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—— Abstract

Homotopy type theory is a logical setting based on Martin-Lof type theory in which one can perform
geometric constructions and proofs in a synthetic way. Namely, types can be interpreted as spaces
(up to continuous deformation) and proofs as homotopy invariant constructions. In this context,
loop spaces of pointed connected groupoids provide a natural representation of groups, and any
group can be obtained as the loop space of such a type, which is then called a delooping of the
group. There are two main methods to construct the delooping of an arbitrary group G. The first
one consists in describing it as a pointed higher inductive type, whereas the second one consists
in taking the connected component of the principal G-torsor in the type of sets equipped with an
action of G. We show here that, when a presentation is known for the group, simpler variants of
those constructions can be used to build deloopings. The resulting types are more amenable to
computations and lead to simpler meta-theoretic reasoning. We also investigate, in this context,
an abstract construction for the Cayley graph of a generated group and show that it encodes the
relations of the group. Most of the developments performed in the article have been formalized
using the cubical version of the Agda proof assistant.
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Introduction

Homotopy type theory was introduced around 2010 [27]. It is based on Martin-Lof type
theory [20], starting from the idea that types in logic should be interpreted not only as sets,
as traditionally done in semantics of logic, but rather as spaces considered up to homotopy.
Namely, the identities between two elements of a type can be thought of as paths between
points corresponding to the elements, identities on identities as homotopies between paths,
and so on. Moreover, this correspondence can be made to work precisely, by postulating the
univalence aziom [14], which states that identities between types coincide with equivalences.
This opens the way to the implementation of geometric constructions in a synthetic way, by
performing operations on types, which will semantically correspond to the desired operations
on spaces. In this setting, we are interested in providing ways to construct models of groups
which are concise in order to allow for simple proofs, but also to make the meta-theoretic
reasoning easier.

Delooping groups. Following a well-known construction due to Poincaré at the end of
the 19th century [22], to any type A which is pointed, i.e. equipped with a distinguished
element *, we can associate its fundamental group m (A) := ||[* = *||o whose elements are
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homotopy classes of paths from x to itself, with composition given by concatenation and
identity by the constant path. Moreover, when the type A is a groupoid, in the sense that
any two homotopies between paths are homotopic, this fundamental group coincides with the
loop space QL A := (x = %), defined similarly but without quotienting paths up to homotopy.
Once this observation made, it is natural to wonder whether every group G arises as the loop
space of some groupoid. It turns out that this is the case: to every group one can associate a
pointed connected groupoid type B G, called its delooping, whose loop space is G. Moreover,
there is essentially only one such type, thus justifying the notation.

Internal and external points of view. The delooping construction, which can be found
in various places [2, 5], and will be recalled in the article, induces an equivalence between
the type of groups and the type of pointed connected groupoids (Theorem 20). This thus
provides us with two alternative descriptions of groups in homotopy type theory. The one as
(loop spaces of) pointed connected groupoids can be thought of as an internal one, since the
structure is deduced from the types without imposing further axioms; by opposition, the
traditional one as groups (sets equipped with multiplication and unit operations) is rather
an external one (some also use the terminology concrete and abstract instead of internal
and external [2]). We should also say here that pointed connected types (which are not
necessarily groupoids) can be thought of as higher versions of groups, where the axioms only
hold up to higher identities which are themselves coherent, and so on.

Two ways to construct deloopings. Two generic ways are currently known in order to
construct the delooping B G of a group G, which we both refine in this article. The first one
is a particular case of the definition of Eilenberg-MacLane spaces in homotopy type theory
due to Finster and Licata [17]. It consists in constructing B G as a higher inductive type with
one point (so that it is pointed), one loop for each element of G, one identity for each entry
in the multiplication table of GG, and then truncating the resulting type as a groupoid. One
can imagine that the resulting space has the right loop space “by construction”, although
the formal proof is non-trivial.

The second one is the torsor construction which originates in algebraic topology [12] and
can be adapted in homotopy type theory [2, 5, 29]. One can consider the type of G-sets,
which are sets equipped with an action of G. Among those, there is a canonical one, called
the principal G-torsor Pg, which arises from the action of the group G on itself by left
multiplication. It can be shown that the loop space of the type of G-sets, pointed on the
principal G-torsor Pg, is the group G. Moreover, if one restricts the type of G-sets to the
connected component of the principal G-torsor, one obtains the type of G-torsors, which is a
delooping of G.

Smaller deloopings of groups. In this article, we are interested in refining the above two
constructions in order to provide ones which are “simpler” (in the sense that we have less
constructors, or the definition requires to introduce less material), when a presentation by
generators and relation is known for the group.

For the first construction (as a higher inductive type), we show here the we can con-
struct B G as the higher inductive type generated by one point, one loop for each generator of
the presentation (as opposed to every element of the group), one identity for each relation of
the presentation and taking the groupoid truncation (Theorem 2). This has the advantage of
resulting in types are simpler to define, require handling less cases when reasoning with those
by induction, and are closer to the usual combinatorial description of groups. Moreover, we
claim that the traditional methods based on rewriting [13, 1] in order to compute invariants
such as homology or coherence can be applied to those. Namely, a first important step in
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this direction was obtained by Kraus and von Raummer’s adaptation of Squier’s coherence
theorem in homotopy type theory [16].

For the second construction (based on G-torsors), we show that a simpler definition
can be achieved when a generating set X is known for G. Namely, we show that one can
perform essentially the same construction, but replacing G-gets by what we call here X-sets
(Theorem 11), where we only need to consider the action for the generators (as opposed to
the whole group). As an illuminating example, consider the case G = Z, whose delooping is
known to be the circle BZ = S'. The type U© of all endomorphisms, on any type, contains,
as a particular element, the successor function s : Z — Z. Our results imply that the
connected component of s in U is a delooping of Z. This description is arguably simpler
than the one of Z-torsors: indeed, morphisms of Z-sets are required to preserve the action
of every element of Z, while morphisms in /© are only required to preserve the action of 1
(which corresponds to the successor). The above description is the one which is used in
UniMath in order to define the circle S' [3]: the reason why they use it instead of more
traditional one [27] is that they do not allow themselves to use higher inductive types because
those are not entirely clear from a meta-theoretic point of view (there is no general definition,
even though there are proposals [18], the semantics of type theory [14] has not been fully
worked out in their presence, etc.). Our result thus give an abstract explanation about why
this construction works and provides a generic way to easily define many more deloopings
without resorting to higher inductive types, if one is not disposed to do so.

