Cubical Sets and Petri Nets: an Adjunction

Samuel Mimram

MeASI – CEA Saclay

11 January 2010
Concurrent computations

Programs tend to be concurrent

▶ processes, multi-core processors, networks, etc.

This raises new problems

▶ concurrent accesses to resources
▶ deadlocks
▶ etc.

A geometrical approach

▶ in order to regulate and verify concurrent programs, we should study their geometry
An adjunction

\[
\begin{align*}
\text{Petri nets} & \quad \leftrightarrow \quad \text{Cubical Sets} \\
a \text{ very well-known and studied model} & \quad \quad a \text{ geometrical model}
\end{align*}
\]
An adjunction

Petri nets \leftrightarrow Cubical Sets

a very well-known and studied model

$\text{pn}(C) \rightarrow N$

$C \rightarrow \text{cs}(N)$
Petri nets

An abstract representation of processes focused on resources:

Petri net: a graph whose vertices are either

- places (containing tokens)
- events (or transitions)
Petri nets

An abstract representation of processes focused on *resources*:

Petri net: a graph whose vertices are either

- *places* (containing *tokens*)
- *events* (or *transitions*)
Petri nets

An abstract representation of processes focused on *resources*:

Petri net: a graph whose vertices are either

- places (containing *tokens*)
- events (or *transitions*)
Typical situations

Petri nets can express **causality**:

Possible runs:
Typical situations

Petri nets can express **causality**:

![Petri net diagram]

Possible runs: a
Typical situations

Petri nets can express **causality**:

Possible runs: ab
Typical situations

Petri nets can express **conflict:**

![Petri net diagram](image)

Possible runs:
Typical situations

Petri nets can express **conflict**:

Possible runs: a
Typical situations

Petri nets can express **conflict:**

Possible runs: a or b
Typical situations

Petri nets can express independence:

Possible runs: ab or ba or aa or bb
Typical situations

Petri nets can express **independence**:

Possible runs: ab or ba or aa or bb
Typical situations

Petri nets can express **independence**:

Possible runs: ab or ba or aa or bb
Typical situations

Petri nets can express **loops**:

Possible runs: aaaaaaaa…
Taking multiplicities in account

More generally we consider nets in which a transition might need or produce multiple tokens of the same place:
Taking multiplicities in account

More generally we consider nets in which a transition might need or produce multiple tokens of the same place:
Petri nets, formally

A Petri net \((P, M_0, E, \text{pre}, \text{post})\) consists of

- a set \(P\) of places
- an initial marking \(M_0 \in \mathbb{N}^P\)
- a set \(E\) of events (or transitions)
- a precondition function \(\text{pre} : E \rightarrow \mathbb{N}^P\)
- a postcondition function \(\text{post} : E \rightarrow \mathbb{N}^P\)
Transitions

States

The “state” of a Petri net is a marking \(M \in \mathbb{N}^P \).
Transitions

States
The “state” of a Petri net is a marking \(M \in \mathbb{N}^P \).

Transitions
Given an event \(e \) and two markings \(M_1 \) and \(M_2 \), there is a transition

\[
M_1 \xrightarrow{e} M_2
\]

when there exists a marking \(M \) such that

\[
M_1 = M + \text{pre}(e) \quad \text{and} \quad M_2 = M + \text{post}(e)
\]
Transitions

States
The “state” of a Petri net is a marking $M \in \mathbb{N}^P$.

Transitions
Given an event e and two markings M_1 and M_2, there is a transition

\[M_1 \xrightarrow{e} M_2 \]

when there exists a marking M such that

\[M_1 = M + \text{pre}(e) \quad \text{and} \quad M_2 = M + \text{post}(e) \]

Runs
A run

\[M_0 \xrightarrow{e_1} M_1 \xrightarrow{e_2} M_2 \ldots M_{n-1} \xrightarrow{e_n} M_n \]

is a finite sequence of transitions from the initial marking M_0.
Semantics of Petri nets

To every Petri net N we want to associate a semantics $\mathcal{J}[N]$ which describes precisely the dynamic behavior of the net.
Semantics of Petri nets

To every Petri net N we want to associate a semantics $\llbracket N \rrbracket$ which describes precisely the dynamic behavior of the net.

