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Homotopy type theory

There are various levels of interpretation of logic:

-1. types are booleans
A ∨ (B ∧ C)

0. types are sets
N → (N× Z)

∞. types are spaces
Ω(ΣA ∗ ΣB)
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A definition of the circle

A

f

Consider the type of endomorphisms

U⟲ := Σ(A : Set).(A→ A)

which contains the successor s as element

(Z, s) : U⟲

the connected component of the successor

S1 :=

Σ((A, f ) : U⟲).∥(Z, s) = (A, f )∥−1

is the circle

which “represents” integers: [Bezem-Buchholtz-Grayson-Shulman’21]

ΩS1 = Z

Note that this only requires propositional truncation!
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Two approaches for formalizing groups

Suppose that we want to formalize groups in homotopy type theory.

There are two approaches

· external approach: use the traditional description in mathematics
· a set G
· an operation m : G→ G→ G
· a unit e : G
· satisfying the usual axioms

m(e, x) = x m(x, e) = x · · ·

· internal approach: use the structure of types in order to define the notion
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Homotopy type theory

In homotopy type theory every type A is a space (up to deformation).

Given two elements x, y : A, we write

x = y

for the type of paths from x to y.

Note: for p,q : x = y we can consider the type p = q.

5 / 27



Homotopy type theory

In homotopy type theory every type A is a space (up to deformation).

·x

Given two elements x, y : A, we write

x = y

for the type of paths from x to y.

Note: for p,q : x = y we can consider the type p = q.

5 / 27



Homotopy type theory

In homotopy type theory every type A is a space (up to deformation).

·x · y
p

Given two elements x, y : A, we write

x = y

for the type of paths from x to y.

Note: for p,q : x = y we can consider the type p = q.

5 / 27



Homotopy type theory

In homotopy type theory every type A is a space (up to deformation).

·x · y
p

q

Given two elements x, y : A, we write

x = y

for the type of paths from x to y.

Note: for p,q : x = y we can consider the type p = q.
5 / 27



Loop spaces

Suppose given a space A, i.e. a type.

⋆

Its loop space is
ΩA := ⋆ = ⋆
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Loop spaces

Suppose given a space A which is pointed by ⋆ : A.

⋆

Its loop space is
ΩA := ⋆ = ⋆

It looks like a group
· we can concatenate paths,
· we can take path backwards,
· etc.
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Loop spaces

Suppose given a space A which is pointed by ⋆ : A.

⋆
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which might not be a set!

This is the case when A is a groupoid: there is at most one equality between paths.
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Delooping groups

We thus have

pointed
connected
groupoid

groups

Ω

B

where
· isConnected(A) := (x, y : A) → ∥x = y∥−1

· isGroupoid(A) := (x, y : A) → (p,q : x = y) → (P,Q : p = q) → (P = Q)
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Delooping groups

We thus have

pointed
connected
groupoid

groups

Ω

B

A delooping of a group G is a type BG such that

ΩBG = G

For instance, ΩS1 = Z so that
BZ = S1

In fact, BG always exists, is unique, and the above is an equivalence of types!
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Delooping groups

We thus have

pointed
connected
groupoid

groups

Ω

B

The above equivalence is useful, because we can manipulate groups as spaces,
e.g. we can compute invariants such as cohomology

Hn(G) = ∥BG→ K(Z,n)∥0

For those, we want simple descriptions of BG!
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Delooping groups

We thus have

pointed
connected
groupoid

groups

Ω

B

We can also easily generalize the notion of group:

pointed connected space = ∞-group
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Delooping groups

Given a group G, a delooping is a space BG such that ΩBG = G.

There are two known ways to construct deloopings

· torsors [Bezem-Buchholtz-Cagne-Dundas-Grayson, Wärn]
· higher-inductive types [Finster-Licata]

In this work:

Our observation
Both constructions can be much simplified when the group G comes with a
presentation (by generators and relations).

8 / 27



Delooping groups

Given a group G, a delooping is a space BG such that ΩBG = G.

There are two known ways to construct deloopings

· torsors [Bezem-Buchholtz-Cagne-Dundas-Grayson, Wärn]
· higher-inductive types [Finster-Licata]

In this work:

Our observation
Both constructions can be much simplified when the group G comes with a
presentation (by generators and relations), formalized in (cubical) Agda!
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Delooping with torsors



Covering spaces

Consider BZ = S1:

BZ
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Covering spaces

A covering is a space above BZ which looks locally like a set
(a partially unfolded variant of the space):

p

BZ
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BZ
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Covering spaces

The universal covering is the simply connected covering space:

p

BZ

The automorphisms of the fiber are Z.