Cayley graphs. As a last aspect of our study of generated groups in homotopy type theory,
we provide here a pleasant abstract description of Cayley graphs, which is a well-known
construction in group theory [9, 19]. We show that, given a group G with a set X of generators,
the Cayley graph can be obtained as the kernel of the canonical map B X* — B G, where X*
is the free group on X (Theorem 16). This establishes those graphs as a measure of the
difference between deloopings and their approximations, and suggests higher dimensional
versions of those.

Formalization. Most of the results presented in this article have been formalized in the
cubical variant of the Agda proof assistant [28] using the “standard library” which has been
developed for it [26]. Our developments are publicly available [10], and we provide pointers
to the formalized results.

Plan of the paper. We begin by briefly recalling the fundamental notions of homotopy type
theory which will be used throughout the paper (Section 1), as well as the notion of delooping
for a group (Section 2). We first present the construction of deloopings using higher inductive
types, and explain how those can be simplified when a presentation is known for the group
(Section 3). We then present the other approach for defining delooping of groups based on
the torsor construction (Section 4) and show how it can be simplified when a generating set
is known for the group (Section 5). Finally, we investigate the construction of Cayley graphs
in homotopy type theory (Section 6) and conclude, presenting possible extensions of this
work (Section 7).

Acknowledgments. We would like to thank Dan Christensen as well as an anonymous
reviewer for useful comments on early drafts of this article.

1 Homotopy type theory

We unfortunately do not have enough space here to provide an introduction from scratch to
dependent type theory and homotopy type theory, so we refer the reader to the reference
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book for an in depth presentation [27]. The main purpose of this section is to fix some
terminology and notations for classical notions.

Universe. We write U for the universe, i.e. the large type of all small types, which we suppose
to be closed under dependent sums and products. We write II(x : A).B or (z: A) — B for
II-types, and A — B for the case where B is non-dependent. Similarly, we write ¥(x : A).B
for X-types, and A x B for the non-dependent version. The two projections from a Y-type
are respectively written m and 7’.

Paths. Given a type A : U and two elements a,b : A, we write a =4 b for the type of
identities, or paths, between a and b: its elements are proofs of equality between a and 6. In
particular, for any a : A, the type a = a contains the term refl, witnessing for reflexivity
of equality. We sometimes write x := ¢ to indicate that z and ¢ are equal by definition.
The elimination principle of identities, aka path induction and often noted J, roughly states
that, given a : A, in order to show a property P : (z: A) — (a = x) = U for every x : A
and p : a = z it is enough to show it in the case where = := a and p := refl,. By path
induction, the following can be shown. Given a type A and a type family B : A — U, a
path p : z = y in A induces a function B,” : B(z) — B(y) witnessing for the fact that
equality is substitutive. As a special case, any path p: A = B between two types A, B : U
induces a function p~ : A — B, called the transport along p, as well as an inverse function
p< : B — A. Finally, given a function f : A — B, any path p: x = y in A induces a path
f=(p) : f(x) = f(y) witnessing for the fact that equality is a congruence.

Higher inductive types. Many functional programming languages allow the definition of
inductive types, which are freely generated by constructors. For instance, the type S° of
booleans is generated by two elements (true and false). In the context of homotopy type
theory, languages such as cubical Agda feature a useful generalization of such types, called
higher inductive types. They allow, in addition to traditional constructors for elements of
the type, constructors for equalities between elements of the type. For instance, the type
corresponding to the circle S! can be defined as generated by two points a and b and two
equalities p, q : a = b between those points. Higher-dimensional spheres S™ can be defined in
a similar way.

Univalence. A map f: A — B is an equivalence when it admits both a left and a right
inverse. In particular, every isomorphism is an equivalence. We write A ~ B for the type of
equivalences from A to B. The identity is clearly an equivalence and we thus have, by path
induction, a canonical map (A = B) — (A ~ B) for every types A and B: the univalence
aziom states that this map is itself an equivalence. In particular, every equivalence A ~ B
induces a path A = B. It is known that univalence implies the function extensionality
principle [27, Section 2.9]: given functions f,g: A — B, if f(x) = g(z) for any x : A then
f = g (and the expected generalization to dependent function types is also valid).

Homotopy levels. A type A is contractible when the type 3(z : A).(y : A) — (x = y) is
inhabited: this means that we have a “contraction point” ag : A, and a continuous family
of paths from ag to every other point in A. A type A is a proposition (resp. a set, resp. a
groupoid) when (z = y) is contractible (resp. a proposition, resp. a set) for every z,y : A.
Intuitively, a contractible type is a point (up to homotopy), a proposition is a point or is
empty, a set is a collection of points and a groupoid is a space which bears no non-trivial 2-
dimensional (or higher) structure. We write Set for the type of sets. Given a type A, we write
isSet(A) (resp. isGroupoid(A)) for the predicate indicating that A is a set (resp. groupoid).

Truncation. Given a type A, its propositional truncation turns it into a proposition in
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a universal way. It consists of a type ||A]|—1, which is a proposition, equipped with a
map |—|_1 : A — ||A]| -1 such that, for any proposition B, the map (||4||-1 — B) — (A — B)
induced by precomposition by | — |_1 is an equivalence. Intuitively, the type ||A||—1 behaves
like A, except that we do not have access to its individual elements: the elimination principle
for propositional truncation states that in order to construct an element of B from an element
of ||A]|-1, we can only assume that we have an element of A if B itself is a proposition. The
set truncation || Al of a type A is defined similarly, as the universal way of turning A into a
set, and we write |z|g for the image of x : A in the truncation; and we can similarly define
the groupoid truncation ||A||;.