Idea 1

$\llbracket N \rrbracket$ should be the set of words of events labeling a run of N.

\[
\llbracket N \rrbracket = \{ \varepsilon, a, b, ab, ba, aa, bb \}
\]
Semantics of Petri nets

To every Petri net N we want to associate a semantics $⟦N⟧$ which describes precisely the dynamic behavior of the net.

Idea 1

$⟦N⟧$ should be the set of words of events labeling a run of N.

\[
⟦N⟧ = \{ \varepsilon, a, b, ab, ba, aa, bb \}
\]

We loose too much structure by forgetting about states!
Semantics of Petri nets

Idea 2

$\llbracket N \rrbracket$ should be a graph whose

- vertices are reachable markings
- edges are transitions, labelled by events
Semantics of Petri nets

Idea 2

$[N]$ should be a graph whose

- vertices are reachable markings
- edges are transitions, labelled by events

We loose structure by forgetting about concurrency!
Semantics of Petri nets

Idea 2
\[\llbracket N \rrbracket\] should be a graph whose
- vertices are reachable markings
- edges are transitions, labelled by events

We lose structure by forgetting about concurrency!
Semantics of Petri nets

Idea 2

$\llbracket N \rrbracket$ should be a graph whose

- vertices are reachable markings
- edges are transitions, labelled by events

We loose structure by forgetting about concurrency!
Taking concurrency in account

\[
(x := 3 \mid x := 4) \text{ vs. } (x := 3 \mid y := 4)
\]
Taking concurrency in account

\[x := 3 \mid x := 4 \] vs. \[x := 3 \mid y := 4 \]
Taking concurrency in account

\[(x := 3 \mid x := 4) \text{ vs. } (x := 3 \mid y := 4)\]
Taking concurrency in account

- We can now distinguish between an “empty square” and a “filled square”.

\[
\begin{array}{ccc}
 a & b & c \\
 \text{empty cube} & \text{vs.} & \text{filled cube}
\end{array}
\]
Taking concurrency in account

- We can now distinguish between an “empty square” and a “filled square”.
- We should also go on in higher dimensions:

- empty cube vs. filled cube
So, to every Petri net we associate a **Cubical Set**
which is like a simplicial set with squares instead of triangles
So, to every Petri net we associate a **Cubical Set**
which is like a simplicial set with squares instead of triangles
whose arrows are labeled by events
From Petri nets to Cubical Sets

So, to every Petri net we associate a Cubical Set which is like a simplicial set with squares instead of triangles whose arrows are labeled by events with an initial position.
Recall that a (augmented) simplicial set is a functor $S : \Delta^{op} \to \text{Set}$.

Δ is the category of finite ordinals and increasing functions.

Geometric intuition:

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & \ldots \\
. & \cdot & \cdot & \cdot & \ldots \\
\end{array}
\]

\[
\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\]
Simplicial sets

- Recall that a (augmented) simplicial set is a functor $S : \Delta^{\text{op}} \to \text{Set}$.
- Δ is the category of finite ordinals and increasing functions.
- Geometric intuition:

$$
\begin{array}{cccccc}
0 & 1 & 2 & 3 & \ldots \\
\cdot & \cdot & \cdot & \cdot & \ldots
\end{array}
$$

- The arrows of Δ are generated by

$$
\delta^n_i : n \to n + 1 \quad \text{and} \quad \sigma^n_{i+1} : n + 2 \to n + 1
$$

with $n \in \mathbb{N}$ and $0 \leq i \leq n$, subject to equations

$$
\delta^n_{i+1} \delta^n_j = \delta^n_{j+1} \delta^n_i \quad \ldots
$$
Cubical sets

- A **cubical set** is a functor $C : \Box^{\text{op}} \to \text{Set}$.
- Geometric intuition:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
</table>

 ![Diagram of cubical set]

 ![Diagram of higher-dimensional cube]

 ![Diagram of even higher-dimensional cube]

 ...
Cubical sets

- A **cubical set** is a functor $C : \square^{\text{op}} \to \text{Set}$.
- Geometric intuition:

 $0 \quad 1 \quad 2 \quad 3 \quad \ldots$

 \ldots

 \ldots

 \ldots

- The category \square is generated by

 $\varepsilon_i^- : n \to n + 1 \quad \varepsilon_i^+ : n \to n + 1 \quad \eta_i : n + 1 \to n$
Cubical sets

- **A cubical set** is a functor $C : \square^{\text{op}} \to \text{Set}$.