9 / 27



G-sets

Fix a group G that we want to deloop.

Definition
A G-set is a set A equipped with an action

α : G→ A→ A

such that

α(xy)(a) = α(x)(α(y)(a)) α(1)(a) = a

The domain dom(α) of the action is A.
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α : G→ A→ A

such that

α(xy)(a) = α(x)(α(y)(a)) α(1)(a) = a

The domain dom(α) of the action is A.
In type theory:

SetG := Σ(A : Set).Σ(α : G→ A→ A). isAction(α)
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Fix a group G that we want to deloop.

Definition
A G-set is a set A equipped with an action

α : G→ A→ A

such that

α(xy)(a) = α(x)(α(y)(a)) α(1)(a) = a

The domain dom(α) of the action is A.

Lemma
The type Σ(A : Set).Σ(α : G→ A→ A). isAction(α) of G-sets is a groupoid.
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G-sets

A morphism of G-sets
f : α→ β

is a function
f : dom(α) → dom(β)

such that, for x : G and a : domα,

β(x)(f (a)) = f (α(x)(a))

Lemma
Given two G-sets α and β, we have

(α = β) ≃ (α ∼= β)

Proof.
By univalence.
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The principal G-set

The principal G-set PG is the set G equipped with the action

α : G→ G→ G
x 7→ y 7→ xy

Lemma
We have (PG ∼= PG) ≃ G.
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The principal G-set

The principal G-set PG is the set G equipped with the action

α : G→ G→ G
x 7→ y 7→ xy

Lemma
We have (PG ∼= PG) ≃ G.
Proof.
We define

(PG ≃ PG) ↔ G
ϕ : f 7→ f (1)

(y 7→ yx) 7→x : ψ
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The principal G-set

The principal G-set PG is the set G equipped with the action

α : G→ G→ G
x 7→ y 7→ xy

Lemma
We have (PG ∼= PG) ≃ G.

We have just shown:
ΩSetG = G

with SetG pointed by PG.
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Toward a delooping of G

We are tempted to define
BG := SetG

so that
ΩBG = G

We have that SetG is

· pointed by PG

· a groupoid

but not connected.
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Torsors

⋆

Given a type A pointed by ⋆, the connected component of ⋆ is

Conn(A) = Σ(x : A).∥x = ⋆∥−1

which is pointed by (⋆,| refl |−1)

and we have

ΩConn(A) = Ω(A)

Definition / Theorem
The type of G-torsors Conn(SetG) is a delooping of G.
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Torsors

An element in the type of torsors

Conn(SetZ) := Σ(A : SetZ).∥A = PZ ∥−1

is isomorphic to Z but not in a canonical way, i.e. “there is no 0”:

p

BZ
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Generated torsors



Generated torsors

A Z-set A is a function
α : Z → A→ A

satisfying the usual relations, i.e. a family of functions

αn : A→ A

Among those, all but one are superfluous since the relations imply

αn(x) = αn1 (x)

The type of Z-torsors is
Σ(A : SetZ).∥A = PZ ∥−1
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Generated torsors

A Z-set A is a function
α : Z → A→ A

satisfying the usual relations, i.e. a family of functions

αn : A→ A

Among those, all but one are superfluous since the relations imply

αn(x) = αn1 (x)

The type of Z-torsors is

Σ((A, f ) : Set⟲).∥(A, f ) = (Z, s)∥−1

with Set⟲ for the type of all endomorphisms
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Generated torsors

Given X a set and G a group, we say that a map

γ : X → G

generates G when
γ∗ : X∗ → G

is surjective, i.e.
(y : G) → ∥Σ(x : X).γ∗(x) = y∥−1

The type of X-torsors is

SetX := Σ(A : Set).(X → A→ A)

The principal X-torsor is

PX := (G, x 7→ a 7→ γ(x)a)
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Generated torsors

Theorem
When X generates G, we have

CompPX

is a delooping of G.