Fibers. Given a function f : A — B, we write fib; b for the type ¥(a : A).(f a =), called
the fiber of f at b. The function f is said to be surjective when the type (b: B) — || fibs b|| 1
is inhabited, i.e. when every element of B merely admits a preimage.

2 Delooping groups

The external point of view. A group consists of a set A, together with an operation
m: A — A — A (the multiplication), an element e : A (the unit), and an operation
i: A — A (the inverse) such that multiplication is associative, admits e as unit, and i(x) is
the two-sided inverse of any element x : A. We write Group for the type of all groups, and
G —qrp H for the type of group morphisms between groups G and H. In the following, we
use the traditional notations for groups: given two elements x,y : G, we simply write zy
instead of m(x,y), 1 instead of e, and 2~ ! instead of i(x).

The internal point of view. A pointed type consists of a type A together with a distinguished
element, often written * and sometimes left implicit. Given a pointed type (A, x), its loop
space 2 A is defined as the type of paths from « to itself: Q A := (x = x). The elements of
this type are called loops. By path induction one can construct, for every two paths p:a = b
and ¢ : b = ¢, a path in a = ¢ called their concatenation and written p - ¢q. Similarly, every
path p: a = b, admits an inverse path p~ : b = a. When A is a pointed groupoid, 2 A is a

set, and these operations canonically equip this set with a structure of group [27, Section 2.1].

Delooping groups. A delooping of a group G is a pointed connected groupoid B G together
with an identification dg : @BG = G (we recall that a type A is connected when the
type ||Allo is contractible, i.e. A has one connected component). The notation is justified by
the fact that deloopings are unique. For instance, it is known that the circle is a delooping
of Z: indeed, S' is a connected groupoid, and its fundamental group is Z [27, Section 8.1].

3 Delooping using higher inductive types

Delooping as a higher inductive type. Given a group G, its delooping should have a point x
and a loop for every element of the group. Moreover, we should ensure that the multiplication
of G coincides with the concatenation operation on the loop space, and that the type we
obtain is a (pointed connected) groupoid. This suggests considering a higher inductive type,
noted K(G, 1), with the following constructors

* : K(G,1)

loop G x =%

loop-comp : (z,y : G) — loop z - loopy = loop(zy)
trunc : isGroupoid(K(G, 1))
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This construction was first proposed by Finster and Licata. They also showed, using the
encode-decode method, that it is a delooping of the original group, i.e. QK(G,1) = G,
see [17, Theorem 3.2]. Note that we only ask here that loop preserves multiplication (with
loop-comp), because it can be shown that this implies preservation of unit and inverses. In
particular, preservation of unit (see EM.loop-id) renders superfluous one of the constructors
present in the original definition [17].

In the following, we will define a variant of this higher inductive type when the group G is
presented, which is smaller and gives rise to computations closer to traditional group theory.

Presentations of groups. Given a set X, we write X* for the free group over X [27,
Theorem 6.11.6]. There is an inclusion function ¢ : X — X* which, by precomposition,
induces an equivalence between morphisms of groups X* — G and functions X — G. We
write f* : X* — G for the group morphism thus induced by a function f : X — G. The
elements of X* can be described as formal composites a ...a, where each a; is an element
of X or a formal inverse of an element of X (such that an element with an adjacent formal
inverse cancel out).

Any free group X* admits a delooping as a wedge of an X-indexed familly of circles. The
corresponding type \/ y S! can be described as the coequalizer

X —=1 » VxSt (1)

or, equivalently, as the higher inductive type generated by the two constructors % : \/ st
and loop : X — x = *.

» Proposition 1. We have Q\/ S' = X*, i.e. the above type is a B X*.

Proof. The fact that \/ S! is a delooping of X* is not too difficult to show when X has
decidable equality, see [27, Exercise 8.2] and [15], but the general case is more involved and
was recently proved in [30]: the main issue is to show that this type is a groupoid. |

A group presentation (X | R) consists of a set X of generators, a set R of relations, and
two functions 7,7’ : R — X* respectively associating to a relation its source and target.
We often write r : u = v for a relation r with u as source and v as target. Given such a
presentation P, the corresponding presented group [P] is the set quotient X*/R of the free
group on X under the smallest congruence identifying the source and the target of every
relation r : R. This type can be described as the type [P] := | X*/R||o obtained by taking
the set truncation of the coequalizer

R=—= X* " X*R
From this also follows a description of [P] as a higher inductive type:
word : X* — [P]

rel :(r:R)— word(m(r)) = word(n'(r))
trunc : isSet([P])

A smaller delooping. Suppose given a group G along with a presentation P := (X | R),
i.e. such that G = [P]. We define the type B P as the following higher inductive type:

* :BP
gen X — (x=x%)

rel :(r:R)— (gen*(w(r)) = gen*(x'(r)))
trunc : isGroupoid(B P)
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This type is generated by a point *, then the constructor gen adds a loop a : x = x for
every generator a, the constructor rel adds an equality a; - a5 -...-a, =b; -by-...- 0, for
each relation ay ...a, = b1 ...b,,, and the constructor trunc formally takes the groupoid
truncation of the resulting type. Note that, because of the presence of gen* : X* — (x = x)
in the type of rel, the above inductive type is not accepted as is in standard proof assistants
such as Agda. However, a definition can be done in two stages, by first considering \/ st
(i.e. the type generated only by x and gen), and then defining a second inductive type further
quotienting this type (i.e. adding the constructors rel and trunc), see EM.Delooping. Also,
the definition of gen* requires the group structure on \/ S': the group operations are easily
defined from operations on paths (reflexivity, concatenation, symmetry), but the fact that
it is a groupoid is non-trivial (see Proposition 1). Our main result in this section is the
following:

» Theorem 2 (EM.theorem). Given a presentation P := (X | R), the type B P is a delooping
of the group [P].

