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Homotopy type theory

There are various levels of interpretation of logic:

-1. types are booleans
AV (BAC)

0. types are sets
N — (N xZ)

oo. types are spaces
Q(TA + ¥B)
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A definition of the circle f

-

Consider the type of endomorphisms A

U° = Y(A:Set).(A—A)
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A definition of the circle s

Consider the type of endomorphisms 7
U° = Y(A:Set).(A—A)
which contains the successor s as element

(Z,s) : U°
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A definition of the circle

on

Consider the type of endomorphisms
U° = Y(A:Set).(A—A)
which contains the successor s as element
(Z,s) : U°
the connected component of the successor

Z((A.f) 1 U)N(Z,s) = (Af)l-
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A definition of the circle

Consider the type of endomorphisms
U° = Y(A:Set).(A—A)
which contains the successor s as element
(Z,s) : U°
the connected component of the successor
S = ((Af)  UO)NEZ.S) = (Al

is the circle [Bezem-Buchholtz-Grayson-Shulman’21]
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A definition of the circle

Consider the type of endomorphisms
U° = Y(A:Set).(A—A)
which contains the successor s as element
(Z,s) : U°
the connected component of the successor
St = X((Af) U)NZ,s) = (Af)ll-
is the circle which “represents” integers:

Qs'" = Z
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A definition of the circle

Consider the type of endomorphisms
U° = Y(A:Set).(A—A)
which contains the successor s as element
(Z,s) : U°
the connected component of the successor
S = ((Af)  UO)NEZ.S) = (Al
is the circle which “represents” integers:
Qs' = Z

Note that this only requires propositional truncation!
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Two approaches for formalizing groups

Suppose that we want to formalize groups in homotopy type theory.

There are two approaches

- external approach: use the traditional description in mathematics
- asetG
- an operationm:G—-G— G
-aunite:G
- satisfying the usual axioms

m(e,x) =x m(x,e) =x
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Two approaches for formalizing groups

Suppose that we want to formalize groups in homotopy type theory.

There are two approaches

- external approach: use the traditional description in mathematics

- asetG

- an operationm:G—-G— G
-aunite: G

- satisfying the usual axioms

m(e,x) =x m(x,e) =x

- internal approach: use the structure of types in order to define the notion

427



Homotopy type theory

In homotopy type theory every type A is a space (up to deformation).
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Homotopy type theory

In homotopy type theory every type A is a space (up to deformation).

Given two elements x,y : A, we write

for the type of paths from x to y.
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Homotopy type theory

In homotopy type theory every type A is a space (up to deformation).

Given two elements x,y : A, we write

for the type of paths from x to y.

Note: for p,q : x = y we can consider the type p = q.

5/27



Loop spaces

Suppose given a space A, i.e. a type.
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Loop spaces

Suppose given a space A which is pointed by x : A.
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Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is
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Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is

It looks like a group
- we can concatenate paths,
- we can take path backwards,

- etc.
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Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is

For instance,
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Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is

which might not be a set!
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Loop spaces

Suppose given a space A which is pointed by x : A.

Its loop space is

which might not be a set!

This is the case when A is a groupoid: there is at most one equality between paths.

6/27



Delooping groups

We thus have

pointed
connected groups

groupoid A~
Q

where
- isConnected(A) := (X,y : A) = || X = Y| -1
- isGroupoid(A) := (x,y : A) = (p,q: x=y) = (P,Q:p=q) —» (P=Q)

7127



Delooping groups

We thus have

B
pointed
connected groups
groupoid A~
Q

A delooping of a group G is a type B G such that

QBG=G
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Delooping groups

We thus have

B
pointed
connected groups
groupoid A~
Q

A delooping of a group G is a type B G such that
QBG=G

For instance, 2S' = Z so that
BZ =S5
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Delooping groups

We thus have

. . B
pointed e
connected groups
groupoid A~
Q
A delooping of a group G is a type B G such that
QBG=G
For instance, 2S' = Z so that
BZ=5"

In fact, B G always exists, is unique, and the above is an equivalence of types!