Proof.
The canonical map

ΩPG → ΩPX

is an equivalence (where we obtain the inverse by generation).
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Further simplifying

The delooping we constructed is

CompPX

which can be simplified to

Σ(A : U).Σ(f : X → A→ A).∥(A, f ) = PX ∥−1

19 / 27



Further simplifying

The delooping we constructed is

Σ((A, f ) : Set⟲).∥(A, f ) = PX ∥−1

which can be simplified to

Σ(A : U).Σ(f : X → A→ A).∥(A, f ) = PX ∥−1

19 / 27



Further simplifying

The delooping we constructed is

Σ(A : U).Σ(S : isSet(A)).Σ(f : X → A→ A).∥(A, S, f ) = PX ∥−1

which can be simplified to

Σ(A : U).Σ(f : X → A→ A).∥(A, f ) = PX ∥−1

19 / 27



Further simplifying

The delooping we constructed is

Σ(A : U).Σ(S : isSet(A)).Σ(f : X → A→ A).∥(A, S, f ) = PX ∥−1

which can be simplified to

Σ(A : U).Σ(f : X → A→ A).∥(A, f ) = PX ∥−1

19 / 27



Examples

· a delooping of Z is

BZ = S1 = Σ((A, f ) : U⟲).∥(A, f ) = (Z, s)∥−1

· a delooping of Zn is

BZn = Σ((A, f ) : U⟲).∥(A, f ) = (Zn, s)∥−1

· a delooping of the dihedral group Dn is

Σ(A : U).Σ(f ,g : A→ A).∥(A, f ,g) = (Dn, s, r)∥−1

20 / 27



Delooping presented groups



Presented groups

Suppose that we have a group G with a presentation ⟨X | R⟩ with R ⊆ X∗ × X∗:

G = X∗/ ∼R

Examples
· Z = ⟨s | ⟩
· Zn = ⟨s | sn = 1⟩
· Dn = ⟨r, s | rn = 1, s2 = 1, sr = rn−1s⟩
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Presented groups

Suppose that we have a group G with a presentation ⟨X | R⟩ with R ⊆ X∗ × X∗:

G = X∗/ ∼R

Lemma
Any group G admits a standard presentation with

⟨G | {ab = a× b | a,b ∈ G}⟩

Example

Z3 = ⟨0, 1, 2 | 00 = 0,01 = 1,02 = 2, 10 = 1, 11 = 2, 12 = 0, 20 = 2, 21 = 0, 22 = 1⟩
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Presented groups

Suppose that we have a group G with a presentation ⟨X | R⟩ with R ⊆ X∗ × X∗:

G = X∗/ ∼R

Theorem
A delooping of G is the higher inductive BG type generated by

· ⋆ : BG
· [a] : ⋆ = ⋆ for a : X
· [u] = [v] for (u, v) ∈ R
· isGroupoid(BG)

NB: starting from the standard presentation, we recover the delooping of
[Finster-Licata].
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Freeness of the presentation

We have the following inductive types:

Delooping of X∗: Delooping of G:
· ⋆ · ⋆
· [a] : ⋆ = ⋆ for a : X · [a] : ⋆ = ⋆ for a : X

· [u] = [v] for (u, v) ∈ R
· isGroupoid(BG)

Can we quantify the difference between the two?

There is a canonical inclusion

B X∗ BG
f
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Cayley graphs

We define
C = ker f = Σ(x : B X∗).(fx = ⋆)

so that we have a fiber sequence

C B X∗ BG
f

Theorem
The type C is the Cayley graph of G with respect to X.
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Cayley graphs

Given a group G with generating set X, the Cayley graph is the type C generated by

· vertex : G→ C
· edge : (a : G)(x : X) → vertexa = vertex(ax)

Example
The type associated to Z5 with X = {2} is

0

1

2 3

4
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Cayley graphs

Theorem
The type C = ker(B X∗ f→ BG) is the Cayley graph of G with respect to X.

Proof.
We have

C := Σ(x : B X∗).(f (x) = ⋆)

Moreover, B X∗ is the coequalizer

X 1 B X∗

Therefore, by flattening, we have a coequalizer

Σ(x : X).(f (⋆) = ⋆) Σ(x : 1).(f (⋆) = ⋆) Σ(B X∗).(f (x) = ⋆)
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Cayley graphs

Theorem
The type C = ker(B X∗ f→ BG) is the Cayley graph of G with respect to X.

Proof.
We have

C := Σ(x : B X∗).(f (x) = ⋆)

Moreover, B X∗ is the coequalizer

X 1 B X∗

Therefore, by flattening, we have a coequalizer

X × G G C
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Future work

· use this to develop synthetic group/homotopy theory
· develop the theory of polygraphs [Kraus-von Raumer]:

Delooping of G:
· ⋆
· [a] : ⋆ = ⋆ for a : X
· [u] = [v] for (u, v) ∈ R
· isGroupoid(BG)

· develop higher-dimensional Cayley graphs
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Questions ?
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