
From Asynchronous Games to Concurrent Games

Paul-André Melliès Samuel Mimram∗

September 30, 2008

Abstract

Game semantics was introduced in order to capture the dynamic behaviour
of proofs and programs. In these semantics, the interaction between a program
and its environment is modeled by a series of moves exchanged between two
players in a game. Every program thus induces a strategy describing how it re-
acts when it is provided information by its environment. Traditionally, strategies
considered in game semantics are alternating: the two protagonists play a move
one after the other. This property is very natural when modeling sequential pro-
gramming languages, but is not desirable for programs with concurrent features,
since interactions cannot be synchronized globally anymore. Extending funda-
mental notions of game semantics to a non-alternating setting is far from being
straightforward and requires to deeply rethink the definition of strategies. Re-
cently, a series of interactive models, such as concurrent games where strategies
are closure operators, were introduced in order to give denotational semantics of
programming languages or logics with concurrent features. However, these mod-
els were poorly connected with traditional game semantics. We show here that
asynchronous games, which combine true concurrency and game semantics, can
be used to provide a precise link between these two kind of interactive semantics,
thus laying foundations for game semantics of concurrent systems.

1 Introduction

The alternating origins of game semantics. Game semantics was invented (or
reinvented) at the beginning of the 1990s, in the turmoil produced by the discovery of
linear logic, in order to describe the dynamics of proofs and programs. Game semantics
proceeds according to the principles of trace semantics in concurrency theory: every
program and proof is interpreted by the sequences of interactions, called plays, that
it can have with its environment. The novelty of game semantics is that this set of
plays defines a strategy which reflects the interactive behaviour of the program inside
the game specified by the type of the program.

Game semantics was originally influenced by a pioneering work by Joyal [18] build-
ing a category of games (called Conway games) and alternating strategies. In this
setting, a game is defined as a decision tree (or more precisely, a dag) in which ev-
ery edge, called move, has a polarity indicating whether it is played by the program,
called Proponent, or by the environment, called Opponent. A play is alternating when
Proponent and Opponent alternate strictly – that is, when neither of them plays two
moves in a row. A strategy is alternating when it contains only alternating plays.

∗This work has been supported by the ANR Invariants algébriques des systèmes informatiques (IN-

VAL). Physical address: Équipe PPS, CNRS and Université Paris 7, 2 place Jussieu, case 7017, 75251
Paris cedex 05, France. Email addresses: mellies@pps.jussieu.fr and smimram@pps.jussieu.fr.

1

The category of alternating strategies introduced by Joyal was later refined by
Abramsky and Jagadeesan [1] and Hyland and Ong [14] in order to characterize the
dynamic behaviour of proofs in (multiplicative) linear logic. The key idea is that the
tensor product of linear logic, noted ⊗, may be distinguished from its dual, noted
`, by enforcing a switching policy on plays – ensuring for instance that a strategy
of A⊗B reacts to an Opponent move played in the subgame A by playing a Proponent
move in the same subgame A.

The notion of pointer game was then introduced by Hyland and Ong [15], and
independently by Nickau [27], in order to characterize the dynamic behaviour of pro-
grams in the programming language PCF – a simply-typed λ-calculus extended with
recursion, conditional branching and arithmetical constants. The programs of PCF
are characterized dynamically as particular kinds of strategies with partial memory
– called innocent because they react to Opponent moves according to their own view
of the play. This view is itself a play, extracted from the current play by removing
all its “invisible” or “inessential” moves. This extraction is performed by induction on
the length of the play, using the pointer structure of the play, and the hypothesis that
Proponent and Opponent alternate strictly.

This seminal work on pointer games led to the first generation of game semantics
for programming languages – based on ideas developed in the semantics of proofs.
However, because Proponent and Opponent strictly alternate in the original definition
of pointer games, these game semantics focus on sequential languages like Algol or
ML, rather than on concurrent languages.

Concurrent games. This convinced a little community of researchers to work on
the foundations of non-alternating games – where Proponent and Opponent are thus
allowed to play several moves in a row at any point of the interaction. Abramsky
and Melliès [2] introduced a new kind of game semantics to that purpose, based on
concurrent games defined as partial orders (or more precisely, complete lattices) of
positions, on which strategies defined as closure operators interact concurrently. In
this approach, the image σ(x) of a position x by the closure operator σ describes the
position reached by the strategy σ after it has played all the moves it could play.
Recall that a closure operator σ on a partial order D is a function σ : D −→ D
satisfying the following properties:

(1) σ is increasing: ∀x ∈ D, x ≤ σ(x),
(2) σ is idempotent: ∀x ∈ D, σ(x) = σ(σ(x)),
(3) σ is monotone: ∀x, y ∈ D, x ≤ y ⇒ σ(x) ≤ σ(y).

The order on positions x ≤ y reflects the intuition that the position y contains more
information than the position x. Typically, one should think of a position x as a set
of moves in a game, and x ≤ y as set inclusion x ⊆ y. Now, Property (1) expresses
that a strategy σ which transports the position x to the position σ(x) increases the
amount of information. Property (2) reflects the intuition that the strategy σ delivers
all its information when it transports the position x to the position σ(x), and thus
transports the position σ(x) to itself. Property (3) is both fundamental and intuitively
right, but also more subtle to justify. Note that the interaction induced by such a
strategy σ is possibly non-alternating, since the strategy transports the position x to
the position σ(x) by “playing in one go” all the moves appearing in σ(x) but not in x.

It is well-known that a closure operator σ is characterized by its set of fixpoints,
that is, the positions x satisfying x = σ(x). Hence, a strategy can be expressed either
as a set of positions (the set of fixpoints of the closure operator) in concurrent games
or as a set of alternating plays in pointer games.

2

Asynchronous transition systems. In order to understand how the two formula-
tions of strategies are related, one should start from an obvious analogy with concur-
rency theory: pointer games define an interleaving semantics (based on sequences of
transitions) whereas concurrent games define a truly concurrent semantics (based on
sets of positions, or states) of proofs and programs. Now, Mazurkiewicz [20] taught
us this important lesson: a truly concurrent semantics may be regarded as an inter-
leaving semantics (typically a transition system) equipped with asynchronous tiles –
represented diagrammatically as 2-dimensional tiles

x
m

}}{{{{{ n

!!CCCCC

y1

n !!CCCCC ∼ y2

m}}{{{{{

z

(1)

expressing that the two transitions m and n from the state x are independent, and
consequently, that their scheduling does not matter from a truly concurrent point of
view. This additional structure induces an equivalence relation on transition paths,
called homotopy , defined as the smallest congruence relation ∼ identifying the two
schedulings m·n and n·m for every tile of the form (1). The word homotopy should be
understood mathematically as (directed) homotopy in the topological presentation of
asynchronous transition systems as n-cubical sets [13]. This 2-dimensional refinement
of usual 1-dimensional transition systems enables us to express simultaneously the
interleaving semantics of a program as the set of transition paths it generates, and
its truly concurrent semantics, as the homotopy classes of these transition paths.
When the underlying 2-dimensional transition system is contractible in a suitable
sense, explained later, these homotopy classes coincide in fact with the positions of
the transition system.

Asynchronous games. Guided by these intuitions, Melliès introduced the notion
of asynchronous game, which unifies in a surprisingly conceptual way the two het-
erogeneous notions of pointer game and concurrent game. Asynchronous games are
played on asynchronous (2-dimensional) transition systems, where every transition (or
move) is equipped with a polarity, expressing whether it is played by Proponent or by
Opponent. A play is defined as a path starting from the root (noted ∗) of the game,
and a strategy is defined as a well-behaved set of alternating plays, in accordance with
the familiar principles of pointer games. Now, the difficulty is to understand how (and
when) a strategy defined as a set of plays may be reformulated as a set of positions,
in the spirit of concurrent games.

The first step in the inquiry is to observe that the asynchronous tiles (1) offer
an alternative way to describe justification pointers between moves. For illustration,
consider the boolean game B, where Opponent starts by asking a question q, and
Proponent answers by playing either true or false. The game is represented by the
decision tree

∗
q

��
q

true

���������
false

��???????

V F

(2)

where ∗ is the root of the game, and the three remaining positions are called q, V (V
for “Vrai” in French) and F . At this point, since there is no concurrency involved, the

3

game may be seen either as an asynchronous game, or as a pointer game. Now, the
game B ⊗ B is constructed by taking two boolean games “in parallel”. It simulates a
very simple computation device, containing two boolean memory cells. In a typical
interaction, Opponent starts by asking with qL the value of the left memory cell,
and Proponent answers trueL; then, Opponent asks with qR the value of the right
memory cell, and Proponent answers falseR. The play is represented as follows in
pointer games:

qL · trueL
zz

· qR · falseR
zz

The play contains two justification pointers, each one represented by an arrow starting
from a move and leading to a previous move. Typically, the justification pointer from
the move trueL to the move qL indicates that the answer trueL is necessarily played
after the question qL. The same situation is described using 2-dimensional tiles in the
asynchronous game B⊗ B below:

∗ ⊗ ∗
qL

yyssssssss qR

%%KKKKKKKK

q ⊗ ∗
trueL

zztttttttt
qR

KKK

%%KKK

∼ ∗ ⊗ q
qL

ttt

yyttt
falseR

$$JJJJJJJJ

V ⊗ ∗

qR $$JJJJJJJJ
∼ q ⊗ q

trueL
ttt

yyttt falseR

JJJ

%%JJJ

∼ ∗ ⊗ F

qLzztttttttt

V ⊗ q

falseR %%JJJJJJJJ
∼ q ⊗ F

trueLyytttttttt

V ⊗ F

(3)

The justification pointer between the answer trueL and its question qL is replaced here
by a dependency relation between the two moves, ensuring that the move trueL cannot
be permuted before the move qL. The dependency itself is expressed by a“topological”
obstruction: the lack of a 2-dimensional tile permuting the transition trueL before
the transition qL in the asynchronous game B⊗ B.