- Geometric intuition:

 0 1 2 3 ...
 \[
 \begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 \end{array}
 \]

- The category \square is generated by

 - $\varepsilon_i^- : n \to n + 1$
 - $\varepsilon_i^+ : n \to n + 1$
 - $\eta_i : n + 1 \to n$

 source target degeneracy
The cubical category

The category □ is the category generated by

\[\varepsilon_i^- : n \to n + 1 \quad \varepsilon_i^+ : n \to n + 1 \quad \eta_i : n + 1 \to n \]

subject to the equations

\[\varepsilon_j^\alpha \varepsilon_i^\beta = \varepsilon_i^\beta \varepsilon_j^\alpha \quad \text{with } i < j, \alpha, \beta \in \{-, +\} \]

\[\eta_j \eta_i = \eta_{i-1} \eta_j \quad \text{with } i > j \]

\[\eta_j \varepsilon_i^\alpha = \begin{cases} \varepsilon_i^\alpha \eta_{j-1} & \text{if } i < j \\ \text{id} & \text{if } i = j \\ \varepsilon_i^\alpha \eta_j & \text{if } i > j \end{cases} \quad \text{with } \alpha \in \{-, +\} \]
Labeled cubical sets

A labeled cubical set on an alphabet Σ is

- a cubical set $C : \square^{\text{op}} \to \text{Set}$
- together with a labeling morphism $\lambda : C \to !\Sigma$
Labeled cubical sets

A labeled cubical set on an alphabet Σ is

- a cubical set $C : \square^{\text{op}} \to \text{Set}$
- together with a labeling morphism $\lambda : C \to !\Sigma$

What should $!\Sigma$ look like if $\Sigma = \{ a, b \}$?

![Diagram of labeled cubical sets]

In the diagram, $z \sim y_1 \sim y_2 \sim x$, with $b : y_1 \to y_2$ and $a : z \to x$. The arrows represent the labels for the morphisms.
Labeled cubical sets

A labeled cubical set on an alphabet Σ is

- a cubical set $C : \square^{\text{op}} \to \text{Set}$
- together with a labeling morphism $\lambda : C \to ! \Sigma$

What should $! \Sigma$ look like if $\Sigma = \{ a, b \}$?

$! \Sigma(0)$

$\{ \ast \}$
Labeled cubical sets

A labeled cubical set on an alphabet Σ is

- a cubical set $C : \square^{\text{op}} \to \text{Set}$
- together with a labeling morphism $\lambda : C \to ! \Sigma$

What should $! \Sigma$ look like if $\Sigma = \{a, b\}$?

![Diagram of labeled cubical set]

$! \Sigma(0)$ $! \Sigma(1)$

$\{\ast\}$ $\{\ast, a, b\}$
Labeled cubical sets

A **labeled cubical set** on an alphabet Σ is

- a cubical set $C : \square^{\text{op}} \to \text{Set}$
- together with a labeling morphism $\lambda : C \to ! \Sigma$

What should $! \Sigma$ look like if $\Sigma = \{ \ a, b \ \}$?

