 x3 x4 x5 y

Intuitively, in X/ ≈, we should have d([xi ], [y ]) = 0.
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Generalizing metric spaces
Definition
A metric space is a space X equipped with a metric
d : X × X → [0,∞] such that, given x , y , z ∈ X ,

(1) point equality: d(x , x) = 0
(2) triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)
(3) finite distances: d(x , y) <∞
(4) separation: d(x , y) = 0 implies x = y
(5) symmetry: d(x , y) = d(y , x)

We can encode direction in the distance!

d(x , y) =
∧{

ρ− θ
∣∣ x = ei2πθ, y = ei2πρ, ρ ≥ θ

}
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Generalized metric spaces
(Lawvere)

Definition
A generalized metric space is a space X equipped with a metric
d : X × X → [0,∞] such that, given x , y , z ∈ X ,

(1) point equality: d(x , x) = 0
(2) triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)

Proposition
The category GMet enjoys the following:
I the category GMet is complete and cocomplete,
I the forgetful functor GMet→ Set has left and right adjoints,
I the forgetful functor GMet→ Top preserves finite (co)limits.
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Metric realization

We can define a metric realization functor

|−| : �̂ → GMet

Theorem
For a locally finite precubical set C, the space |C |
I has the usual geometric real. as underlying topological space
I is a geodesic length space.
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Non-positively curved spaces
The cube property for precubical sets is analogous to Gromov’s
condition for characterizing npc cubical complexes:

Theorem
Given a finite dimensional geometric precubical set C satisfying
the cube property, it metric realization |C | is non-positively
curved, i.e. locally CAT(0).
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In fact, many definitions and properties of
npc cubical complexes

can be carried on directly in the setting of
precubical sets!
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Some consequences

We have the properties of npc spaces:
I |C | is locally uniquely geodesic
I the universal cover is npc,
I the fundamental group is automatic,
I links with geometric group theory,
I . . .

This suggests generalizations of the cube property:
I what are the corresponding notion of “npc”?
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V
—

DISTRIBUTED
VERSION
CONTROL
SYSTEMS
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DVCS
Distributed Version Control Systems are used when working
collaboratively on files and import modifications from other people

. . .

A patch stores the difference between two files
(i.e. the list of inserted and deleted lines).

Users can perform two actions:
I commit the difference between the current version and the

last committed version as a patch to a server
I update its current version by importing all the new patches

on the server

Intuitively, we have a category of files and patches.
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Using DVCS

Alice Bob

b

b

a
b b

c

a
b
c

Merging modifications is naturally modeled by pushouts.

In particular, this provides residual patches!
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Conflicts
However, not every pair of coinitial morphisms has a pushout!

a
b

f

��

g

��a
c
b

��

a
d
b

��
?

a
<<<<<<< HEAD
c
=======
d
>>>>>>> 5c55f7c1c4ad1e02be6d0474e858bd8ad712e22b
b
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Handling conflicts

We should extend our model to account for “files with conflicts”
and their handling.

There were many proposals for this. Instead of discussing the
relative merits of each of those, we instead look for a

universal property

that this extension should satisfy: we want to

formally add pushouts.
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Handling conflicts

We should extend our model to account for “files with conflicts”
and their handling.

There were many proposals for this. Instead of discussing the
relative merits of each of those, we instead look for a

universal property

that this extension should satisfy: we want to

compute a conservative finite cocompletion.
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Enforcing confluence

This is a different perspective on concurrency:
I usually, we want to check the confluence property:

∗

��

∗

��

∗
��

∼̂
∗

��

I here, we want to enforce confluence
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Let’s begin with a simplified model:
I one file
I lines can only be inserted
I lines don’t have contents
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The category of files and insertions
Definition
We write L for the category whose
I objects are sets {0, . . . , n − 1} for some n ∈ N,
I morphisms are injective increasing functions:

0 0

1 1

2 2

3

4

Remark
This is also known as the augmented presimplicial category.
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The category of files and insertions
Definition
We write L for the category whose
I objects are sets {0, . . . , n − 1} for some n ∈ N,
I morphisms are injective increasing functions:

0 0

1 1

2 2

3

4

Proposition
This is the free monoidal category containing an object 1 and a
morphism

η : 0→ 1
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The category of files and insertions
Definition
We write L for the category whose
I objects are sets {0, . . . , n − 1} for some n ∈ N,
I morphisms are injective increasing functions:

0 0

1 1

2 2

3

4

Remark
We can add labels to the lines by using a slice category
construction.
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The conservative finite cocompletion

The category P of “files with conflicts” should be the free
conservative finite cocompletion of L:

L
Y
��

F // C

P
F̃

??

with
I P, C with finite colimits
I Y ,F , F̃ preserving finite colimits
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Computing P

It is well-known that L̂ is the free cocompletion of L:

L
Y
��

F // C

L̂
F̃

@@

Theorem (Kelly)
The free conservative cocompletion of L is the full subcategory
of L̂ whose objects are continuous presheaves.

The finite cocompletion can be obtained by further restricting to
“finite” presheaves.
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Computing P

From this one can extract an explicit description of P.

Theorem
The free conservative finite cocompletion P of L is the category:
I objects (A, <) are finite sets equipped with a transitive

relation <,
I a morphism f : A→ B is a function respecting the relation.
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Computing in P

We have all pushouts, e.g. the pushout of

a′

a

c

b

f1←−
a

b

f2−→
a

d

b

is
a′

a

c d

b
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A free cocompletion of L
Every object in P can be obtained as a colimit of objects in L.
For instance, consider the morphisms

s−→ and t−→

By coproduct, we get a “sequentialization” morphism

s
""

//

seq

��

oo

t
||

The pushout of

seq←−− seq′−−→ is
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Computing in P

Notice that we get a way of identifying two independent lines,
which can be used to solve a conflict.

id• ""

//

merge
��

oo

id•||
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Extensions

There are many possible extensions of this work:
I patches with deletions,
I structured files,
I many files,
I . . .
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Pijul
(Meunier, Becker, ...)

http://pijul.org/
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Presentations of n-categories
(Burroni, ...)

An n-category can be presented by a polygraph, i.e. described as
I the free n-category on given 0-, 1, . . . , n-generators,
I quotiented by a congruence generated by relations on n-cells.

P0

i0

��

P1
s0

zz
t0

zz
i1

��

P2
s1

zz
t1

zz
i2

��

s2

||
t2

||

. . . Pn−1
sn−2

yy tn−2
yy

in−1

��

Pn
sn−1

zz tn−1
zz

P ∗0 P ∗1
s∗0oo
t∗0

oo P ∗2
s∗1oo
t∗1

oo
s∗2oo
t∗2

oo . . . P ∗n−1
s∗n−2oo
t∗n−2

oo

Remark
Since the quotient is performed on n-cells the underlying
(n − 1)-category is free!

Question
Can we coherently quotient in lower dimensions?
We provide an answer for n = 1 and n = 2.
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Presentations of categories.
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Graphs

Definition
A graph G = (V , s, t,E ) consists of
I a set V of vertices
I a set E of edges
I source and target functions s, t : E → V

The free category generated by G has
I objects: vertices V
I morphisms: paths E ∗ (with concatenation as composition)

E
s

~~ t~~
V

E ∗
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Graphs

Definition
A graph G = (V , s, t,E ) consists of
I a set V of vertices
I a set E of edges
I source and target functions s, t : E → V

The free category generated by G has
I objects: vertices V
I morphisms: paths E ∗ (with concatenation as composition)

E
s

~~ t~~
i
��

V E ∗
s∗oo

t∗
oo
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Presentations of categories

Definition
A presentation P of category consists of
I a graph (the signature)
I a set of rules relating a path with another path with same

source and target

y1
f2 // y2

f3 // y3 f4

��
x

f1 33

g1 ..