This basic correspondence between justification pointers and asynchronous tiles
allows a reformulation of the original definition of innocent strategy in pointer games
(based on views) in the language of asynchronous games. Surprisingly, the reformula-
tion leads to a purely local and diagrammatic definition of innocence in asynchronous
games, which does not mention the notion of view any more. For the positions in the
graph to truly be the basic notion, a strategy has to be well-behaved with respect
to different but equivalent ways of getting to the same position – otherwise, instead
of being able to talk about strategies as subgraphs one would have to stick to the
notion of being closed under equivalent plays. This diagrammatic reformulation leads
precisely to the important discovery that innocent strategies are positional in the fol-
lowing sense. Suppose that two alternating plays s, t : ∗ −→ x with the same target
position x are elements of an innocent strategy σ, and that m is an Opponent move
from position x. Suppose moreover that the two plays s and t are equivalent modulo
homotopy. Then, the innocent strategy σ extends the play s · m with a Proponent
move n if and only if it extends the play t · m with the same Proponent move n.
Formally:

s ·m · n ∈ σ and s ∼ t and t ∈ σ implies t ·m · n ∈ σ. (4)

From this follows that every innocent strategy σ is characterized by the set of positions
(understood here as homotopy classes of plays) reached in the asynchronous game.

4

This set of positions can be considered as a relation on positions. It moreover defines a
closure operator, and thus a strategy in the sense of concurrent games. Asynchronous
games offer in this way an elegant and unifying point of view on pointer games,
concurrent games and relational models.

Concurrency in game semantics. There is little doubt that a new generation
of game semantics is currently emerging along this foundational work on concurrent
games. We see at least three converging lines of research. First, authors trained in
proof theory and game semantics – Curien and Faggian – relaxed the sequentiality
constraints required by Girard on designs in ludics, leading to the notion of L-net [7]
which lives at the junction of syntax (expressed as proof nets) and game semantics
(played on event structures). Then, authors trained in game semantics – Ghica,
Laird and Murawski – were able to characterize the interactive behaviour of various
concurrent programming languages like Parallel Algol [10] or an asynchronous variant
of the π-calculus [19] using directly (and possibly too directly) the language of pointer
games. Finally, and more recently, authors trained in process calculi, true concurrency
and game semantics – Varacca and Yoshida – were able to extend Winskel’s truly
concurrent semantics of CCS, based on event structures, to a significant fragment
of the π-calculus, uncovering along the way a series of nice conceptual properties of
confusion-free event structures [33].

So, a new generation of game semantics for concurrent programming languages
is currently emerging... but their various computational models are still poorly con-
nected. We would like a regulating theory here, playing the role of Hyland and Ong
pointer games in traditional (that is, alternating) game semantics. Asynchronous
games are certainly a good candidate, because they combine interleaving semantics
and causal semantics in a harmonious way. Unfortunately, they were limited until now
to alternating strategies [23]. The key contribution of this article is thus to extend
the asynchronous framework to non-alternating strategies in a smooth way, inspired
by the ideas of linear logic.

Asynchronous games without alternation. One particularly simple recipe to
construct an asynchronous game is to start from a partial order of events where, in
addition, every event has a polarity, indicating whether it is played by Proponent or
Opponent. This partial order (M,�) is then equipped with a compatibility relation
satisfying a series of suitable properties – defining what Winskel calls an event struc-
ture. A position x of the asynchronous game is defined as a set of compatible events
(or moves) closed under the “causality” order:

∀m,n ∈M, m � n and n ∈ x implies m ∈ x.

Typically, the boolean game B described in (2) is generated by the event structure

q

zzzzzzzzz

FFFFFFFFF

true false

where q is an Opponent move, and true and false are two incompatible Propo-
nent moves, with the positions q, V, F defined as q = {q}, V = {q, true} and
F = {q, false}. The tensor product B ⊗ B of two boolean games is then generated
by putting side by side the two event structures, in the expected way. The resulting
asynchronous game looks like a flower with four petals, one of them described in (3).

5

More generally, every formula of linear logic defines an event structure – which gener-
ates in turn the asynchronous game associated to the formula. For instance, the event
structure induced by the formula

(B⊗ B) (B (5)

contains the following partial order of compatible events:

q

ttttttttttt

KKKKKKKKKKK

qL qR

trueL false falseR

(6)

which may be seen alternatively as a (maximal) position in the asynchronous game
associated to the formula.

This game implements the interaction between a boolean function (the Proponent)
of type (5) and its two arguments (the Opponent). In a typical play, Opponent starts
by playing the move q asking the value of the boolean output; Proponent reacts
by asking with qL the value of the left input, and Opponent answers trueL; then,
Proponent asks with qR the value of the right input, and Opponent answers falseR;
at this point only, using the knowledge of its two arguments, Proponent answers false
to the initial question:

q · qL · trueL · qR · falseR · false (7)

Of course, Proponent could have explored its two arguments in the other order, from
right to left, this inducing the play

q · qR · falseR · qL · trueL · false (8)

The two plays start from the empty position ∗ and reach the same position of the
asynchronous game. They may be seen as different linearizations (in the sense of order
theory) of the partial order (6) provided by the game, that is total orders extending
the partial order on the game. Each of these linearizations may be represented by
adding causality (dotted) edges between moves to the original partial order (6), in the
following way:

q

ppppppp

444444444444444

qL

trueL

qR

falseR

false

q

OOOOOOOO

��������������

qR

falseR

qL

trueL

false
(9)

The play (7) is an element of the strategy representing the left implementation of the
strict conjunction, whereas the play (8) is an element of the strategy representing its

6

right implementation. Both of these strategies are alternating. Now, there is also a
parallel implementation, where the conjunction asks the value of its two arguments
at the same time. The associated strategy is not alternating anymore: it contains the
play (7) and the play (8), and moreover, all the (possibly non-alternating) lineariza-
tions of the following partial order.

q

ttttttttttt

KKKKKKKKKKK

qL qR

trueL falseR

false

(10)

This illustrates an interesting phenomenon, of a purely concurrent nature: every play s
of a concurrent strategy σ coexists with other plays t in the strategy, having the
same target position x – and in fact, equivalent modulo homotopy. It is possible
to reconstruct from this set of plays a partial order on the events of x, refining the
partial order on events provided by the game. This partial order describes entirely
the strategy σ under the position x: more precisely, the set of plays in σ reaching the
position x coincides with the set of the linearizations of the partial order.

Our definition of innocent strategy will ensure the existence of such an underlying
“causality order” for every position x reached by the strategy. Every innocent strategy
will then define an event structure, obtained by putting together all the induced
partial orders. The construction requires refined tools from the theory of asynchronous
transition systems, and in particular the fundamental notion of cube property.

Composition of courteous strategies. We introduce in Section 6 the notion of
ingenuous strategy, defined as a strategy regulated by an underlying “causality order”
on moves for every reached position, and satisfying a series of suitable diagrammatic
properties. This notion is strengthened in Section 7 into the notion of courteous
strategy. We show in a precise way that these strategies induce closure operators on
the positions of the game, and that these closure operators characterize the strategies.
This property thus relates asynchronous games and concurrent games.

There is however a subtle mismatch between the compositions of strategies seen
as sets of plays and the strategies seen as closure operators, preventing the relation
between the two models from being functorial. This difficulty with composition is
depicted in the following example. Consider for instance the ingenuous strategy σ of
type B⊗ B generated by the partial order:

qL

trueL

qR

falseR

(11)

The strategy answers trueL to the question qL, but accepts the question qR only

7

after it has given the answer trueL. Composing the strategy σ with the right imple-
mentation of the strict conjunction pictured on the right-hand side of (9) induces a
play q stopped by a deadlock at the position {q}. On the other hand, composing the
strategy with the left or the parallel implementation is fine, and leads to a complete
interaction.

This dynamic phenomenon is better understood by introducing two new binary
connectives 4 and 5 called “before” and “after”, describing sequential composition in
asynchronous games. The game A 4 B is defined as the 2-dimensional restriction of
the game A⊗B to the plays s such that every move played before a move in A is also
in A; or equivalently, every move played after a move B is also in B. The game A5B
is simply defined as the game B 4A, where the component B thus starts.

The ingenuous strategy σ in B⊗B specializes to a strategy in the subgame B4 B,
which reflects it, in the sense that every play s ∈ σ is equivalent modulo homotopy
to a play t ∈ σ in the subgame B4 B. This is not true anymore when one specializes
the strategy σ to the subgame B 5 B, because the play qL · trueL · qR · falseR is
an element of σ which is not equivalent modulo homotopy to any play t ∈ σ in the
subgame B 5 B. For that reason, we declare that the strategy σ is innocent in the
game B4 B but not in the game B⊗ B.

Scheduled strategies. This leads to an interactive criterion which tests dynami-
cally whether an ingenuous strategy σ is suitable for a given formula of linear logic.
The criterion is based on scheduling conditions. The idea is to switch every tensor
product ⊗ of the formula as 4 or 5 and to test whether every play s in the strat-
egy σ is equivalent modulo homotopy to a play t ∈ σ in the induced subgame. Every
such switching S reflects a choice of scheduling by the counter-strategy: a scheduled
strategy is thus a strategy flexible enough to adapt to every scheduling of the ten-
sor products by Opponent. Syntactically, this means that an ingenuous strategy is
scheduled if and only if the underlying proof-structure satisfies a directed (and more
liberal) variant of the acyclicity criterion introduced by Girard [11] and reformulated
by Danos and Regnier [8].

An interesting feature of our work is that the description of scheduling is based
on an orthogonality relation between strategies, in a fashion directly inspired by the
ideas of linear logic. In particular, the hierarchy of games and strategies defined
by tensor product and double orthogonality, is characterized interactively. In this
characterization, the scheduling tests S define some kind of generating basis of a
combinatorial nature.

We will establish that every ingenuous strategy is positional, and thus induces a
set of acceptance positions where the strategy halts, and waits for the Opponent to
select a next move. One important observation of this article, however, is that there is
a subtle mismatch between the interaction of two ingenuous strategies seen as sets of
plays, and seen as sets of positions (or equivalently as closure operators). Typically,
the right implementation of the strict conjunction in (9) composed to the strategy σ
in (11) induces two different fixpoints in the concurrent game model: the deadlock
position (∗ ⊗ ∗) (q = {q} reached during the asynchronous interaction, and the
complete position (V ⊗ F) (F = {q, qL, trueL, qR, falseR, false} which is never
reached interactively. The scheduling assumption is precisely what ensures that this
will never occur: the fixpoint computed in the concurrent game model is unique, and
coincides with the position eventually reached in the asynchronous game model. In
particular, scheduled strategies compose properly in the sense that their composition
correspond to concurrent strategies.