![Diagram of labeled cubical set]

$\begin{align*}
! \Sigma(0) & \quad \quad \quad \quad \quad \quad ! \Sigma(1) & \quad \quad \quad \quad \quad \quad ! \Sigma(2) \\
\{ \ * \ \} & \quad \quad \quad \quad \quad \quad \{ \ *, a, b \ \} & \quad \quad \quad \quad \quad \quad \{ \ *, a, b, ab, ba \ \}
\end{align*}$
Labeled cubical sets

A labeled cubical set on an alphabet Σ is

- a cubical set $C : \Box^{\text{op}} \to \text{Set}$
- together with a labeling morphism $\lambda : C \to \! \Sigma$

What should $\! \Sigma$ look like if $\Sigma = \{a, b\}$?

\begin{align*}
!\Sigma(0) & : \{\ast\} \\
!\Sigma(1) & : \{\ast, a, b\} \\
!\Sigma(2) & : \{\ast, a, b, ab, ba\} \\
\ldots & \\
\end{align*}
Technically

- Defining Σ involves
 - defining all the $\Sigma(n)$
 - defining the generators for maps
 - verifying the equations.

- We have two possible labels for the preceding square.
A monoidal definition of cubical sets

The cubical category □ is a monoidal category:

- We have a tensor product ⊗
A monoidal definition of cubical sets

The cubical category \(\square \) is a **monoidal category**:

- We have a tensor product \(\otimes \)

\[
\begin{array}{ccc}
m_1 & \xrightarrow{f} & n_1 \\
\end{array}
\]
A monoidal definition of cubical sets

The cubical category □ is a **monoidal category**:
- We have a tensor product \(\otimes \)

\[
\begin{array}{c}
m_2 \xrightarrow{g} n_2 \\
m_1 \xrightarrow{f} n_1
\end{array}
\]
A monoidal definition of cubical sets

The cubical category \Box is a **monoidal category**:

- We have a tensor product \otimes

$$m_1 + m_2 \xrightarrow{f \otimes g} n_1 + n_2$$
A monoidal definition of cubical sets

The cubical category \(\square \) is a **monoidal category**:

- We have a tensor product \(\otimes \)

\[
m_1 + m_2 \xrightarrow{f \otimes g} n_1 + n_2
\]

- We also have a unit object: 0
A monoidal definition of cubical sets

The category \(\square \) is the category generated by

\[
\varepsilon_i^- : n \to n + 1 \quad \varepsilon_i^+ : n \to n + 1 \quad \eta_i : n + 1 \to n
\]

subject to the equations

\[
\varepsilon_j^\alpha \varepsilon_i^\beta = \varepsilon_i^\beta \varepsilon_j^{\alpha-1} \quad \text{with } i < j, \alpha, \beta \in \{-, +\}
\]

\[
\eta_j \eta_i = \eta_{i-1} \eta_j \quad \text{with } i > j
\]

\[
\eta_j \varepsilon_i^\alpha = \begin{cases}
\varepsilon_i^\alpha \eta_{j-1} & \text{if } i < j \\
\text{id} & \text{if } i = j \\
\varepsilon_i^\alpha \eta_j & \text{if } i > j
\end{cases} \quad \text{with } \alpha \in \{-, +\}
\]
A monoidal definition of cubical sets

The category \Box is the monoidal category generated by

$$
\varepsilon^- : 0 \to 1 \quad \varepsilon^+ : 0 \to 1 \quad \eta : 1 \to 0
$$

subject to the equations

$$
\eta \circ \varepsilon^- = \text{id}_0 = \eta \circ \varepsilon^+
$$
A monoidal definition of cubical sets

- A **monoidal functor** between monoidal categories is a functor which preserves tensor product.
A monoidal definition of cubical sets

- **A monoidal functor** between monoidal categories is a functor which preserves tensor product.

- In particular, functors from □ are often monoidal: consider the functor $F : □ \to \textbf{Top}$ defined by

 \[
 F(2 + 1) = F(2) \times F(1) = 2 \times 3 \quad \ldots
 \]
A monoidal definition of cubical sets

- A **monoidal functor** between monoidal categories is a functor which preserves tensor product.
- In particular, functors from □ are often monoidal: consider the functor $F : □ \to \textbf{Top}$ defined by

$$
\begin{array}{cccccc}
0 & 1 & 2 & 3 & \ldots \\
\end{array}
$$

We have

$$F(2 + 1) = F(2) \times F(1)$$
Cubical objects

A cubical set is a functor

\[C : \square^{\text{op}} \rightarrow \textbf{Set} \]

When this functor is monoidal, this is exactly the same as a cubical object.
Cubical objects

A cubical set is a functor

\[C : \square^{\text{op}} \to \text{Set} \]

When this functor is monoidal, this is exactly the same as a **cubical object**.