Proof. By induction on B P, we can define a function f : BP — K([P],1) such that
f* :=x, and f(gena) := loopla] for all a : X. It can be shown that f is then such that
f=(gen* u) = looplu], for any u : X*. We can therefore define the image f=(r) on a relation
r:u = v as the composite of equalities

J~(gen" u) = loop|u] = loop[v] = f~(gen" v)
where the equality in the middle follows from the fact that we have [u] = [v] because of the
relation 7.

In the other direction, the group morphism gen* : X* — Q B P preserves relations (by rel),
and thus induces a quotient morphism ¢’ : [P] — 2B P. We can thus consider the function
g : K([P],1) — B P such that g(x) = x, for « : [P] we have ¢g=(loopz) = ¢'(x), and for
x,y : [P] the image of loop-compzy is canonically induced by the fact that ¢’ preserves
group multiplication.

Since K([P], 1) is a groupoid, in order to show that f(g(z)) = « for every z : K([P], 1), it
is enough to show that it holds for x := x, which is the case by definition of f and g, and that
this property is preserved under loop x for x : [P], which follows from the fact that we have
f=(¢'(x)) = loopx for any x : [P] (this is easily shown by induction on x). Conversely, we
have to show that g(f(x)) = « holds for  : B P. Again, this is shown by induction on z. <

As an interesting remark, the careful reader will note that the fact that the types X and R
are sets does not play a role in the proof: in fact, those assumptions can be dropped here.
Also, note that we do not need the choice of a representative in X* for every element of [P]
in order to define the function g from gen* in the above proof: intuitively, this is because
the induced function g does not depend on such a choice of representatives. Finally, we
should mention here that a similar result is mentioned as an exercise in [27, Example 8.7.17];
the proof suggested there is more involved since it is based on a generalized van Kampen
theorem.

» Example 3. The dihedral group Ds, see Example 13, admits the presentation

2

(r,s | r* =srs,sr?s =13 rsr = 5,135 = sr? sr® = 1?5, 5% = 1)

Hence, by Theorem 2 we can construct a delooping of D5 as an higher inductive type
generated by two loops (corresponding to r and s) and six 2-dimensional cells (corresponding
to the relations). Note that this is much smaller than K(Ds,1) (it has 2 instead of 10
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generating loops, and 6 instead of 100 relations), thus resulting in shorter proofs when
reasoning by induction.

» Example 4. Any group G admits a presentation, the standard presentation, with one
generator g for every element a : GG, and relations a b = ab for every pair of generators, as
well as 1 = 1. By applying Theorem 2, we actually recover the inductive type K(G, 1) as
delooping of G.

4 Delooping with torsors

In this section, we recall the other classical approach to constructing deloopings of groups by
using G-torsors, which originates in classical constructions of algebraic topology [12]. Most of
the material of the section is already known, for which reason proofs are not much detailed.
A more in-depth presentation can be found in recent works such as [2, 5].

Group actions. Given a group G and a set A, an action of G on A is a group morphism
from G to A ~ A, that is a map o : G — (A ~ A) such that

a(zy) = a(z) o afy) a(l) =ida (2)

for all z,y : G.

A G-set is a set equipped with an action of G, and we write Setq for the type of G-sets.
We often simply denote a G-set by the associated action « and write dom(«) for the set on
which G acts.

» Lemma 5 (GSetProperties.isGroupoidGSet). The type Setq is a groupoid.

Proof. The type of sets is a groupoid [27, Theorem 7.1.11]. Given a set A, the type of
functions A — A is a set [27, Theorem 7.1.9] and thus a groupoid. Finally, the axioms (2)
of actions are propositions (because A is a set) and thus groupoids. We conclude since
groupoids are closed under 3-types [27, Theorem 7.1.8]. |

Given G-sets a and 3, a morphism between them consists of a function f : dom o« — dom 3
which preserves the group action, in the sense that for every x : G and a : dom «, we have

B(x)(f(a)) = fla(z)(a)). (3)
A morphism which is also an equivalence is called an isomorphism and we write o ~5¢*¢ 3 for
the type of isomorphisms between o and 5. We write Aut(«) for the type of automorphisms
a ~5°¢ o, which is a group under composition. The equalities between G-sets can be
conveniently characterized as follows.

» Proposition 6 (GSetProperties.GSet=Decomp). Given two G-sets o and 3, an equality
between them consists of an equality p : dom o = dom 3 such that the function induced by
transport along p, namely p~ : dom a — dom B, is a morphism of G-sets.

Proof. The characterization of equalities between X-types [27, Theorem 2.7.2] entails
that an equality between (dom «,«) and (dom g, 3) is a pair consisting of an equality
p: doma = dom 3 and an equality ¢ : p~ () = 5 (we can forget about the equality between
the components expressing the properties required for group actions since those are proposi-
tions). By [27, Lemma 2.9.6] and function extensionality, we finally have that the type of ¢
is equivalent to the type 8(x) o p™ = p~ o a(x). <

It easily follows from this proposition that any equality between G-sets induces an isomorphism
of G-sets, as customary for equalities between algebraic structures [27, Section 2.14]. In fact,
this map from equalities to isomorphisms can itself be shown to be an equivalence:
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» Proposition 7 (GSetProperties.GSetPath). Given G-sets a and 8, the canonical function
(0= 5) = (a =5 )

is an equivalence. Moreover, given a G-set «, the induced equivalence
(o= a) ~ (a ~5°¢ q)

is compatible with the canonical group structures on both types.