8

Plan of the paper. We did our best to give in this introduction an informal but
detailed overview of this demanding work, which combines together ideas from several
fields: game semantics, concurrency theory, linear logic, etc. We focus now on the
conceptual properties of innocent strategies, expressed in the diagrammatic language
of asynchronous transition systems. A more detailed presentation can be found in
the second author’s PhD thesis [26]. The cube property is recalled in Section 2. We
define a category of 1-Player games in Section 3 and study its positional strategies
in Section 4. We reformulate the definition of positionality directly on sets of traces
in Section 5. The notion of ingenuous strategy is introduced for 2-Player games in
Section 6. It is then refined into the notion of courteous strategy in Section 7, which
enables us to statically relate asynchronous games and concurrent games. Finally,
this correspondence is extended to a functorial one in Sections 9 and 10 using the
notion of scheduled strategy, which is defined using a scheduling criterion capturing
the essence of a directed variant of the acyclicity criterion of linear logic.

2 The cube property

The cube property expresses a fundamental causality principle in the diagrammatic
language of asynchronous transition systems [4, 32, 34]. The property is related to
stability in the sense of Berry [5]. It was first noticed by Nielsen, Plotkin and Winskel
in [28], then reappeared in [29] and [12, 24] and was studied thoroughly by Kuske in
his PhD thesis; see [9] for a survey.

Asynchronous graphs. The most natural way to express the property is to start
from what we call an asynchronous graph. Recall that a graph G = (V,E, ∂0, ∂1)
consists of a set V of vertices (or positions), a set E of edges (or transitions), and
two functions ∂0, ∂1 : E → V called respectively source and target functions. An
asynchronous graph G = (G, �) is a graph G together with a relation � on coinitial and
cofinal transition paths of length 2. Every relation s�t is represented diagrammatically
as a 2-dimensional tile

x
m

}}{{{{{ n

!!CCCCC

y1

p !!CCCCC ∼ y2

q}}{{{{{

z

(12)

where s = m · p and t = n · q. In this diagram, the transition q is intuitively the
residual of the transition m after the transition n. One requires the two following
properties for every asynchronous tile:

1. m 6= n and p 6= q,

2. the pair of transitions (n, q) is uniquely determined by the pair of transitions (m, p),
and conversely the pair of transitions (m, p) is uniquely determined by the pair
of transitions (n, q).

The main difference with the asynchronous tile (1) occurring in the asynchronous
transition systems defined in [34, 30] is that the transitions are not labelled by events:
so, the 2-dimensional structure is purely “geometric” and not deduced from an inde-
pendence relation on events. What matters is that the 2-dimensional structure enables
one to define a homotopy relation ∼ on paths in exactly the same way.

9

The cube property. Every homotopy class of a path s = m1 · · ·mk coincides
with the set of linearizations of a partial order on its transitions if, and only if, the
asynchronous graph satisfies the following cube property :

Definition 1 (cube property) An asynchronous graph G satisfies the cube prop-
erty when a hexagonal diagram in G induced by two coinitial and cofinal paths m·n·o :
x −→→ y and p ·q ·r : x −→→ y is filled by 2-dimensional tiles as pictured in the left-hand
side of the diagram below, if and only it is filled by 2-dimensional tiles as pictured in
the right-hand side of the diagram:

x
m

}}{{{{{{

��

p //

∼

x2

q

��

x1

n

��

∼

x3

}}{{{{{
//

∼

y1

r~~}}}}}

y2 o
// y

⇐⇒

x
m

~~}}}}}
∼

p // x2

}}{{{{{

q

��

x1

n

��

∼

// y3

∼

��

y1

r}}{{{{{

y2 o
// y

The cube property is for instance satisfied by every asynchronous transition system
and every transition system with independence in the sense of [34, 30]. The correspon-
dence between homotopy classes and sets of linearizations of a partial order adapts, in
our setting, a standard result on pomsets and asynchronous transition systems with
dynamic independence due to Bracho, Droste and Kuske [6].

Every asynchronous graphG equipped with a distinguished initial position (noted ∗)
induces an asynchronous graph [G] whose positions are the homotopy classes of paths
starting from the position ∗, and whose edges m : [s] −→ [t] between the homotopy
classes of the paths s : ∗ −→→ x and t : ∗ −→→ y are the edges m : x −→ y such
that s ·m ∼ t. When the original asynchronous graph G satisfies the cube property,
the resulting asynchronous graph [G] is “contractible” in the sense that every two
coinitial and cofinal paths are equivalent modulo homotopy.

So, we will suppose from now on that all our asynchronous graphs satisfy the cube
property and are therefore contractible. The resulting framework is very similar to
the domain of configurations of an event structure. Indeed, every contractible asyn-
chronous graph defines a partial order on its set of positions, defined by reachability:
x ≤ y when x −→→ y. Moreover, this order specializes to a finite distributive lattice
under every position x, rephrasing – by Birkhoff representation theorem – the already
mentioned property:

Proposition 1 In an asynchronous graph G which satisfies the cube property, the
homotopy class of a path s : x −→→ y is in one-to-one correspondence with the set of
linearizations of a partial order ≤s on its transitions.

Finally, every transition may be labelled by an “event” representing the transition
modulo a “zig-zag” relation, identifying the moves m and q in every asynchronous
tile (12). The idea of “zig-zag” is folklore: it appears for instance in [30] in order to
translate a transition system with independence into a labelled event structure.

3 A monoidal category of 1-Player games

The categories of games and strategies considered in game semantics are usually de-
fined on 2-Player games. However, it appears that the very construction of a category
can be performed directly on 1-Player games.

10

Definition 2 (game) A 1-Player game (G, ∗) is defined as an asynchronous graph G
together with a distinguished initial position ∗, such that for every position x, there
exists a path s : ∗ −→→ x.

Indeed, we will construct here a monoidal category O of 1-Player games and strategies,
which will be self-dual – that is, compact closed – in the same way as the category of
sets and relations.

Definition 3 (play) A play is a path s : ∗ −→→ x starting from the initial position ∗
of the game.

Definition 4 (strategy) A strategy is a set of plays of the game.

From now on, we write σ : A when σ is a strategy of the game A. Note that we do
not require that a strategy is closed under prefix: this will play a fundamental rôle in
the construction of the identity map in our category of 1-Player games.

Tensor product. Given two 1-Player games A = (GA, ∗A) and B = (GB , ∗B),
their tensor product A ⊗ B = (GA⊗B , ∗A⊗B) is defined as follows. Its underlying
asynchronous graph is the graph whose positions are pairs (xA, xB) of positions of
GA and of GB , sometimes also noted xA ⊗ xB , whose transitions are of the form
m : xA ⊗ xB −→ yA ⊗ xB where m : xA −→ yA is a transition of GA, or of the form
m : xA ⊗ xB −→ xA ⊗ yB where m : xB −→ yB is a transition in GB . The tiling
relation relates two paths m · n and n ·m such that m and n are both transitions in
GA (resp. GB) and m · n and n ·m are related in GA (resp. in GB) or the transitions
m and n come one from GA and the other from GB . The initial position ∗A⊗B is
defined as the position ∗A ⊗ ∗B .

Projection. Every path s in the 1-Player game A⊗B may be seen as the interleaving
of a path sA in A, and a path sB in B. Moreover, every two such interleavings of sA
and sB are equivalent, modulo homotopy in A⊗B. The path sA is called the projection
of the path s on the component A. Similarly, we write sA,B for the projection on the
component A⊗B of a play s in the game A⊗B ⊗ C.

Composition. Every pair of strategies σ : A⊗B and τ : B⊗C induces by interaction
a strategy σ ÷ τ of the game A⊗B ⊗ C, defined as

σ ÷ τ = { s ∈ A⊗B ⊗ C | sA,B ∈ σ and sB,C ∈ τ }

The composite σ; τ is the strategy of A ⊗ C defined by hiding the moves in B from
the interaction between σ and τ :

σ; τ = { sA,C | s ∈ σ ÷ τ } (13)

The category O has 1-Player games as objects, and strategies of A⊗B as morphisms
from A to B. The composite of σ : A→ B and τ : B → C is the strategy σ; τ : A→ C
defined in (13). The identity idA on the game A is the smallest strategy containing
the empty play and such that for every play s : ∗A⊗∗A −→→ xA⊗xA in idA and every
transition m : xA −→ yA in A, the two plays

∗A ⊗ ∗A
s−→→ xA ⊗ xA

m−→ yA ⊗ xA
m−→ yA ⊗ yA

and
∗A ⊗ ∗A

s−→→ xA ⊗ xA
m−→ xA ⊗ yA

m−→ yA ⊗ yA

11

are also elements of the strategy idA. Note that the identity strategy is not closed
under prefix: hence, prefix-closed strategies do not form a subcategory of the cat-
egory O. They do not even form a category, since the prefix-closed variant of our
identity strategy is not idempotent.

The category O equipped with the tensor product ⊗ defines a symmetric monoidal
category, whose unit is the game I with one unique position. Besides, this category
is compact closed, since there is a one-to-one (and natural) relationship between the
morphisms from A⊗B to C and the morphisms from A to B ⊗ C.

4 Positionality in asynchronous games

Positional strategies (prefix-closed case). A prefix-closed strategy σ is called
positional when

s · u ∈ σ and s ∼ t and t ∈ σ implies t · u ∈ σ (14)

for every three paths s, t : ∗ −→→ x and u : x −→→ y. This definition adapts the
definition (4) to 1-Player games, and in fact, applies in the just same way to the
non-alternating setting introduced later on in the article, in Section 6.

A positional prefix-closed strategy is the same thing as a subgraph of the 1-Player
game, where every position is reachable from the initial position ∗ inside the subgraph.
This subgraph inherits a 2-dimensional structure from the underlying 1-Player game.
This defines an asynchronous graph, denoted Gσ, from which the strategy σ can be
recovered as the set of all plays of Gσ.

It is conceptually remarkable that our notion of positional strategy is of the same
nature as the notion of asynchronous game. In fact, we have just shown that a
positional prefix-closed strategy σ : A is the same thing as a subgame of the original
game A, in the following sense:

Definition 5 (subgame) An asynchronous game (G2, �2) is a subgame of an asyn-
chronous game (G1, �1) when G2 is a subgraph of G1, with the same initial position,
and moreover, the homotopy relation �2 is inherited from the homotopy relation �1,
in the sense that

m · p �1 n · q iff m · p �2 n · q

for all transitions m,n, p, q of the graph G2.