Cubical objects

A *cubical object* \((A, \varepsilon^-, \varepsilon^+, \eta)\) in a monoidal category \(C\) is an object \(A\) of \(C\) together with morphisms

\[\varepsilon^- : A \to I \quad \varepsilon^+ : A \to I \quad \eta : I \to A \]

such that

\[\varepsilon^- \circ \eta = \text{id}_I = \varepsilon^+ \circ \eta \]
Cubical objects

A cubical object \((A, \varepsilon^-, \varepsilon^+, \eta)\) in a monoidal category \(C\) is an object \(A\) of \(C\) together with morphisms

\[
\varepsilon^- : A \to I \quad \varepsilon^+ : A \to I \quad \eta : I \to A
\]

such that

\[
\varepsilon^- \circ \eta = \text{id}_I = \varepsilon^+ \circ \eta
\]
Cubical objects

A cubical object $(A, \varepsilon^-, \varepsilon^+, \eta)$ in a monoidal category C is an object A of C together with morphisms

$$\varepsilon^- : A \to I \quad \varepsilon^+ : A \to I \quad \eta : I \to A$$

such that

$$\varepsilon^- \circ \eta = \text{id}_I = \varepsilon^+ \circ \eta$$

The labeling cubical set

$(\text{Set}, \times, 1)$ is a monoidal category.

The object $1 = \{\ast\}$ is terminal in Set. Take

- $\eta : 1 \to (1 + \Sigma)$ the injection
- $\varepsilon^-, \varepsilon^+ : (1 + \Sigma) \to 1$ the terminal arrow

This defines the cubical set $! \Sigma$.
The labeling cubical set

We can give an explicit description of $! \Sigma$:

- the elements of $! \Sigma(n)$ are words $a_1 \cdot a_2 \cdots a_n$
 where $a_i \in \Sigma \cup \{\ast\}$
- $\varepsilon^-_i, \varepsilon^+_i$ remove the i-th letter
- η_i inserts a \ast at the i-th position
Symmetric cubical sets

Should we label the tile by ab or by ba?

In fact, we should keep both possibilities and remember that they are "almost the same":

Set is a symmetric monoidal category $A \times B \sim B \times A$.
Symmetric cubical sets

Should we label the tile by \(ab \) or by \(ba \)?

In fact, we should keep both possibilities and remember that they are “almost the same”: \(\textbf{Set} \) is a symmetric monoidal category

\[
A \times B \cong B \times A
\]
Symmetric cubical sets

A **symmetric cubical set** is a symmetric monoidal functor

\[C : \square_S^{\text{op}} \rightarrow \text{Set} \]

where \(\square_S \) is the free symmetric monoidal category on \(\square \).
Symmetric cubical sets

The category \square_S is the symmetric monoidal category generated by

$$\varepsilon^- : 0 \rightarrow 1 \quad \varepsilon^+ : 0 \rightarrow 1 \quad \eta : 1 \rightarrow 0$$

subject to the equations

$$\eta \circ \varepsilon^- = \text{id}_0 = \eta \circ \varepsilon^+$$
Symmetric cubical sets

The category \square_S is the monoidal category generated by

$$
\varepsilon^- : 0 \to 1 \quad \varepsilon^+ : 0 \to 1 \quad \eta : 1 \to 0 \quad \gamma : 2 \to 2
$$

subject to the equations

$$
\eta \circ \varepsilon^- = \text{id}_0 = \eta \circ \varepsilon^+
$$

$$(\gamma \otimes 1) \circ (1 \otimes \gamma) \circ (\gamma \otimes 1) = (1 \otimes \gamma) \circ (\gamma \otimes 1) \circ (1 \otimes \gamma)$$

$$
\gamma \circ \gamma = 2
$$

$$(\eta \otimes 1) \circ \gamma = 1 \otimes \eta$$

$$(1 \otimes \eta) \circ \gamma = \eta \otimes 1$$

$$\ldots$$
Higher-dimensional automata

To every Petri net N we associate a **higher-dimensional automaton** $\text{hda}(N)$ consisting of

- a symmetric cubical set C
- labeled by events of the net $\lambda : C \to ! E$
- with an initial position M_0
Morphisms of Petri nets

- A morphism of cubical sets $\varphi : C \to C'$ sends n-cells to n-cells respecting source and target.