Proof. This is actually an instance of a more general correspondence between equalities
and isomorphisms of algebraic structures, which is known under the name of structure
identity principle, see [11] and [27, Section 9.8], and can be understood as a generalisation of
univalence for types having an algebraic structure. |

Torsors. For any group G, there is a canonical G-set called the principal G-torsor and noted
Pg, corresponding to the action of G on itself by left multiplication. Moreover, its group of
automorphisms is precisely the group G:

» Proposition 8 (Deloopings.PGloops). Given a group G, we have an equality of groups
(PG ZSCtG Pg) =G

Proof. The two functions ¢ : AutPg — G and ¢ : G — Aut Pg, respectively defined by
o(f) == f(1) and ¥ (z)(y) := yx are mutually inverse group morphisms, see Appendix A. <«

The type Set¢ is thus “almost” a delooping of G. Namely, it is a groupoid (Lemma 5),
which is pointed by Pg and satisfies 2 Setg = G by Propositions 7 and 8. It only lacks
being connected, which can easily be addressed. Given a pointed type A, its connected
component Comp A is the type X(z : A).||* = x||—1. It is well-known that this type is pointed
by (%, |refl|_1), connected and has the same loop space as the original type, i.e. we have
QComp A =Q A, see Appendix C. We thus have:

» Theorem 9 (Deloopings.torsorDeloops). The connected component of Pg in Setq,
i.e. the type Comp(Setq, Pg), is a delooping of G.

The elements of the connected component of the principal G-set are usually called G-torsors.

5 Generated torsors

Fix a group G. Given a set X and a map v: X — G, we say that X generates G (with
respect to ) when v* : X* — G is surjective. From now on, we suppose that we are in such
a situation. We now provide a variant for the construction of a delooping of G by G-torsors
described in the previous section, taking advantage of the additional data of a generating set
in order to obtain smaller and simpler constructions. Note that here, contrarily to Section 3,
we only need a set of generators, not a full presentation.

Actions of sets. Given a type A, we write End A for its type of endomorphisms, i.e. maps
A — A. An action of the set X on a set A is a morphism X — End A, i.e. a family of
endomorphisms of A indexed by X. We write Setx for the type

Setxy = X(A:Set).(X — EndA)
of actions of X. An element « of this type consists in a set doma with a function

a : X — End(doma) and is called an X-set. A morphism between X-sets o and S is
a function f : doma — dom § satisfying (3) for every x : X. The identities between X-sets
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can be characterized in a similar way as for G-sets, see Proposition 6, and Proposition 7 also
extends in the expected way.

Precomposition by 7 induces a function U : Setg — Setx which can be thought of as a
forgetful functor from G-sets to X-sets. Note that U depends on « but we leave it implicit
for concision.

Applications of the generated delooping. We have seen in the previous section that the
connected component of the principal G-torsor Pg in G-sets is a delooping of G. Our aim in
this section is to show here that this construction can be simplified by taking the connected
component of the restriction of Pg to X-sets.

Before proving this theorem, which is formally stated as Theorem 11 below, we shall

first illustrate its use on a concrete example. Consider Z,,, the cyclic group with n elements.

We write s : Z,, — Z,, for the successor (modulo n) function, which is an isomorphism. By
Theorem 9, we know that the type

S(A: Setz )| Pz, = Al

of Z,-torsors is a model of BZ,,. This type is the connected component of the principal
Znp-torsor Pz in the universe Setz, of sets with an action of Z,, i.e. sets A equipped with
a morphism « : Z,, — Aut A. Such a set A is thus comes with one automorphism «(k) for
every element k : Z,, therefore k automorphisms in this case. However, most of them are
superfluous: 1 generates all the elements of Z,, by addition, so (1) generates all the a(k) by
composition because a(k) = a(1)*. The useful data of a Z,-set thus boils down to a set A
together with one automorphism « : Aut A such that o™ = id 4.

Indeed, writing Set® := X(A : Set). End A for the type of all endomorphisms (on any set),
our theorem will imply that the type

Z((A, f) : Set?).|(Zn, 8) = (A, )| (4)

(the connected component of the successor modulo n in the universe of set endomorphisms)
is still a delooping of Z,,. Note that we didn’t assume that f is an isomorphism nor that it
should verify f™ = id. This is because both properties follow from the fact that f is in the
connected component of the successor (which satisfies those properties). Similarly, we do not
need to explicitly assume that the domain of the endomorphism is a set.

Our theorem thus allows to define, in a relatively simple way, types corresponding to
deloopings of groups. As recalled in the introduction, this is particularly useful when one
is not disposed to use higher inductive types (e.g. because their definition, implementation
and semantics are not entirely mature). This is in fact the reason why this approach was
used in UnitMath to define the circle [3], and we provide a generic way to similarly define
other types. We expect that it can be used to reason about groups and compute invariants
such as their cohomology [8, 6, 4]. On a side note, one might be worried by the fact that we
are “biased” (by using a particular set of generators), which allows us to be more concise
but might make more difficult generic proofs compared to G-torsors: we expect that this is
not the case because in order to define the group G itself, one usually needs to resort to a
presentation, and thus is also biased in some sense...

The generated delooping. In the following, we write Px for U Pg.
» Proposition 10 (XSetProperties.theorem). We have a group equivalence QPg ~ QPx.

Proof. From Proposition 6, an element of 2 Pg consists of an equality p: G = G in U such
that

Pg(z)op™ =p~ oPg(x)
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for every x : G. By function extensionality and the definition of the action P, this is
equivalent to requiring, for every g, z : G that

9(p~(2)) =p~ (92) ()
Note that the above equality is between elements of G, which is a set, and is thus a proposition.
Similarly, an element of 2 Px consists of an equality p: G = G in U satisfying

V(@) (7 (2)) =p~ (v(2)2) (6)
for every z: X and z: G.

Clearly, any equality p: G = G in QPg also belongs to QP x since the condition (6) is a
particular case of (5). We thus have a function ¢ : QPg — QPx. Conversely, consider an
element p: G = G of QPx, i.e. satisfying (6) for every = : X and z : G. Our aim is to show
that it belongs to QPg. Given g,z : G, we thus want to show that (5) holds. Since v* is
surjective, because X generates GG, we know that there merely exists an element uw of X*
such that v*(u) = x. Since (5) is a proposition, by the elimination principle of propositional
truncation, we can actually suppose given such a u, and we have

z(p” (y) =7 (w) (P~ (¥)) since v*(u) = x
=p (v (u)y) by repeated application of (6)
=p~ (zy) since y*(u) = x.