This generalizes the well-known principle that a prefix-closed strategy σ of a decision
tree A, is the same thing as a subtree of A.

Positional strategies (general case). Now, we extend our notion of positional
strategy to the general case of a non necessarily prefix-closed strategy. By definition,
such a strategy σ is called positional when its prefix-closure prefix(σ) is positional in
the previous sense, and moreover

s · u ∈ σ and s ∼ t and t ∈ σ implies s ∈ σ

for every three paths s, t : ∗ −→→ x and u : x −→→ y. From this definition, it follows that
a positional strategy σ is characterized by the asynchronous graph Gprefix(σ) induced
by its prefix-closure prefix(σ) – which will be noted Gσ from now on – together with
the set σ• of acceptance positions of σ defined as

σ• = { x | ∃s : ∗ −→→ x, s ∈ σ }.

12

The strategy σ can be reconstructed from the graph Gσ and the set of acceptance
positions σ• as follows:

σ = { s : ∗ −→→ x | s ∈ Gσ and x ∈ σ• }.

Note that every maximal position x of the graph Gσ associated to a positional strat-
egy σ, belongs to the set σ• of its acceptance positions. Conversely, a subgame G of
1-Player game A and a set of positions X in G is of the form G = Gσ and X = σ• for
a positional strategy σ when every maximal position of G is element of X.

Asynchronous graphs vs. event structures. The advantage of considering asyn-
chronous graphs instead of event structures appears at this point of the article. In our
philosophy, the name of the “event” associated to a given transition should be deduced
from the 2-dimensional geometry of the graph. Typically, the “event” associated to a
transition m in the graph Gσ describes the “causality cascade” leading the strategy σ
to play the transition m. On the other hand, the “event” associated to the same tran-
sition m, but seen this time in the 1-Player game G, is simply the name of the move
in the game. This subtle difference is precisely what underlies the distinction between
the names of events in the formula (5) and in the various strategies (9) and (10). For
instance, there are three “events” associated to the output move false in the parallel
implementation of the strict conjunction, each one corresponding to a particular pair
of inputs (true, false), (false, false), and (false, true). This ability to name a
transition by the causal cascade which produced it, follows from the cube property –
an avatar of Berry stability, already noticed in [21].

5 Interlude: from sequences to positions

From now on, we only consider positional strategies satisfying two additional proper-
ties.

1. Forward compatibility preservation: every asynchronous tile of the shape (12)
in the 1-Player game G belongs to the subgraph Gσ of the strategy σ when its
two coinitial transitions m : x −→ y1 and n : x −→ y2 are transitions in the
subgraph Gσ. Diagrammatically,

x
σ3m
}}{{{{{ n∈σ

!!CCCCC

y1

p !!

∼ y2

q}}
z

implies

x
σ3m
}}{{{{{ n∈σ

!!CCCCC

y1

σ3p !!CCCCC ∼ y2

q∈σ}}{{{{{

z

where the dotted edges indicate edges in G.

2. Backward compatibility preservation: dually, every asynchronous tile of the
shape (12) in the 1-Player game G belongs to the subgraph Gσ of the strategy σ
when its two cofinal transitions p : y1 −→ z and q : y2 −→ z are transitions in
the subgraph Gσ. Diagrammatically,

x
m

}}
n

!!
y1

σ3p !!CCCCC ∼ y2

q∈σ}}{{{{{

z

implies

x
σ3m
}}{{{{{ n∈σ

!!CCCCC

y1

σ3p !!CCCCC ∼ y2

q∈σ}}{{{{{

z

13

These two properties ensure that the asynchronous graph Gσ is contractible and satis-
fies the cube property. Contractibility means that every two cofinal plays s, t : ∗ −→→ x
of the strategy σ are equivalent modulo homotopy inside the asynchronous graph Gσ
– that is, every intermediate play in the homotopy relation is an element of σ. More-
over, there is a simple reformulation as a set of plays of a positional strategy. Namely,
a prefix-closed strategy σ is positional and satisfies the two preservation properties if
and only if it satisfies the following properties.

1. For every two plays s ·m · p : ∗ −→→ x and s · n · q : ∗ −→→ x and for every path
t : x −→→ y, we have: s · m · p · t ∈ σ, m · p ∼ n · q and s · n · q ∈ σ implies
s · n · q · t ∈ σ. Diagrammatically,

σ 3

∗
s ����

m

~~|||||| n

p ��????? ∼
q��

x

t ����
y

and

∗
s ����

m

~~
n

 BBBBBB

p ��

∼
q�������

x

∈ σ implies

∗
s ����

m

~~
n

 BBBBBB

p ��

∼
q�������

x

t ����
y

∈ σ

2. For every play s : ∗ −→→ x and transitions m : x −→ y1 and n : x −→ y2 such
that there exist a position z and two transitions p : y1 −→ z and q : y2 −→ z
forming a tile (12), if the paths s ·m and s · n are in σ then the paths s ·m · p
and s · n · q are also in σ. Diagrammatically,

σ 3

∗
s ����
x

m

}}{{{{{ n

!!CCCCC

y1

p !!

∼ y2

q}}
z

∈ σ implies σ 3

∗
s ����
x

m

}}{{{{{ n

!!CCCCC

y1

p !!CCCCC ∼ y2

q}}{{{{{

z

∈ σ

3. For every two plays s ·m · n · o : ∗ −→→ y and s · p · q · r : ∗ −→→ y in σ, the series
of homotopic paths on the left-hand side of the diagram below are in σ if and
only if the series of homotopic paths on the right-hand side of the diagram are
in σ:

∗
s ����
x

m

}}{{{{{{

��

p //

∼

x2

q

��

x1

n

��

∼

x3

}}{{{{{
//

∼

y1

r~~}}}}}

y2 o
// y

⇐⇒

∗
s ����
x

m

~~}}}}}
∼

p // x2

}}{{{{{

q

��

x1

n

��

∼

// y3

∼

��

y1

r}}{{{{{

y2 o
// y

14

This characterization is useful, because it enables us to manipulate a positional strat-
egy either as a set of plays, or as an asynchronous subgraph of the game. The charac-
terization is extended to general (that is, non prefix-closed) strategies in the obvious
way: one simply requires

• a variant of property 1: for every three paths s ·m · p : ∗ −→→ x, s ·n · q : ∗ −→→ x
and t : x −→→ y, such that s ·m · p · t ∈ σ, m · p ∼ n · q and s · n · q ∈ prefix(σ),
one requires that s · n · q · t ∈ σ.

• the properties 2. and 3. on the prefix-closure prefix(σ) of the strategy.

Although they are very natural, the properties of positionality as well as the two ad-
ditional properties of preservation of compatibility are not preserved by composition:
the composite σ; τ of two positional strategies σ and τ is not necessarily positional,
etc. This seems intimately related to the fact that our current games are 1-Player
games. Hence, we introduce in the next section a category G of 2-Player games and
ingenuous strategies, for which these properties are preserved by composition.

6 Ingenuous strategies in 2-Player games

Our notion of 2-Player game is simply obtained by separating the moves of our 1-
Player games in two classes: Opponent moves and Proponent moves.

Definition 6 (game) A 2-Player game (G, ∗, λ) is a 1-Player game (G, ∗) together
with a function λ : E → {−1,+1} which associates a polarity to every transition (or
move) of the underlying graph G = (V,E, �).

The convention is that a move m is played by Proponent when λ(m) = +1 and by
Opponent when λ(m) = −1. Moreover, one requires that polarities match in homotopy
tiles, in the sense that λ(m) = λ(q) and λ(n) = λ(p) for every asynchronous tile (12)
of the asynchronous graph G.

Ingenuous strategies. Strategies of 2-Player games are defined as sets of plays, in
the same way as in 1-Player games. However, shifting from 1-Player games to 2-Player
games enables us to define the following notion of ingenuous strategy. A strategy σ is
called ingenuous when it satisfies the following properties.

1. It is positional, and satisfies the backward and forward compatibility preserva-
tion properties of Section 5,

2. It is deterministic, in the following concurrent sense: every pair of coinitial
moves m : x −→ y1 and n : x −→ y2 in the strategy σ where the move m
is played by Proponent, induces an asynchronous tile (12) in the strategy σ.
Diagrammatically,

x
σ3m
~~}}}}} n∈σ

 BBBBB

y1 y2 implies

x
σ3m
}}{{{{{ n∈σ

!!CCCCC

y1

σ3p !!CCCCC ∼ y2

q∈σ}}{{{{{

z

3. It is conflict-free: every acceptance position is halting.

15

A position x is halting in a strategy σ when it is reached by a prefix s : ∗ −→→ x of
the strategy, and there exists no Proponent move m : x −→ y such that s ·m is prefix
of the strategy σ. These halting positions are thus positions where the strategy has
played all its moves, and is either waiting for an input from the Opponent, or is not
willing to interact anymore.

Note that, for simplicity, we express the condition of determinism on strategies
seen as asynchronous subgames of the original game. However, this condition may
be reformulated in a straightforward fashion on strategies defined as sets of plays,
following the methodology of Section 5. The forward and backward compatibility
preservation properties of Section 5 ensure that the set of plays of the strategy σ
reaching the same position x is regulated by a“causality order”on the moves occurring
in these plays – which refines the “justification order” on moves (in the sense of pointer
games) provided by the asynchronous game.

Our concurrent notion of determinism is not exactly the same as the usual notion of
determinism in sequential games: in particular, a strategy may play several Proponent
moves from a given position, as long as it converges later.

Together with the two first conditions, the last property is equivalent to the notion
of conflict-freeness introduced independently in [16] and [25]. This condition is a kind
of confluence property which can be formulated as follows. A strategy σ is conflict-free
when for every play s : ∗ −→→ x prefix of a play s · t : ∗ −→→ z in the strategy σ, and
for every Proponent transition m : x −→ y such that the play s ·m is also prefix of a
play in σ, there exists a path u : y −→→ z such that t ∼ m · u and the play s ·m · u is
element of the strategy σ. Diagrammatically,

∗
s ����
x

t

%% %%

m

��
∼ y

uuuuuz

The idea is that when a conflict-free strategy is ready to accept a position z in the
future, it should play so as to keep the ability to reach this position z at a later stage,
unless Opponent decides to orient the interaction in another direction.