7127



Delooping groups

We thus have

pointed e
connected groups
groupoid A~

Q

The above equivalence is useful, because we can manipulate groups as spaces,
e.g. we can compute invariants such as cohomology

Hn(G) = [|BG — K(Z,n)llo

For those, we want simple descriptions of B G!

7127



Delooping groups

We thus have

B
pointed
connected groups
groupoid A~
Q

We can also easily generalize the notion of group:

pointed connected space = oco-group

7127



Delooping groups

Given a group G, a delooping is a space BG such that QBG = G.

There are two known ways to construct deloopings

- torsors [Bezem-Buchholtz-Cagne-Dundas-Grayson, Warn]
- higher-inductive types [Finster-Licata]

In this work:

Our observation
Both constructions can be much simplified when the group G comes with a
presentation (by generators and relations).
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Delooping groups

Given a group G, a delooping is a space BG such that QBG = G.

There are two known ways to construct deloopings

- torsors [Bezem-Buchholtz-Cagne-Dundas-Grayson, Warn]
- higher-inductive types [Finster-Licata]

In this work:

Our observation
Both constructions can be much simplified when the group G comes with a
presentation (by generators and relations), formalized in (cubical) Agda!

8/27



Delooping with torsors



Covering spaces

Consider BZ = S™

S ——
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Covering spaces

A covering is a space above BZ which looks locally like a set
(a partially unfolded variant of the space):

i

S ——
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Covering spaces

A covering is a space above BZ which looks locally like a set
(a partially unfolded variant of the space):

i

S ——

In this situation, we obtain an action on Z on the fiber of p (all fibers are the same).
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Covering spaces

The universal covering is the simply connected covering space:

p

S ——

In this situation, we obtain an action on Z on the fiber of p (all fibers are the same).

9/27



Covering spaces

The universal covering is the simply connected covering space:

i

S ——

The fiber of pis Z, but ...
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Covering spaces

The universal covering is the simply connected covering space:

p

S ——

The fiber of p is Z, but not in a canonical way!
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Covering spaces

The universal covering is the simply connected covering space:

p

S ——

The automorphisms of the fiber are Z.

9/27



G-sets
Fix a group G that we want to deloop.

Definition
A G-set is a set A equipped with an action

a:G—-A—-A
such that
a(xy)(a) = a(x)(a(y)(a)) a(1)(a) =a

The domain dom(«) of the action is A.
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G-sets
Fix a group G that we want to deloop.

Definition
A G-set is a set A equipped with an action

a:G—-A—-A
such that
a(xy)(a) = a(x)(a(y)(a)) a(1)(a) =a

The domain dom(«) of the action is A.
In type theory:

Setg := X(A: Set).X(av: G — A — A).isAction(«)
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G-sets
Fix a group G that we want to deloop.

Definition
A G-set is a set A equipped with an action

a:GA—A
such that

a(xy)(a) = a(x)(a(y)(a)) a(1)(a) =a
The domain dom(a) of the action is A.

Lemma
The type £ (A : Set).X (o : G — A — A).isAction(«) of G-sets is a groupoid.
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G-sets

A morphism of G-sets
fia—p
is a function
f : dom(a)) — dom(p)

such that, for x : G and a : dom ¢,

B (f(a)) = f(a(x)(a))

/27



G-sets

A morphism of G-sets
fia—p
is a function
f : dom(a)) — dom(p)
such that, for x : G and a : dom ¢,

B()(f(a)) = f(a(x)(a))

Lemma
Given two G-sets a and 3, we have

£}
I
=
R
)
IR
=

Proof.
By univalence. O

/27



The principal G-set

The principal G-set Pg is the set G equipped with the action

a:G—-G6—G

X =Y =Xy
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The principal G-set

The principal G-set Pg is the set G equipped with the action

a:G—-G6—G

X =Y =Xy

Lemma
We have (Pg = Pg) = G.
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The principal G-set Pg is the set G equipped with the action

a:G—-G6—G

X =Y =Xy

Lemma
We have (Pg = Pg) ~ G.
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The principal G-set

The principal G-set Pg is the set G equipped with the action

a:G—-G6—G

XY Xy
Lemma
We have (Pg = Pg) ~ G.
Proof.
We define
(PG ~ Pg) =6
¢ ferf0)

(y — yx) <X 0 O

12/27



The principal G-set

The principal G-set Pg is the set G equipped with the action

a:G—-G6—G

XY Xy
Lemma
We have (Pg = Pg) ~ G.
We have just shown:
QSetg =G

with Setg pointed by Pg.