The second equality essentially corresponds to the commutation of the following diagram,
where u := 2125 ... 2, with z; : X:

G y(z1) G y(x2) G Ie v (zn) G
] [~ b
y(z1) ¢ v(x2) ¢ ¢ Y(xn)

This thus induces a function ¥ : QP x — QPg. The functions ¢ and 1 clearly preserve the
group structure (given by concatenation of paths) and are mutually inverse of each other,
hence we have the equivalence we wanted. <

» Theorem 11. The type Comp Px is a delooping of G.

Proof. Since taking the connected component preserves loops spaces (Proposition 23), we
have that 2 Comp Py is equal to QP x, which in turn is equal to Q2 P& by Proposition 10,
and thus to G by Theorem 9. <

The delooping of G constructed in previous theorem is the component of Px in X-sets:
S(A:U).X(S :i8Set A).E(f : X = End A).||Px = (4,5, f)|-1

Since for any type A, the type isSet A is a proposition [27, Theorem 7.1.10], and the underlying
type of Px is a set, the underlying type of any X-set in the connected component of Px will
also be a set. As a consequence, the above type can slightly be simplified, by dropping the
requirement that A should be a set:

» Proposition 12. The type X(A :U).2(f : X - End A).|Px = (A4, f)||-1 is a delooping
of G.

For instance, the delooping (4) of Z,, can slightly be simplified as
(A ) U (Zny 8) = (A )1
where U© := X(A : U).End A is the type of all endomorphisms of the universe.
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» Example 13. Theorem 11 applies to every group for which a generating set is known
(and, of course, the smaller the better). For instance, given a natural number n, the dihedral
group D, is the group of symmetries of a regular polygon with n sides. It has 2n elements
and is generated by two elements s (axial symmetry) and r (rotation by an angle of 27 /n).
Hence the connected component of the symmetry and the rotation in the type of pairs of set
endomorphisms, i.e.

Y(A:Set).X(f,g: End A x End A).||(Dy,, s,7) = (A, f,9)|| -1
is a delooping of the dihedral group D,,.

Alternative proof. We would like to provide another proof Proposition 10, which was sug-
gested by an anonymous reviewer. It is based on the idea that in order to show QPx ~ Q Pg,
it is enough to show that U : Setg — Setx is an embedding, i.e. that for every «, 5 : Setg
the induced function U= : (a = 8) — (Ua = Up) between path spaces is an equivalence [27,
Definition 4.6.1]. It relies on the following result whose proof can be found in Appendix A.

» Lemma 14. Given a type A : U, type families P,Q : A —U and [ : (a: A) - Pa — Qa,
the map XA.f : YA.P — Y A.Q is an embedding if and only if fa : Pa — Q a is an embedding
for every a : A.

» Proposition 15. The map U : Setg — Setx is an embedding.

Proof. Given a morphism of groups f : H — K, we write Sety : Setxg — Sety for the
function induced by precomposition. In particular, by definition, we have U := Set,. The
function v : X — G can be decomposed as v* o+, and therefore Set, can be decomposed as
Set, o Sety«:

Set x =

SeV W
U

Seta

Set x

Both maps are embeddings so that U is an embedding by composition. Namely,
Set« is an embedding. Consider the map
F:(A:Set) = (G —=amp Aut A) — (X* —arp Aut A)

obtained by precomposition by v*. Since vy* is surjective we have that F' A is an embedding
for every set A [27, Lemma 10.1.4]. By Lemma 14, we deduce that 3 Set.F, which is
Set.«, is an embedding.

Set, is an embedding. By universal property of X*, given a set A, the map

(X* —arp Aut A) — (X — Aut A)

obtained by precomposition by ¢ is an equivalence, and thus an embedding. Moreover,
the property of being an isomorphism is a proposition, hence the forgetful map

(X > AutA) - (X — End A)

is an embedding because its fibers are propositions. Since embeddings are stable under
composition, we deduce that the induced map

F:(A:Set) = (X* —-ap Aut A) — (X — End A)

is such that F' A is an embedding for every set A. By Lemma 14, the map X Set .F’', which
is Set,, is thus an embedding. <
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6 Cayley graphs

We have seen in Section 3 that a delooping of G can be obtained by further homotopy
quotienting a delooping of X*. The kernel of the map v* : X* — G measures the defect
of X* from being G, which corresponds to the relations of the group. We show here that, under
the delooping operation, those relations are precisely encoded by the Cayley graph [9, 19], a
classical and useful construction in group theory which can be associated to any generated
group.

The Cayley graph of G, with respect to the generating set X, is the directed graph whose
vertices are the elements of GG, and such that for every vertex g : G and generator x : X,
we have an edge g — gx. In homotopy type theory, it is thus natural to represent it as the
higher inductive type C(X,G) defined as

vertex : G — C(X, G)
edge : (g:G)(z:X) — vertex g = vertex(gz)

For instance, the Cayley graphs associated to Zs (with 2 as generator) and D5 (with r and s

as generators) are respectively
e
1° 4
r S

Our main result in this section is that this type satisfies the following property. We recall
that the delooping operation is functorial, see Appendix B and [29]: in particular, we can
deloop morphisms. We also recall that the kernel of a map f: A — B with B pointed is its
fiber at the distinguished element x of B.

» Theorem 16 (Cayley.Cayley-ker). The type C(X,G) is the kernel of the function
B~y*: BX* = BG induced by v, i.e. we have

C(X,G) = X(z:BX*).(x=DBy"(z)).