Composition. The tensor product A⊗B of two 2-Player games A and B is defined
in the same way as for 1-Player games, with the polarity of moves preserved in each
component. The dual A∗ of a 2-Player game A is simply the game A with polarities
reversed. The linear implication A (B is defined as A∗ ⊗ B, which is also equal to
(A ⊗ B∗)∗. We like to write xA (xB for the position of A (B consisting of the
position xA in the game A and the position xB in the game B.

The composite σ; τ : A (C of two strategies σ : A (B and τ : B (C is
defined exactly in the same way in 2-Player games as in 1-Player games. Moreover, the
composite of two ingenuous strategies is also ingenuous. The proof of this statement
is not entirely obvious. It is based on a subtle confluence property, stated below.

Property 1 Suppose that σ : A (B and τ : B (C are two ingenuous strategies
and that

u : ∗ −→→ x (z

is a play in the composite strategy σ; τ . Suppose also that there exist two plays

s1 : ∗ −→→ x (y1 and s2 : ∗ −→→ x (y2

16

in σ and two plays

t1 : ∗ −→→ y1 (z and t2 : ∗ −→→ y2 (z

in τ such that

(s1)A = (s2)A, (s1)B = (t1)B, (s2)B = (t2)B, (t1)C = (t2)C

then there exist a position y and two plays

s : ∗ −→→ x (y and t : ∗ −→→ y (z

respectively in σ and in τ such that

sA = (s1)A = (s2)A, sB = tB, tC = (t1)C = (t2)C

and both s1 and s2 (resp. t1 and t2) are prefixes of s (resp. of t) modulo homotopy.

This property states that given two interactions between the strategies σ and τ lead-
ing to the same play u in the composite strategy σ; τ , their union (wrt. the prefix
order modulo homotopy) can be reached by interaction. This property of “maximal
witness” is fundamental to establish, for instance, that the composite strategy σ; τ is
deterministic. Suppose given a path u : ∗ −→→ x (z, and two Proponent transitions
m : x (z −→ x (z1 and n : x (z −→ x (z2 in the component C such that m
and n are played by the composite strategy σ; τ . The play u ·m (resp. u · n) results
from the interaction of two plays s1 ∈ σ and t1 ·m ∈ τ (resp. s2 ∈ σ and t2 · n ∈ τ).
Property 1 ensures that the two plays u ·m and u · n result from the interaction of
essentially the same pair of plays: s ∈ σ and t ·m ∈ τ for u ·m, s ∈ σ and t · n ∈ τ
for u ·n. Since the strategy τ is deterministic, the transitions m and n form a tile (12)
and the plays t ·m · p and t · n · q are in τ , from which we deduce that the paths m · p
and n · q are in the strategy σ; τ . The other cases can be handled similarly.

This defines a category G of 2-Player games, whose morphisms from A to B are
the ingenuous strategies of the game A (B. The category is symmetric monoidal,
and in fact compact closed. The obvious forgetful functor from G to our previous
category O of 1-Player games is monoidal and preserves the duality.

7 Courteous strategies as closure operators

In this section, we investigate a particular class of ingenuous strategies, satisfying an
additional property of courtesy. These strategies are remarkable, because they are
completely determined by their halting positions. This additional courtesy property
enables us to relate asynchronous games with concurrent games. From now on, we
suppose that all the strategies we consider have their acceptance positions equal to
their halting positions. The notation σ• will thus denote the set of halting positions
of a strategy σ.

Definition 7 (courtesy) A strategy σ is courteous when every asynchronous tile (12)
where m is a Proponent move, is in the strategy σ as soon as the two moves m : x −→
y1 and p : y1 −→ z are in the strategy σ. Diagrammatically,

x
σ3m
}}{{{{{ n

!!
y1

σ3p !!CCCCC ∼ y2

q}}
z

implies

x
σ3m
}}{{{{{ n∈σ

!!CCCCC

y1

σ3p !!CCCCC ∼ y2

q∈σ}}{{{{{

z

17

This property ensures that a strategy σ which accepts an Opponent move n after
playing an independent Proponent move m, is ready to delay its own action, and to
accept the move n before playing the move m. Therefore, the “causality order” on
moves induced by such a strategy refines the underlying “justification order” of the
game, by adding only order dependencies m � n where m is an Opponent move.
This adapts to the non-alternating setting the fact that, in alternating games, the
causality order p � q provided by the view of an innocent strategy coincides with the
justification order when p is Proponent and q is Opponent.

From positions to strategies. Given a set X of positions of a game A, we define
the strategy X on the game A as the smallest set of plays of A such that:

• X contains the empty play,

• for every play s : ∗ −→→ x in X , if m : x −→ y is a transition such that there
exists a position z ∈ X and path t : y −→→ z containing only Proponent moves
then the play s ·m : x −→→ y is in the strategy X .

This operation provide us with a way to recover a courteous strategy from its halting
positions in the following sense.

Proposition 2 Suppose that the strategy σ is ingenuous and courteous. Then, the
strategy σ is characterized by its set of halting positions:

σ = (σ•)

Conversely, it is possible to give straightforward a characterization of the sets of
positions which are the sets σ• of halting positions of some courteous strategy σ:

Proposition 3 Given a game A, a set X of positions of A is of the form X = σ• for
some courteous ingenuous strategy σ if and only if it satisfies the following properties.

1. The set X is closed under intersection:

∀x, y ∈ X, x ∧ y ∈ X

2. The set X preserves compatibility: two positions x and y of X which are com-
patible in A, are also compatible in X.

3. For every position x of A which is dominated in X, there exists a position y
in X and a sequence of Proponent moves m1, . . . ,mk forming a path

x
m−→ x1 · · ·xk−1

mk−→ y

4. For every pair of positions x, z ∈ X such that there exists a path s : x −→→ z,
there exist an Opponent transition m : x −→ y and a path t : y −→→ z containing
only Proponent moves.

This extends to our non-alternating setting the characterization of [23].
The first property implies that the set X is a Moore family on the poset DA of

positions of the game A completed with a top element, which is a complete lattice.
As such, this family X induces a closure operator on the poset DA, defined by

σ = x 7→
∧
{ y ∈ X | x ≤ y } (15)

18

Conversely, the set X can be recovered as the set

fix(σ) = { x ∈ DA | σ(x) = x } (16)

of fixpoints of the closure operator. The set (16) of fixpoints of a closure operator is
always a Moore family and moreover, the transformations (15) and (16) are inverse
operations. These transformations thus allow us to recover the model of concurrent
games [2].

A category of courteous strategies. It should be noted that the composite σ; τ :
A→ C of two courteous and ingenuous strategies σ : A→ B and τ : B → C is itself
a courteous strategy. In fact, courteous ingenuous strategies define a category C of
2-Player games and courteous ingenuous strategies. Note that this category is not a
subcategory of the category G of ingenuous strategies. Indeed, the courteous identity
on a game A is the buffer strategy bufA : A → A defined as the smallest courteous
strategy containing the identity idA in G.

On the other hand, an ingenuous strategy σ : A→ B is courteous if and only if it
is invariant by composition with the buffer strategy in the sense that the equalities

bufA;σ = σ = σ; bufB

hold, thus adapting in our setting the notion of buffered asynchronous agent intro-
duced by Selinger [31]. In that respect, the category of courteous strategies may be
deduced conceptually from the category G.

One could expect the correspondence between courteous strategies ingenuous strate-
gies to extend into a functor from the category C of courteous strategies to the category
of concurrent games – the composition of closure operators is defined in [2] by a fix-
point construction and corresponds precisely, by the transformations (15) and (16),
to the relational composition of the sets fixpoints of the closure operators. However,
we explain in the next section why it is not the case.

8 A lax functor to the relational model

In Section 4, we showed how a strategy σ : A→ B in the category G induces a set σ•

of positions of the game A (B. Since every such position is a couple (xA, xB),
also noted xA (xB , consisting of a position xA of A and a position xB of B, the
set σ• may be seen alternatively as a relation between the positions of A and the
positions of B. This provides a translation from strategies to relations which is not
functorial, because of a subtle mismatch between the way morphisms are composed.
Hence, if σ : A→ B and τ : B → C denote two strategies, the equality

σ•; τ• = (σ; τ)•

between the relational composite σ•; τ• of their sets of positions, and the set of posi-
tions (σ; τ)• of their composite does not necessarily hold.

From static to dynamic composition. However, the inclusion

σ•; τ• ⊇ (σ; τ)•

holds, for the following reason. By definition, every position x (y in (σ; τ)• is
reached by a play u : ∗ −→→ x (z in the composite strategy σ; τ . By definition again,
this play results from the interaction of a play s : ∗ −→→ x (y in the strategy σ

19

and of a play t : ∗ −→→ y (z in the strategy τ . The position x (z is therefore
in σ•; τ•, since x (y ∈ σ• and y (z ∈ τ•. Technically speaking, this makes the
operation (−)• a lax functor from the category G to the 2-category of relations – where
the 2-dimensional cells of the category of relations

X

r1

r2

>>⇓ Y

indicate that the relation r2 : X → Y is included in the relation r1 : X → Y .

From dynamic to static composition. In contrast, the other inclusion

σ•; τ• ⊆ (σ; τ)•

does not necessarily hold. For example, the strategy σ : I → B ⊗ B pictured in (11)
implements the pair (true, false) which is not willing to accept questions for its right
component before it has given the value of its left component. Now, compose it with
the strategy τ : B⊗ B→ B, which is the implementation of the conjunction pictured
on the right-hand side of (9) which queries the value of its right argument, then the
value of its left argument, and then computes the answer. The positions accepted by
the strategy σ are

σ• = {∗ ⊗ ∗, V ⊗ ∗, V ⊗ F}
and the set τ• of positions accepted by the strategy τ contains

{(∗ ⊗ ∗) (∗, (∗ ⊗ q) (q, (q ⊗ F) (q, (V ⊗ F) (F}

Therefore, the composite relation σ•; τ• contains the position F , although this position
is not in (σ; τ)•. This detects a deadlock during the interaction of the two strategies,
preventing this position to be actually reached: at the position ∗ ⊗ ∗ in B ⊗ B, the
strategy σ wants to be asked a question on its left component whereas the strategy τ
first asks for the right component of the pair. More conceptually, this phenomenon
comes from the fact that the category G is compact closed: the tensor product ⊗ is
identified with its dual `. In order to prevent such situations from happening, we
impose a further criterion on strategies, which is detailed in next section.