12/27



Toward a delooping of G

We are tempted to define
B G := Setg

so that
QBG=0G

We have that Setg is

- pointed by Pg
- a groupoid
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Toward a delooping of G

We are tempted to define
B G := Setg

so that
QBG=0G

We have that Setg is

- pointed by Pg
- a groupoid

but not connected.
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Torsors

® X

Given a type A pointed by «, the connected component of x is
Conn(A) = L (x : A).||x = x| 1

which is pointed by (x| refl |_4)
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Torsors

® X

Given a type A pointed by «, the connected component of x is
Conn(A) = L (x : A).||x = x| 1
which is pointed by (x| refl |_4) and we have

Q Conn(A) = Q(A)
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Torsors

® X

Given a type A pointed by «, the connected component of x is
Conn(A) = L (x : A).||x = x| 1
which is pointed by (x| refl |_4) and we have
Q Conn(A) = Q(A)

Definition / Theorem
The type of G-torsors Conn(Setg) is a delooping of G.

/27



Torsors

An element in the type of torsors
Conn(Setz) := X(A : Setz).||A = Pz || -1

is isomorphic to Z but not in a canonical way, i.e. “there is no 0™

S ——

15/27



Generated torsors



Generated torsors

A Z-set A is a function
a:Z—A—A

satisfying the usual relations, i.e. a family of functions

an A—A

The type of Z-torsors is
Z(A : Setz).HA = Py ”_1
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Generated torsors

A Z-set A is a function
a:Z—A—A

satisfying the usual relations, i.e. a family of functions
an A—A
Among those, all but one are superfluous since the relations imply
an(X) = a7 (x)

The type of Z-torsors is
Z(A : Setz).HA = Py ”_1
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Generated torsors

A Z-set A is a function
a:Z—A—A

satisfying the usual relations, i.e. a family of functions
an A—A
Among those, all but one are superfluous since the relations imply
an(x) = af (x)
The type of Z-torsors is
S((A.f) : Set”).||(A.f) = (Z.5)]

with Set® for the type of all endomorphisms
16 /27



Generated torsors

Given X a set and G a group, we say that a map
v:X—G

generates G when
v X =G
is surjective, i.e.
(y:G) = [[Z(x: X)4"(x) =yl
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Generated torsors

Given X a set and G a group, we say that a map
v:X—G
generates G when
v X =G
is surjective, i.e.
(v :6) = [[X(x: X).7"(x) =yl
The type of X-torsors is
Sety := X(A: Set).(X - A — A)
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Generated torsors

Given X a set and G a group, we say that a map
v:X—G
generates G when
v X =G
is surjective, i.e.
(v :6) = [[X(x: X).7"(x) =yl
The type of X-torsors is
Sety := X(A: Set).(X - A — A)
The principal X-torsor is
Px :=(G,x — a — ~(x)a)

17/27



Generated torsors

Theorem
When X generates G, we have
Comp Py
is a delooping of G.
Proof.
The canonical map
Q PG —Q PX

is an equivalence (where we obtain the inverse by generation). O

18/27



Further simplifying

The delooping we constructed is

Comp Py
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Further simplifying

The delooping we constructed is

Z((A.f) : Set”).[|(A.f) = Px |-
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Further simplifying

The delooping we constructed is

S(A:U).X(S 1 isSet(A)).X(f : X — A — A).J|(A,S,f) = Px ||
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Further simplifying

The delooping we constructed is
Y(A:U).Z(S:isSet(A).X(f : X — A —A)|[(A,S,f) =Px| -4

which can be simplified to

T(A:U)Z(f: X — A — A)J(Af) = Px||_s

19/27



Examples

- a delooping of Z is
BZ=S5"=5%((Af) :U")l(A.f) = (Z,5)]| -
- a delooping of Z, is
BZn=X((Af) : U").I(A.f) = (Zn,S)|| -
- a delooping of the dihedral group Dy is