Proof. We define the type family P : BX* — U by P(z) = (x = B~y*(z)). Remember
that B X* admits a description as a coequalizer, see (1) and Proposition 1. Hence, by
the flattening lemma for coequalizers (see Lemma 25 and [27, Section 6.12]), we have a
coequalizer of total spaces

(z,p)—(*,p)
YX.P(x) ¢ ¥1.P(x) » BX*.P

(x,p)b—)(*,P: (%))

By using the properties of transport in path spaces [27, Theorem 2.11.3], it can be shown
that the bottom map sends (z,p) to (x,p-B~*(x)). Moreover, By* is pointed, so P(x) is
equal to QBG, i.e. G, and we have the following coequalizer:

(z,9)—g

XxG@—=d¢G » XBX*.P

(z,9)—gx
If follows that 3 B X*.P consists in |G| points and a path g = gz for each pair (z,g) : X x G,
and is therefore equal to the Cayley graph C(X, G). <
The above result can be interpreted as stating that we have a fiber sequence (see [27,
Section 8.4])

C(X,G) — BX* —— BG
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which encodes the fact that we have an action of G on its Cayley graph, whose homotopy
quotient C(X, G) /G is B X*, see [21, Proposition 16]. Hence, we recover the canonical action
of G on its Cayley graph.

Relations. The long exact sequence of homotopy groups induced by the above fiber se-
quence [27, Theorem 8.4.6] implies in particular that we have the following short exact
sequence of groups

0 —— QC(X,G) X* G 0

which shows that Q C(X, G) is the (free) group encoding relations of G with respect to X.
Indeed, we have that C(X,G) = B R* where R is a choice of |G| x (|]X| — 1) + 1 relations:
those are the loops in the Cayley graph after contracting |G| — 1 edges to obtain a wedge of
circles. In some sense, Theorem 16 provides an internalization of the fact that G is presented
by (X | R), contrasting with the point of view developed in Section 3.

The Cayley complex and higher variants. We now briefly explain that we can extend the
previous construction in higher dimensions in order to define internally a type corresponding
to the classical Cayley complex [19]. Suppose given a presentation P := (X | R) for G and
write By P for the 2-skeleton of the type B P defined in Section 3 (i.e. the type generated
by *, gen, and rel, but without the truncation trunc). As in previous section, this type can
be considered as an approximation of B P (lacking the truncation) and we would like to
measure the difference between the two types. The Cayley complex C P associated to the
presentation P is the inductive type defined by

vertex : G - CP
edge : (g:G)(z:X) — vertex g = vertex(gz)
cell :(g:G)(r: R) — (edgeg)"(x(r)) = (edge g)* (x'(r))

where, given ¢ : G and w := 125 ... 2, : X*, we have that (edge g)* u is the path

eg(T1..Tn—-1) Tn,
) =

v(grime) == -+ == v(gz1...Tp_1 v(gzy ... xy,)

where v (resp. e) is a short notation for vertex (resp. edge). We will detail in future works
the proof of the following result, which can be performed using the flattening lemma for
pushouts, as in Theorem 16:

» Theorem 17. We have a fiber sequence CP — By P — BG.

In fact, this resolution-like process can be iterated in order to obtain better and better
approximations B, P of B(G, and higher Cayley complexes as the fibers of the canonical
maps B,, P — B G. Moreover, the join construction [23, 24] provides a way to automate this
task, see for instance [7, 21].

7 Future works

We have presented two ways to improve in practice the known constructions of deloopings of
groups when we have a presentation of the group. This work is part of a larger investigation
of “efficient” models of groups deloopings, in the sense that we can compute effectively
with those. In particular, the construction of the infinite real projective space performed by
Buchholtz and Rijke [7], provides a cellular description of B Z, (which is better than the usual
ones obtained by generic methods because it consists in a non-recursive higher inductive
type). In other current work, we refine their approach in order to construct lens spaces
and thus obtain a cellular version of BZ,, for every natural number n, as well as efficient
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representations of deloopings of other classical groups [21]. More generally, the formalization

of group theory in univalent foundations is still under heavy investigation [2], and we aim at

developing general techniques to construct efficient representations of (internal) groups in

homotopy type theory, which would open the way to cohomological computations [8, 6, 4] or

the definition of group actions on higher types (as a generalization of group actions on sets).

On another note, higher-inductive types play a role in homotopy type theory analogous to

the one of polygraphs for strict higher categories: numerous techniques have been developed
for those [1], notably based on rewriting, and we plan to adapt them in this setting, following
first developments of [16].
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A  Omitted proofs

Proof of Proposition 8. The two functions
¢: AutPg — G Y : G — AutPg
fef) Ty YT
are group morphisms. Namely, given f, g : Aut Pg, we have
plgo f) =go f(1) =g(f()1) = f(1)g(1) = ¢(f)(9) ¢(id) =id(1) =1

and given z,y : G, we have for every z : G,

P(ay)(2) = 2(zy) = (22)y = P(y) o P(z)(2) P(1)(x) = 21 = id(z)
Moreover, they are mutually inverse. Namely, given f : Aut P and = : G, we have
Yo o(f)(z) =xf(1) = f(zl) = f(x) pot(r)=lr==x
We thus have Aut P¢ ~ G and we conclude by univalence. |

Proof of Lemma 14. By definition, the map X A.f is an embedding iff for every (a, ) and
(a/,2') in XAX, the induced map

(a,z) = (d',2') = (a, fax) = (d, fa' 2)

is an equivalence. By the characterization of equalities in X-types [27, Theorem 2.7.2], this
map corresponds to a map

(E(p:a=d).B () =2") = (B(p:a=d).Q)(far) = fd'a')
By [27, Theorem 4.7.7], this is an equivalence if and only if the fiber map
(P, (x) = 2') = (@, (fax) = fa'2)
is an equivalence for every p : a = a’. By path induction, this is true if and only if
(fa)“:z=2"—= far=fax'

is an equivalence for all a : A, and z,z’ : Xa. By definition, this is the requirement that fa
is an embedding for all a : A. <

B Equivalence between internal and external groups

Functoriality of delooping. One of the main properties of the delooping operation is that it
is a “local inverse” to taking loop spaces in the following sense:

» Proposition 18. Given pointed connected groupoids A and B and a group morphism
f: QA — QB, there is a unique pointed morphism g : A — B such that Qg = f.