9 Scheduling tests and orthogonality

We now strengthen the notion of ingenuous strategies by imposing a scheduling crite-
rion which distinguishes the tensor product ⊗ from its dual `. This criterion plays
the rôle in our non-alternating framework of the switching conditions introduced by
Abramsky and Jagadeesan for alternating games [1]. As we will see, the criterion
ensures that strategies do not deadlock during composition, and thus, that the sets
of acceptance positions reflect properly how strategies compose – this turning the lax
functor of Section 8 into a strict functor from asynchronous strategies to relations.

Scheduling. Our scheduling criterion is based on the idea that a strategy of a given
type A should be able to reorganize its interactive behaviour according to the schedul-
ing selected by the Opponent. Every such scheduling is described as a particular kind
of ingenuous counter-strategy of the original game A, that is a strategy of the dual
game A∗.

20

Definition 8 (scheduling) A scheduling S is an ingenuous strategy S in which
every two plays s ∈ S and t ∈ S are either equal, or incomparable wrt. the prefix
ordering modulo homotopy.

In other words, every accepted position in a scheduling S is maximal in the asyn-
chronous graph associated to the scheduling.

Informally, a strategy σ adapts to the Opponent scheduling S when for every
play s ∈ σ homotopic to a play t ∈ S , there exists a play u homotopic to s and t, and
element of both strategies: u ∈ σ and u ∈ S . The main difficulty is to understand
what scheduling should be allowed to test a strategy of given type A. Of course,
every counter-strategy may be seen as a particularly clever kind of scheduling. Our
task is thus to detect a class of basic counter-strategies – precisely what we like to
call scheduling tests – generating in some appropriate sense the class of all possible
counter-strategies of type A.

The solution appears to be much simpler than expected. Indeed, we will establish
below that in order to test a strategy of type A, it is sufficient to “switch” every
tensor product ⊗ of the formula into either a left-to-right or a right-to-left scheduling,
noted 4 and 5. Semantically, every such switching is interpreted as the associated
connective on schedulings.

Definition 9 Given a scheduling S of an asynchronous game A, and a scheduling T
of an asynchronous game B, the scheduling S ⊗ T (called “S times T ”) is the
ingenuous strategy of A⊗B containing the plays s such that

• the projection sA on the component A is a play of S ,

• the projection sB on the component B is a play of T .

The scheduling S 4 T (called “S before T ”) is the ingenuous strategy of A ⊗ B
containing the plays s of the scheduling S ⊗T satisfying moreover:

• no move of component B is performed before a move of component A,

• if the play s contains a move in component B, its projection sA on the compo-
nent A is a (necessarily maximal) play of the schedule S .

Similarly, the scheduling T 5 S (called “S after T ”) is the ingenuous strategy of
A ⊗ B containing the plays s of the scheduling S ⊗ T such that the projection sB
on the component B is a (necessarily maximal) play of the schedule T when the
projection sA on the component A is non-empty.

Note that the scheduling S 4T of A⊗B is the same thing as the scheduling T 5S
of B⊗A, after permutation of A and B. For example, if both S and T play exactly
one transition noted m : ∗ −→ x in A and n : ∗ −→ y in B, the schedulings S 4 T
and T 5S are

∗ ⊗ ∗
m

yytttttt

x⊗ ∗

n %%JJJJJJ

x⊗ y

and

∗ ⊗ ∗
n

%%JJJJJJ

∗ ⊗ y

myytttttt

x⊗ y

in A ⊗ B and B ⊗ A respectively. Note that x and y are not necessarily maximal
positions of the games A and B – although they are maximal in S and T .

21

Scheduling tests. From now on, we equip every game A with two non-empty
sets AP and AO of scheduling of the asynchronous game A – called respectively the
sets of Proponent and Opponent scheduling tests. Hence, if U and V are two sets of
scheduling tests, we write U ⊗ V for the set

U ⊗ V = { S ⊗T | S ∈ U and T ∈ V }

and similarly for U 4 V and U 5 V .

Tensor product. For every two games A and B, the scheduling tests of A⊗B are
defined as

(A⊗B)P = AP ⊗BP and (A⊗B)O = AO 4BO ∪AO 5BO.

This means that a strategy of type A ⊗ B should be flexible enough to adapt to a
left-to-right as well as to right-to-left scheduling of the components A and B. On the
other hand, a counter-strategy of type A ⊗ B is only required to interact properly
with a scheduling of A and a scheduling of B, with arbitrary interleaving of the two
components A and B.

Negation. The scheduling tests of the game A∗ are obtained in the expected way,
by exchanging the rôles of the two players in A:

(A∗)P = AO and (A∗)O = AP

Linear implication. The game A (B is then defined by the usual de Morgan
equality A (B = (A⊗ B∗)∗. Hence, a strategy of A (B should react properly to
the scheduling tests in AP ⊗ BO. Note moreover that A (B is not isomorphic in
general to A∗ ⊗B.

Strategies with interaction positions. From now on, we equip our ingenuous
strategies σ : A with a set X of positions of A, called the interaction positions of the
strategy. We require that

1. all the acceptance positions of σ are interaction positions: σ• ⊆ X,

2. all the interaction positions are respected by σ, in the sense that for every prefix s·
m of a play in the strategy σ, where m is a Proponent move, if the play s can be
extended into a play s · t reaching the position x in the game, then the play s ·m
can also be extended into a play s ·m · u reaching the position x in the game.

Note that every acceptance position is halting, and thus respected by the ingenuous
strategy σ. This follows from the property of conflict-freeness discussed in Section 6.

The category H has 2-Player games as objects, and pairs (σ,X) as morphisms
between two games A and B – where σ is an ingenuous strategy from A to B in the
category G, and X is a set of interaction positions of σ. Composition (σ,X) • (τ, Y)
of two morphisms (σ,X) and (τ, Y) is defined by

(σ,X) • (τ, Y) = (σ; τ,X;Y)

where the first component is composed in the category G and the second component is
composed in the category of sets and relations. Similarly, the category H is monoidal
with the tensor product of two strategies (σ,X) and (τ, Y) given by

(σ,X)⊗ (τ, Y) = (σ ⊗ τ,X ⊗ Y)

22

where the tensor product in the first component is computed in the category G and
the tensor product in the second component is computed in the category of sets and
relations – and given by the usual (set-theoretic) cartesian product. Very often, we
write S for the pair (S ,S •) induced by a scheduling test S .

Orthogonality. The idea of testing a strategy σ against a scheduling S is nicely
captured (and generalized) by the following notion of orthogonality between a strat-
egy (σ,X) and a counter-strategy (τ, Y) of the game A.

Definition 10 (orthogonality) Two strategies (σ,X) : A and (τ, Y) : A∗ are or-
thogonal, what we write (σ,X) ⊥ (τ, Y), when

X ∩ Y = (σ ∩ τ)•

Here, the intersection σ ∩ τ is the strategy obtained by intersecting σ and τ , seen as
sets of plays. Hence, the two strategies σ and τ are orthogonal precisely when, for
every position x ∈ X ∩ Y , there exists a play s : ∗ −→→ x reaching the position x, and
common element of the two strategies σ and τ .

Lemma 1 Suppose that (σ,X) is a strategy and (τ, Y) is a counter-strategy on a
game A. Then,

(σ,X) ⊥ (τ, Y) implies (σ ∩ τ)• is empty or singleton.

Proof. The fact that two orthogonal ingenuous strategies have at most one acceptance
position in common follows easily from the conflict-freeness property discussed in
Section 6. �

Some properties of orthogonality. The following lemmas will be useful to prove
Property 2 in the next section.

Lemma 2 Given a counter-strategy τ = (τ, Y) of A ⊗ B and two strategies σA =
(σA, XA) in A and σB = (σB , XB) in B, the following statements are equivalent:

(i) σA ⊗ σB ⊥ τ ,

(ii) σA ⊥ τ • σB and σB ⊥ σA • τ .

Proof. (i) ⇒ (ii). Suppose that σA ⊗ σB ⊥ τ and xA is a position in XA ∩ (Y ;XB).
Since xA ∈ (Y ;XB), there exists a position xB in XB such that xA ⊗ xB ∈ Y . More-
over, the position xA⊗xB is an element of in XA⊗XB . By our hypothesis, we deduce
that there exists a play s : ∗ −→→ xA⊗ xB which is common to the strategies σA⊗ σB
and τ , and by projection, the play sA : ∗ −→→ xA is in the strategy σA and the
play sB : ∗ −→→ xB is in the strategy σB . The play sB : ∗ −→→ xB results from the
interaction of the plays s and sA and is therefore in the strategy σA; τ : the position
xA is reached by the play sA which is common to the strategies σA and τ ;σB . Finally,
we can conclude σA ⊥ τ • σB , and similarly σB ⊥ σB • τ .

(ii)⇒ (i). Suppose that both assertions σA ⊥ τ •σB and σB ⊥ σA • τ are satisfied
and that x is an acceptance position of both σA ⊗ σB and τ . The position x can be
decomposed as x = xA ⊗ xB where xA is an acceptance position of σA and xB is
an acceptance position of σB . Since the position xA is in both XA and Y ;XB , by
our first hypothesis, there exists a path sA : ∗ −→→ xA common to the strategies σA
and τ ;σB . This path is obtained by the interaction between τ and σB which means

23

that there exists a path s : ∗ −→→ xA ⊗ yB in the strategy τ whose projection on the
game A is the path sA, and whose projection sB : ∗ −→→ yB on the game B is in
the strategy σB . The positions xB and yB are both in XB and in Y ;XA, therefore
by using our second hypothesis and Lemma 1, these positions are equal: xB = yB .
Finally, the path s : ∗ −→→ xA ⊗ xB is in both the strategies σA ⊗ σB and τ , from
which we can conclude. �

Lemma 3 Given a counter-strategy τ = (τ, Y) of A ⊗ B, a strategy σA = (σA, XA)
in A and a scheduling test SB in B, the following statements are equivalent:

(i) σA ⊗SB ⊥ τ ,

(ii) σA ⊥ τ •SB.