We cannot unfold Petri nets!
Morphisms of Petri nets

- A morphism of cubical sets \(\varphi : C \rightarrow C' \)
sends \(n \)-cells to \(n \)-cells respecting source and target.

- A Petri net \(N = (P, M_0, E, \text{pre}, \text{post}) \) consists of
 - a set \(P \) of places
 - an initial marking \(M_0 \in \mathbb{N}^P \)
 - a set \(E \) of events
 - a precondition function \(\text{pre} : E \rightarrow \mathbb{N}^P \)
 - a postcondition function \(\text{post} : E \rightarrow \mathbb{N}^P \)
Morphisms of Petri nets

- A morphism of cubical sets $\varphi : C \to C'$ sends n-cells to n-cells respecting source and target.

- A Petri net $N = (P, M_0, E, \text{pre}, \text{post})$ consists of
 - a set P of places
 - an initial marking $M_0 \in \mathbb{N}^P$
 - a set E of events
 - a precondition function $\text{pre} : E \to \mathbb{N}^P$
 - a postcondition function $\text{post} : E \to \mathbb{N}^P$

A morphism of Petri nets $\varphi : N \to N'$ should be a pair of functions
- $\varphi_P : P \to P'$
- $\varphi_E : E \to E'$

preserving the initial marking, pre- and postconditions.
Morphisms of Petri nets

- A morphism of cubical sets \(\varphi : C \to C' \)
sends \(n \)-cells to \(n \)-cells respecting source and target.
 If \(a \) and \(b \) are independent in \(C \),
 \(\varphi(a) \) and \(\varphi(b) \) should be independent in \(C' \)

- A Petri net \(N = (P, M_0, E, \text{pre}, \text{post}) \) consists of
 - a set \(P \) of places
 - an initial marking \(M_0 \in \mathbb{N}^P \)
 - a set \(E \) of events
 - a precondition function \(\text{pre} : E \to \mathbb{N}^P \)
 - a postcondition function \(\text{post} : E \to \mathbb{N}^P \)

A morphism of Petri nets \(\varphi : N \to N' \) should be a pair of functions
- \(\varphi_P : P \to P' \)
- \(\varphi_E : E \to E' \)

preserving the initial marking, pre- and postconditions.
Morphisms of Petri nets

- A morphism of cubical sets \(\varphi : C \to C' \) sends \(n \)-cells to \(n \)-cells respecting source and target. If \(\varphi(a) \) and \(\varphi(b) \) are causally dependent in \(C' \), \(a \) and \(b \) should be causally dependent in \(C \).

- A Petri net \(N = (P, M_0, E, \text{pre}, \text{post}) \) consists of:
 - a set \(P \) of \texttt{places}
 - an initial marking \(M_0 \in \mathbb{N}^P \)
 - a set \(E \) of \texttt{events}
 - a precondition function \(\text{pre} : E \to \mathbb{N}^P \)
 - a postcondition function \(\text{post} : E \to \mathbb{N}^P \)

A morphism of Petri nets \(\varphi : N \to N' \) should be a pair of functions

- \(\varphi_P : P \to P' \)
- \(\varphi_E : E \to E' \)

preserving the initial marking, pre- and postconditions.
Morphisms of Petri nets

▶ A morphism of cubical sets $\varphi : C \rightarrow C'$ sends n-cells to n-cells respecting source and target. If $\varphi(a)$ and $\varphi(b)$ are causally dependent in C', a and b should be causally dependent in C.