Proof. By [29, Corollary 12], with n = 0, we have that the type X(g: A — B).Qg = f is
equivalent to (p,q: %4 =x4) = f(p-q) = f(p) - f(q). This type is a proposition because
Q) B is a set (because B is a groupoid), and inhabited (because f is a morphism of groups),
and thus contractible. <

As an immediate consequence of the above lemma, deloopings are unique:

» Proposition 19. Given two deloopings BG and B' G of a group G, we have BG = B'G.
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Given a group morphism f : G — H such that both G and H admit deloopings (and this
actually always holds by Theorem 9), the delooping of f is the morphism

Bf:BG—BH

associated, by Proposition 18, to the morphism dj of ods : QBG — QB H. By Propo-
sition 18, this operation is functorial in the sense that that it preserves identities and
composition.

Equivalence between the two points of view. Although this is not central in this article,
we shall mention here the fundamental equivalence provided by the above constructions;
details can be found in [2]. We write IntGroup for the type of internal groups, i.e. pointed
connected groupoids.

» Theorem 20. The maps Q : IntGroup — Group and B : Group — IntGroup form an
equivalence of types.

Proof. Given a group G, we have Q2 B G = G by definition of B G. Given an internal group A,
we have B2 A ~ A by Proposition 19. <

The above theorem thus states looping and delooping operators allow us to go back and
forth between the external and the internal point of view of group theory in homotopy type
theory. Note that the torsor construction only gives a delooping in a larger universe than the
original group unless one makes additional assumptions such as the replacement axiom [25,
Axiom 18.1.8].

Internal group actions. In a similar way that the traditional notion of group admits an
internal reformulation (Section 2), the notion of action also admits an internal counterpart
which can be defined as follows. Given a group G, an internal action of G on a set A is a
function

a:BG — Set
such that a(*) = A. Since Set is a groupoid [27, Theorem 7.1.11], by Theorem 20, we have
equivalences of types

(BG = Set) ~ (QBG — QSet,4)) ~ (G — AutA)

which show that internal group actions correspond to external ones: the delooping operator
internalizes an external group action, and the looping operator externalizes an internal group
action.

C Connected components

We define the connected component of the pointed type A as the type of points which are
merely connected to the distinguished point of A. This type is noted Comp A (or Comp(A4, *)
when we want to specify the distinguished element %). Formally,

CompA = X(x:A).|*x==x]-1

This type is canonically pointed by (%, |refl |—1). This construction deserves its name because
it produces a connected space, whose geometry is the same as the original space around the
distinguished point, as shown in the following two lemmas.

» Lemma 21 (Comp.isConnectedComp). The type Comp A is connected.
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Proof. It can be shown that a type X is connected precisely when both ||X|-; and
(z,y : X) = |Jlx = y||l-1 are inhabited, i.e. when X merely has a point and any two
points are merely equal [27, Exercise 7.6]. In our case, the type Comp A is pointed and thus
|| Comp A||-1 holds. Moreover, suppose that there are two points (x,p) and (y, ¢) in Comp A
with 2,y : A, p: ||x =z|-1 and ¢ : |[* = y||—1. Our goal is to show that ||(z,p) = (y,q)| -1
holds, which is a proposition, so by elimination of propositional truncation, we can therefore
assume that p (resp. ¢) has type * = x (resp. x = y). Hence, we can construct a path p~ - ¢
of type = y, and therefore (z,p) = (y,q) because the second components belong to a
proposition by propositional truncation. We conclude that ||(z,p) = (y,q)||-1 and finally
that Comp A is connected. <

» Lemma 22 (Comp.loopCompIsLoop). We have Q Comp A =Q A.

Proof. We begin by showing that the type

Y((z,t) : Comp A).(x = x) (7
is contractible. In order to do so, observe that we have the following equivalence of types:

Y((z,t) : Comp A).(x =) = X((z,t) : Z(z : A).||x = z||-1).(x = x)
~Y(x: A).(]x =z|-1) X (x =x)
~3((x,p) : B(x: A).(x = 2)).||[*x = 2| -1
using classical associativity and commutativity properties of 3-types. Moreover, the type
Y(z : A).(x = x) is contractible [27, Lemma 3.11.8], therefore the whole type on the last line
is a proposition (as a sum of propositions over a proposition), and therefore also the original
type (7). We write +’ for the element (x, || refl, ||—1) of Comp A. The type (7) is pointed by
the canonical element (x’,refl) and thus contractible as a pointed proposition.
We have a morphism
F: ((z,t) : CompA) = (¥ = (z,t)) = (x =)

(2,t) P = 7 (p)
sending a path p to the path obtained by applying the first projection. It canonically induces
a morphism

Y((x,t) : Comp A).(x" = (z,t)) = X((z,t) : Comp A).(x = z)
((z,8),p) = ((x,1), 7 (p))

between the corresponding total spaces. Since the left member is contractible (by [27,
Lemma 3.11.8] again) and the right member is contractible (as shown above), this is an
equivalence. By [27, Theorem 4.7.7], for every x : Comp A, the fiber morphism Fz is also an
equivalence. In particular, with z being +’, we obtain Q Comp A ~ Q A (as a type) and we

can conclude by univalence. Note that the equivalence preserves the group structure so that
the equality also holds in groups. |

As a direct corollary of the two above lemmas, we have:
» Proposition 23. Given a pointed groupoid A, Comp A is a delooping of Q A.

» Remark 24. Some people write Aut A for 2 A and the above proposition states that we
have B Aut A = Comp A. For this reason, the (confusing) notation BAut A is also found in
the literature for Comp A.
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D The flattening lemma

We recall here the classical flattening lemma, see [27, Section 6.12] for a more detailed
presentation and proof.

» Lemma 25 (Flattening for coequalizers). Suppose given a coequalizer
f
A——= B ", C
g

withp:ho f=hog, and a type family P: C — U. Then the diagram
Sf.(A_.id

YA.(Pohof) :)§ YB.(Poh)

Xg.e

Sho(A_.id)

> XC.P

18 a coequalizer, where the map
e:(a:A) = P(h(f(a))) = P(h(g(a)))
is induced by transport along p by
eax = Pyl ().

p

Note that there is a slight asymmetry: we could have formulated a similar statement with
Y A.(Pohog) as left object.
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