(A U)X(f,9:A— A)lI(A.f,9) = (Dn,s, )|

20/27
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Presented groups

Suppose that we have a group G with a presentation (X | R) with R C X* x X*:

G =X/~

Examples
cL=(s])
- Zn=(s|s"=1)

- Dp={r,s|rM=1,5>=1,sr=r"""s)
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Presented groups

Suppose that we have a group G with a presentation (X | R) with R C X* x X*:

G =X/~

Lemma
Any group G admits a standard presentation with

(G|{ab=axb|a,beG})

Example

Z3 = (0,1,2| 00 =0,01=1,02=2,10 =1,11=2,12 = 0,20 = 2,21 = 0,22 = 1)

21/27



Presented groups

Suppose that we have a group G with a presentation (X | R) with R C X* x X*:

G=X"/~g
Theorem
A delooping of G Is the higher inductive B G type generated by
- %x:BG

- [a] :x =% fora: X
- [u] = [v] for (u,v) € R
- isGroupoid(B G)

NB: starting from the standard presentation, we recover the delooping of
[Finster-Licatal.
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Freeness of the presentation

We have the following inductive types:

Delooping of X*:
LAY

- [a] :x =« fora: X

Delooping of G:
© ok
- [a] :%x =xfora: X
- [u] = [v] for (u,v) € R
- isGroupoid(B G)
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Freeness of the presentation

We have the following inductive types:

Delooping of X*:
LAY

- [a] :x =« fora: X

Delooping of G:
_—
- [a] :%x =xfora: X
- [u] = [v] for (u,v) € R
- isGroupoid(B G)

Can we quantify the difference between the two?
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Freeness of the presentation

We have the following inductive types:

Delooping of X*: Delooping of G:
© ok © ok
- [a] :x =« fora: X - [a] :%x =xfora: X
- [u] = [v] for (u,v) € R
- isGroupoid(B G)

Can we quantify the difference between the two?

There is a canonical inclusion

BX* —— BG

22/27



Cayley graphs

We define
C = ker f = Y(x: BXY).(fx = %)

so that we have a fiber sequence

C B X* BG

Theorem
The type C is the Cayley graph of G with respect to X.

23/27



Cayley graphs

Given a group G with generating set X, the Cayley graph is the type C generated by

- vertex:G— C

- edge : (a: G)(x: X) — vertexa = vertex(ax)

Example
The type associated to Zs with X = {2} is

24/ 27



Cayley graphs

Theorem
The type C = ker(B X* B G) is the Cayley graph of G with respect to X.
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Cayley graphs

Theorem

The type C = ker(B X* B G) is the Cayley graph of G with respect to X.
Proof.
We have

C:= X (x: BX).(f(x) = )
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Cayley graphs

Theorem
The type C = ker(B X* B G) is the Cayley graph of G with respect to X.

Proof.
We have

= T(x : BX*).(f(x) = %)

Moreover, BX* is the coequalizer

) G > BX*
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Cayley graphs

Theorem
The type C = ker(B X* B G) is the Cayley graph of G with respect to X.

Proof.
We have

C:= X (x: BX).(f(x) = )

Moreover, BX* is the coequalizer
X *3 1 > BX*

Therefore, by flattening, we have a coequalizer

0 X).(F(x) = %) =2 T .(F6) = %) > TBX)(F(x) = #)

— 25/27



Cayley graphs

Theorem
The type C = ker(B X* B G) is the Cayley graph of G with respect to X.

Proof.
We have

= T(x : BX*).(f(x) = %)

Moreover, BX* is the coequalizer
X *3 1 > BX*
Therefore, by flattening, we have a coequalizer

XxG_2XG » C

— 25/27



Future work

- use this to develop synthetic group/homotopy theory
- develop the theory of polygraphs [Kraus-von Raumer]:
Delooping of G:

LY

- [a] :x =xTfora: X

- [u] = [v] for (u,v) € R

- isGroupoid(B G)
- develop higher-dimensional Cayley graphs

26 /27



Questions ?
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