Proof. The (i)⇒ (ii) direction is proved as in previous lemma. Conversely, for the (ii)
⇒ (i) direction, the proof of previous lemma needs to be adapted a bit more. Suppose
that σA ⊥ τ •SB and xA ⊗ xB is an acceptance position of both strategies σA ⊗SB

and τ . As in the previous proof, we show the existence of a position yB in B and
a play s : ∗ −→→ xA ⊗ yB in the strategy τ such that the play sB : ∗ −→→ xB is in
the strategy SB . Moreover, the hypothesis that all interactive positions in Y ; S •B
and in S •B are respected by τ ; SB and τ , respectively, implies that there exists a
path t : yB −→→ xB in the game B. Now, by definition of a scheduling test, every play
in SB is maximal in SB wrt. the prefix ordering modulo homotopy. Moreover, the
two positions xB and yB are acceptance positions of the scheduling test SB . From
this, we deduce that the positions xB and yB are equal, and conclude as in the proof
of the previous lemma. �

10 Scheduled games and strategies

From now on, given a set U of counter-strategies of A, we write σ ⊥ U to mean that
σ ⊥ τ for every counter-strategy τ of U . Similarly, if U is a set of strategies of A, we
write U ⊥ τ to mean that σ ⊥ τ for every strategy σ in U .

Scheduled games. Our philosophy of testing strategies by basic scheduling requires
that we establish that the following notion of scheduled game is closed under tensor
product.

Definition 11 (scheduled game) A game (A,AP , AO) is scheduled when

1. every ingenuous strategy σ = (σ,X) and ingenuous counter-strategy τ = (τ, Y)
of the game satisfy:

σ ⊥ AO and AP ⊥ τ implies σ ⊥ τ

2. every scheduling test S in AP and T in AO are orthogonal: S ⊥ T ,

3. for every position x of the game, there exists a Proponent scheduling test S ∈
AP and an Opponent scheduling test T ∈ AO such that x is an acceptance
position of S and of T .

Hence, a game is scheduled when every pair of strategy σ and couter-strategy τ
interact properly (they are orthogonal) as soon as they react properly to the scheduling
tests; Proponent and Opponent scheduling tests are orthogonal; and every position is
accepted by an Opponent and by a Proponent scheduling test.

24

Main property. We establish now the key property which underlies our construc-
tion:

Property 2 The tensor product A ⊗ B of two scheduled games (A,AP , AO) and
(B,BP , BO) is also scheduled.

Proof. Suppose indeed that a strategy σ = (σ,X) and a counter-strategy τ = (τ, Y)
of the game A⊗B satisfy:

σ ⊥ (A⊗B)O and (A⊗B)P ⊥ τ. (17)

By definition of (A⊗B)O, the first statement is equivalent to

σ ⊥ AO 4BO and σ ⊥ AO 5BO. (18)

Every play s ∈ σ reaches a position x which decomposes as x = xA⊗xB . By hypothesis
on A and B, there exists an Opponent scheduling SA ∈ AO accepting the position xA,
and an Opponent scheduling SB ∈ BO accepting the position xB . It follows from (18)
that the strategy σ is orthogonal to both scheduling tests SA 4 SB and SA 5 SB .
The position x = xA ⊗ xB is accepted by both σ and SA 4SB . Orthogonality of σ
and SA 4SB implies that there exists a play t homotopic to s where no move in B
is played before a move in A. This demonstrates that, according to the strategy σ, no
move in A is causally dependent on a move in B inside the play s. Symmetrically, no
move in B is, according to the strategy σ, causally dependent on a move in A inside
the play s.

Recall that sA and sB denote the projections of the play s on the components A
and B, respectively. Causal independence in s means that every interleaving t of the
two plays sA and sB is an element of the strategy σ. In other words, the strategy σ
contains every play t satisfying tA = sA and tB = sB . A most concise way to state this
is to say that the strategy sA ⊗ sB is included in the strategy σ. This decomposition
holds for every play s of the strategy σ.

Of course, every other play t ∈ σ induces a strategy tA ⊗ tB included in the
strategy σ. It is not clear at all that the “mixed” strategy sA ⊗ tB is also included in
the strategy σ: the strategy σ = (σ,X) is included in the strategy σA ⊗ σB where

σA = { sA | s ∈ σ } and XA = { xA | ∃xB , xA ⊗ xB ∈ X }

σB = { sB | s ∈ σ } and XB = { xB | ∃xA, xA ⊗ xB ∈ X }

but it is not true in general that σ = σA⊗σB . We claim however that the strategy t1⊗
t2 is included in σ for every play t1 in σA reaching xA, and for every play t2 in σB
reaching xB . Indeed, by definition, t1 = uA and t2 = vB for some plays u and v of σ.
From this follows that every play in t1 ⊗ t2 is an element of prefix(σ). This property
is established by induction (on the length of paths) using our early hypothesis that
the strategy σ satisfies the forward compatibility preservation formulated in Section 5.
Now, the strategy σ is positional, and x1⊗x2 is an acceptance position of the strategy.
Hence, every such play in t1 ⊗ t2 is element of the strategy σ.

Suppose that x = xA ⊗ xB is an acceptance position of σ. We have just shown
that every play s interleaving a play sA reaching xA in σA, and a play sB reaching xB
in σB , is an element of the strategy σ. Besides, it is not difficult to show that the
strategies σA and σB are ingenuous, and to deduce from (18) that they satisfy

σA ⊥ AO and σB ⊥ BO.

25

At this stage, we may proceed with the second part of the proof and show that

σ ⊥ τ.

We will deduce this property from the statement that

σA ⊗ σB ⊥ τ. (19)

Suppose indeed that statement (19) holds, and that xA⊗xB ∈ X∩Y is an interaction
position shared by the two strategies σ = (σ,X) and τ = (τ, Y). By definition
of σA = (σA, XA) and of σB = (σB , XB), the position xA ⊗ xB is an interaction
position of σA ⊗ σB . We deduce from our current hypothesis (19) that there exists a
play s : ∗ −→→ xA ⊗ xB element of the two strategies σA ⊗ σB and τ . By our previous
discussion, we deduce from the fact that xA ⊗ xB ∈ σ that s is also an element of the
strategy σ. This concludes our proof that statement (19) implies that σ and τ are
orthogonal.

We start now the third part of the proof, which consists in a series of purely alge-
braic manipulations, establishing statement (19). By definition of the set (A⊗B)P
of scheduling tests, the strategy τ is scheduled precisely when

AP ⊗BP ⊥ τ.

So, we know that for every Proponent scheduling test SA ∈ AP and every Proponent
scheduling test SB ∈ BP , the statement

SA ⊗SB ⊥ τ

holds. This statement is equivalent to

SA ⊥ τ •SB

by Lemma 3, and holds for every Proponent scheduling SA of the game A. The
game A is scheduled. From this follows that

σA ⊥ τ •SB .

By applying Lemma 3 again, this is equivalent to

σA ⊗SB ⊥ τ.

This last statement implies
SB ⊥ σA • τ

by Lemma 2. This holds for every Opponent scheduling test SB of the game B. The
game B is scheduled. From this follows that

σB ⊥ σA • τ.

The symmetric statement
σA ⊥ τ • σB

is established in exactly the same way. By Lemma 2, the conjunction of the two last
statements is equivalent to

σA ⊗ σB ⊥ τ.
This concludes our proof that the tensor product A⊗B of two scheduled games satisfies
the first (and most important) property required by the definition of scheduled games.
The two other properties of scheduled games are then easily verified on the game A⊗B.

�

26

Scheduled strategies. This leads us to the following notion of scheduled strategy.

Definition 12 (scheduled strategy) An ingenuous strategy σ is called scheduled
in a game (A,AP , AO) when it is orthogonal to every Opponent scheduling of the
game, in the sense that σ ⊥ AO.

Note, in particular, that every Proponent scheduling test S of a scheduled game A
is scheduled. A nice observation is that the interaction positions of a scheduled strat-
egy (σ,X) coincide with its acceptance positions.

Property 3 Every scheduled strategy (σ,X) satisfies X = σ•.

This demonstrates that the notion of interaction position is only a technical device
required for our proof that scheduled games are closed under tensor products. The
notion may be removed from the very definition of scheduled games and scheduled
strategies. It will not be mentioned anymore.

The orthogonality criterion in the definition of scheduled strategies requires that
a scheduled strategy σ : A interacts properly (without deadlocking) with all the Op-
ponent scheduling tests of the game A. The fundamental property of this class of
scheduling tests, is that they are sufficient to ensure that the scheduled strategy σ
will interact properly with every scheduled counter-strategy of A. This is summa-
rized by the following property, which follows immediately from the definition of a
scheduled game:

Property 4 Suppose that σ : A is a scheduled strategy. Then, for every scheduled
counter-strategy τ in the game A, the strategies σ and τ are orthogonal.

A category of scheduled strategies. The category I has scheduled games as ob-
jects, and scheduled strategies σ ofA (B as morphisms from (A,AP , AO) to (B,BP , BO).
The identity on a scheduled game A is the identity strategy idA in the category G. The
second defining clause of scheduled game ensures that it defines a scheduled strategy.
We show below that the composite of two scheduled strategies is actually a scheduled
strategy. This property is sufficient to ensure that I defines a category.

Property 5 If σ : A (B and τ : B (C are two scheduled strategies then the
composite strategy σ; τ : A (C is also scheduled.

Proof. The strategy σ is scheduled. Property 4 ensures that σ ⊥ SA ⊗SB for every
Proponent scheduling test SA of A and Opponent scheduling test SB . Statement
SA;σ ⊥ SB follows from Lemma 3. We deduce that the strategy SA;σ : B is
scheduled. We prove symmetrically that the strategy τ ; SC : B∗ is scheduled for
every Opponent scheduling test SC of C. From all this and Property 4, we deduce
that

SA;σ ⊥ τ ; SC

From Lemma 3, we deduce that (SA;σ)⊗SC ⊥ τ , and from Lemma 2 that

SA;σ; τ ⊥ SC .

We establish similarly that SA ⊥ σ; τ ; SC . By Lemma 2, the conjunction of the two
statements implies the orthogonality relation

σ; τ ⊥ SA ⊗SC .

27

This statement holds for every Proponent scheduling test SA of A and every Opponent
scheduling test SC of C. This establishes that the composite strategy σ; τ : A (C
is orthogonal to every Opponent scheduling test SA ⊗ SC of A (C and is thus
scheduled. �

The operation (−)• from the category I to the category of relations, which to
every game associates its set of positions and to every strategy σ associates its set σ•

of acceptance positions, defines a functor, this rectifying the lax functor of Section 8.
This functoriality property extends the programme of timeless games of [3] and the
results of [23] to a non-alternating setting.