▶ A Petri net $N = (P, M_0, E, \text{pre}, \text{post})$ consists of
 ▶ a set P of places
 ▶ an initial marking $M_0 \in \mathbb{N}^P$
 ▶ a set E of events
 ▶ a precondition function $\text{pre} : E \rightarrow \mathbb{N}^P$
 ▶ a postcondition function $\text{post} : E \rightarrow \mathbb{N}^P$

A morphism of Petri nets $\varphi : N \rightarrow N'$ should be a pair of functions
 ▶ $\varphi_P : P \leftarrow P'$
 ▶ $\varphi_E : E \rightarrow E'$

preserving the initial marking, pre- and postconditions.
Morphisms of Petri nets

- A morphism of cubical sets $\varphi : C \rightarrow C'$ sends n-cells to n-cells respecting source and target. If $\varphi(a)$ and $\varphi(b)$ are causally dependent C', a and b should be causally dependent in C

- A Petri net $N = (P, M_0, E, \text{pre}, \text{post})$ consists of
 - a set P of places
 - an initial marking $M_0 \in \mathbb{N}^P$
 - a set E of events
 - a precondition function $\text{pre} : E \rightarrow \mathbb{N}^P$
 - a postcondition function $\text{post} : E \rightarrow \mathbb{N}^P$

A morphism of Petri nets $\varphi : N \rightarrow N'$ should be a pair of functions

- $\varphi_P : P \leftarrow P'$
- $\varphi_E : E \rightarrow E'$

preserving the initial marking, pre- and postconditions.

\Rightarrow We cannot unfold Petri nets!
The adjunction

This way we get two categories

- higher-dimensional automata
- Petri nets

and an adjunction between them

\[
\begin{array}{c}
\text{pn}(C) \rightarrow N \\
C \rightarrow \text{hda}(N)
\end{array}
\]

with

\[
\begin{array}{c}
\text{HDA} \\
\text{PN}
\end{array}
\]

\[
\begin{array}{c}
\text{pn} \\
\text{hda}
\end{array}
\]
From HDA to Petri nets

To every HDA C, we associate a Petri net $\text{pn}(C)$ whose

- events are labels of C
From HDA to Petri nets

To every HDA C, we associate a Petri net $\text{pn}(C)$ whose

- events are labels of C
- places are regions R of C:
 - for every 0-cell x, an integer $R(x)$
 - for every label a, a pair of integers $(R'(a), R''(a))$ such that for every 1-cell y,

$$R'(\lambda(y)) = R(\varepsilon^-(y)) \quad R''(\lambda(y)) = R(\varepsilon^+(y)) \quad \ldots$$

\begin{figure}
\centering
\begin{tikzpicture}
 \node (y1) at (0,0) {y_1};
 \node (y2) at (2,0) {y_2};

 \node (x) at (-2,-2) {x};
 \node (z) at (0,2) {z};
 \node (4) at (-4,0) {4};
 \node (2) at (4,0) {2};

 \path[->,thick]
 (z) edge node[above] {a} (y2)
 (z) edge node[below] {b} (y1)
 (y2) edge node[above] {$-1, +0$} (4)
 (y1) edge node[below] {$-2, +3$} (4)
 (y2) edge node[below] {$-2, +3$} (2)
 (y1) edge node[above] {$-1, +0$} (2)
 (z) edge node[below] {$-2, +3$} (x)
 (z) edge node[above] {a} (x)
 (4) edge node[below] {$-2, +3$} (x)
 (2) edge node[above] {$-1, +0$} (x);
\end{tikzpicture}
\end{figure}
Results

An adjunction

- An extension Winskel’s “2-dimensional” adjunction between safe Petri nets and asynchronous transition systems
- A cleaner setting (no partial functions for example)
- This adjunction is not very “precise”
- Project: relate models of parallelism in higher dimension (Petri nets, HDA, event structures, . . .)
Results

An adjunction

- An extension Winskel’s “2-dimensional” adjunction between safe Petri nets and asynchronous transition systems
- A cleaner setting (no partial functions for example)
- This adjunction is not very “precise”
- Project: relate models of parallelism in higher dimension (Petri nets, HDA, event structures, . . .)

Future works

We can apply methods from topology:

- category of components
- homology
- . . .

and from Petri nets

- semi-linear invariants on places
- . . .