ρ
ww� z

y g2

88

The presented category ‖P‖ is the free category on the graph
with paths taken modulo the congruence generated by rules.
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Presentations of categories (formally)
Definition
A presentation P of category consists of

P1
s0

~~ t0~~
i1
��

P2
s1

~~ t1~~
P0 P∗1

s∗0oo

t∗0
oo

I a set P0 of object generators
I a set P1 of morphism generators
I a set P2 of relations

with s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Question
How do we add a quotient on objects too?
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Presentations modulo
Definition
A presentation modulo (P, P̃1) of category consists of
I a presentation of category P,
I a set P̃1 ⊆ P1 of equational generators.

x1
f1

~~
g1

��

f4

  
x2

f2   

ρ
=⇒ x4

f3~~

g2gg

x3

g3

44

P0 = {xi}
P1 = {fi , gi}
P̃1 = {fi}
P2 = {ρ}

Since, we want to consider objects modulo relations in P̃1, it is
natural to suppose that

Assumption
The abstract rewriting system (P0, P̃1) is convergent.
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The category presented modulo
r1

$$s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

dd s3
oo

Given a presentation modulo (P, P̃1), we
have three possible ways of defining the pre-
sented category from ‖P‖:

r1

$$s1 //
s2

oo

1. quotient by equational generators: turn
them into identities,

��

r1

$$s1 //
s2

oo

r2

��
r4

OO

s4 //

r3

dd s3
oo

OO 2. localize by equational generators: turn
them into isomorphisms,

r

��

s

&&s ′

ff
3. restrict to objects which are normal
forms wrt equational generators.
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The main result

Theorem
Given a presentation modulo (P, P̃1) satisfying
suitable assumptions, the three constructions are related by

normal
forms

‖P‖↓ P̃1
iso //

equiv %%

‖P‖/P̃1

equivzz

quotient

localization P[P̃1
−1]

Remark
This generalizes Ore-Dehornoy conditions ensuring that a
(presented) category embeds into its enveloping groupoid.
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Remarks
I One of these assumptions is a variant of the cube property

I We need the notion of residual for rewriting paths
I The motivations (and tools) are the same as for defining the

category of components (Goubault, Haucourt, ...):

x00

x01

x02

x03

x04

x10

x11

x13

x14

x20

x24

x30

x31

x33

x34

x40

x41

x42

x43

x44

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pa

Pb

Pb

Vb

Vb

Va

Va

� �

� �

 

x00

x01

x04

x10

x11

x33

x34

x40

x43

x44

Pb

Vb

Pa

Va

�

�

I . . . which is itself closely related to partial order reduction.
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In dimension 2

Presentations of 1-categories is a toy case, this has since then
been extended to monoidal categories (= 2-categories) to obtain
a presentation of

4×4
as a product of monoidal categories (with similar properties).
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VII
—

CONCLUSION
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Omitted work
There is more work in the manuscript:
I adj. between cubical models and classical ones (Winskel)

I relating partial order reduction and the cat. of components
I geometric models and asynchronous computability
I homotopical completion of rewriting systems
I preliminary implementation of polygraphs

z

y1

e2
>>

y2

e1
``

x
e1

``
e2

>>

a b c

d e

f g

h
i

e1 e2

0

0

(0,0)
@@

1

(1,0)
^^

1
(1,0)

^^

(0,0)

@@
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aa

sta

βa /7
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γ

QY

A

�
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sast
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δ

QY

B

�

aaas

C


�
sasas
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x0

f0

��
y1

g4 // y2
g5 // y3

x0

>>

  

x0

f0

��
f1 //

f2

GG

⇓α0

⇓α1
y1

g4 // y2
g5 // y3 y3

``

~~
x0

f2

GGy1 g4
// y2 g5

// y3

��
OO
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Unifying viewpoints and techniques

Computation

Algebra
}}

==

oo // Geometry
""

bb

Perspectives:
I higher-dimensional categories and rewriting:

I computational properties
I homotopical properties
I presentations of weak ∞-categories
I directed homotopy equivalence
I ...

I geometric invariants for asynchronous computations
I first links with geom. sem. and partially commutative monoids
I more invariants (Squier?)
I ... 72 / 73
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