Theorem 1 For every pair of scheduled strategies σ : A → B and τ : B → C in the
category I, we have

σ•; τ• = (σ; τ)•

Proof. The functor is lax: σ•; τ• ⊇ (σ; τ)• for the same reasons as in Section 8. We
need to show the converse inclusion

σ•; τ• ⊆ (σ; τ)•.

Suppose that x (z is a position of σ•; τ•. By definition of relational composition,
there exists a position y such that x (y is an acceptance position of σ and y (z
is an acceptance position of τ . By the third condition in the definition of scheduled
games, there exist a Proponent scheduling test SA of A accepting the position x
and an Opponent scheduling test SC of C accepting the position z. Scheduling tests
being scheduled strategies, the strategy SA;σ in B and the counter-strategy τ ; SC

in B are scheduled strategies. They are orthogonal, by Property 4. Moreover, those
strategies admit y as a common acceptance position. From this, we deduce that there
exists a play u : ∗ −→→ y which is in both of those strategies. By Lemma 1, the
strategies SA and σ; τ ; SC have x as only common acceptance position and similarly,
the strategies SA;σ; τ and SC have z as only common acceptance position. From
this, we can finally conclude that there exist a play s : ∗ −→→ x (y in σ and a
play t : ∗ −→→ y (z in τ such that sB = u = tB whose interaction witnesses the fact
that the position x (z is accepted by the strategy σ; τ . �

The scheduling tests therefore correct the mismatch described in Section 8:

Corollary 1 The transformation which to every scheduled courteous ingenuous strat-
egy σ : A associates the closure operator

y 7→
∧
{ y ∈ DA | x ≤ y }

on the lattice DA, obtained by completing the set of positions of A with a top ele-
ment, extends to a functor from the subcategory of I of scheduled courteous ingenuous
strategies to the category of concurrent games.

We have moreover described in Section 7 how to recover an asynchronous strategy
from a closure operator in the image of the functor, in a bijective way.

The category I is ∗-autonomous, and thus provides a model of multiplicative linear
logic. This fragment of logic may be extended with two modalities ↑ and ↓ lifting a
game with an Opponent and a Proponent move, respectively. We are currently inves-
tigating possible extensions to the additive and exponential fragments, possibly using
the group-theoretic reformulation of uniformity in Abramsky-Jagadeesan-Malacaria
games, developed in [22]. The construction of scheduled games and strategies seem

28

to be closely related to the double glueing construction investigated by Hyland and
Schalk in [17]. We shall investigate the precise link with this abstract construction in
future works.

We believe that the coincidence in the category I between dynamic composition
(of strategies) and static composition (of relations) – expressed by Theorem 1 – is a
key property towards the definition of a non-alternating generalization of the notion of
innocence for strategies. However, our purely interactive notion of innocent strategy is
too liberal in the sense that some strategies are not definable by proofs. The reason is
that the scheduling criterion tests only for directed cycles in proof-structures, instead
of the usual non-directed cycles of Danos and Regnier. On the other hand, it should
be noted that the directed acyclicity criterion coincides with the usual non-directed
acyclicity criterion in the usual situation of games semantics, treated for instance in [1].
In that case, the formula is purely multiplicative (i.e. it contains no lifting modality),
every variable X and X⊥ is interpreted as a game with a Proponent and an Opponent
move, and every axiom link is interpreted as a“bidirectional”copycat strategy. In that
case, innocent strategies coincide with proofs. Interestingly, it should be noted that
the full completeness result in [2] uses a similar directed acyclicity criterion for MALL.
Hence, our work provides a dynamic and interactive definition of directed acyclicity,
and demonstrates that it is a fundamental, although somewhat hidden, concept of
game semantics.

11 Conclusion

Extending the framework of asynchronous games to non-alternating strategies requires
an exploration of the fine-grained structure of causality, using classical concepts of
concurrency theory like the cube property. Interestingly, it appears that enforcing
good causality properties on strategies is not sufficient to combine game semantics and
concurrency theory in a harmonious way. One needs logical principles as well. Indeed,
we uncover a subtle and unexpected mismatch between composition performed in
asynchronous games and composition performed in concurrent games. The mismatch
is resolved by strengthening the purely causal notion of ingenuous strategy into the
more contextual notion of scheduled strategy by imposing a scheduling criterion. This
criterion reformulates in a purely interactive and diagrammatic fashion a directed
variant of the usual acyclicity criterion of linear logic. The criterion is sufficient
to ensure the existence of a monoidal functor from the category of asynchronous
games to the category of concurrent games. This functor projects the “small-step”
interpretation of proofs (as strategies) to their “big-step” interpretation (as closure
operators), or equivalently to their static interpretation (as relations).

Acknowledgments. We would like to thank Martin Hyland together with Pierre-
Louis Curien, Claudia Faggian, Russ Harmer, Daniele Varacca, and Nobuko Yoshida
for spontaneous and lively blackboard discussions.

References

[1] S. Abramsky and R. Jagadeesan. Games and Full Completeness for Multiplicative
Linear Logic. The Journal of Symbolic Logic, 59(2):543–574, 1994.

[2] S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. In
LICS, volume 99, pages 431–442, 1999.

29

[3] P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. Timeless Games. In CSL,
pages 56–77, 1997.

[4] M.A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University
of Sussex, 1988.

[5] G. Berry. Modèles complètement adéquats et stables des lambda-calculs typés.
Thèse de Doctorat d’État, Université Paris VII, 1979.

[6] F. Bracho, M. Droste, and D. Kuske. Representation of computations in con-
current automata by dependence orders. Theoretical Computer Science, 174(1-
2):67–96, 1997.

[7] P.L. Curien and C. Faggian. L-Nets, Strategies and Proof-Nets. In CSL, pages
167–183. Springer, 2005.

[8] V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathe-
matical Logic, 28(3):181–203, 1989.

[9] M. Droste and D. Kuske. Automata with concurrency relations – a survey. Ad-
vances in Logic, Artificial Intelligence and Robotics, pages 152–172, 2002.

[10] D.R. Ghica and A.S. Murawski. Angelic Semantics of Fine-Grained Concurrency.
In FoSSaCS, pages 211–225, 2004.

[11] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[12] G. Gonthier, J.-J. Lévy, and P.-A. Melliès. An abstract standardisation theorem.
In Proc. of the 8th Annual Symposium on Logic in Computer Science, pages
72–81, 1992.

[13] É. Goubault. Geometry and Concurrency: A User’s Guide. Mathematical Struc-
tures in Computer Science, 10(4):411–425, 2000.

[14] J.M.E. Hyland and C.H.L. Ong. Fair games and full completeness for multiplica-
tive linear logic without the mix-rule. preprint, 190, 1993.

[15] M. Hyland and L. Ong. On Full Abstraction for PCF: I, II and III. Information
and Computation, 163(2):285–408, December 2000.

[16] M. Hyland and A. Schalk. Games on Graphs and Sequentially Realizable Func-
tionals. Proceedings of the 17th IEEE Symposium on Logic in Computer Science,
pages 257–264, 2002.

[17] M. Hyland and A. Schalk. Glueing and orthogonality for models of linear logic.
Theoretical Computer Science, 294(1-2):183–231, 2003.

[18] A. Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des
Sciences Mathématiques du Quebec, 1(4):46–52, 1977.

[19] J. Laird. A game semantics of the asynchronous π-calculus. Proceedings of 16th
CONCUR, pages 51–65, 2005.

[20] A.W. Mazurkiewicz. Basic notions of trace theory. Lecture Notes In Computer
Science; Vol. 354, pages 285–363, 1988.

[21] P.-A. Melliès. Axiomatic rewriting 4: A stability theorem in rewriting theory.
Logic in Computer Science, pages 287–298, 1998.

30

[22] P.-A. Melliès. Asynchronous games 1: Uniformity by group invariance. 2003.

[23] P.-A. Melliès. Asynchronous games 2: the true concurrency of innocence. In Pro-
ceedings of the 15th CONCUR, number 3170 in LNCS, pages 448–465. Springer
Verlag, 2004.

[24] P.-A. Melliès. Axiomatic Rewriting 1: A diagrammatic standardization theorem.
Lecture Notes in Computer Science, 3838:554–638, 2005.

[25] P.-A. Melliès. Sequential algorithms and strongly stable functions. Theoretical
Computer Science, 343(1-2):237–281, 2005.

[26] S. Mimram. Sémantique des jeux asynchrones et réécriture 2-dimensionnelle.
PhD thesis, PPS, CNRS – Université Paris Diderot, 2008.

[27] H. Nickau. Hereditarily sequential functionals. In A. Nerode and Yu. V. Matiyase-
vich, editors, Proceedings of the Symposium on Logical Foundations of Computer
Science: Logic at St. Petersburg, volume 813 of Lecture Notes in Computer Sci-
ence, pages 253–264. Springer Verlag, 1994.

[28] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Do-
mains, Part I. Theoretical Computer Science, 13:85–108, 1981.

[29] P. Panangaden, V. Shanbhogue, and E.W. Stark. Stability and Sequentiality in
Dataflow Networks. In International Conference on Automates, Languages and
Programming, volume 443 of LNCS, pages 253–264. Springer Verlag, 1990.

[30] V. Sassone, M. Nielsen, and G. Winskel. Models for concurrency: Towards a
classification. Theoretical Computer Science, 170(1):297–348, 1996.

[31] P. Selinger. First-order axioms for asynchrony. In CONCUR ’97, number 1243
in Lecture Notes in Computer Science, pages 376–390. Springer, 1997.

[32] M.W. Shields. Concurrent Machines. The Computer Journal, 28(5):449–465,
1985.

[33] D. Varacca and N. Yoshida. Typed Event Structures and the π-calculus. MFPS,
pages 373–398. Elsevier, 2006.

[34] G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in
Computer Science, volume 3, pages 1–148. Oxford University Press, 1995.

31

	Introduction
	The cube property
	A monoidal category of 1-Player games
	Positionality in asynchronous games
	Interlude: from sequences to positions
	Ingenuous strategies in 2-Player games
	Courteous strategies as closure operators
	A lax functor to the relational model
	Scheduling tests and orthogonality
	Scheduled games and strategies
	Conclusion

