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Algebraic theories
An algebraic theory consists of

1. operations with given arities

2. equations between terms generated by operations

Example

I the theory of groups is given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))

m(e, x1) = x1 m(x1, e) = x1

m(i(x1), x1) = e m(x1, i(x1)) = e

I rings, fields, etc.
I (semi)lattices, booleans algebras, etc.
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Models

A model of an algebraic theory consists of
I a set X
I an interpretation Jf K : X n → X

for each operation f of arity n
I such that the axioms are satisfied

Example
Models of the theory of groups are groups.
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Equivalence between theories

Two theories are equivalent when they have the same models.

Example
Consider the theory of groups, given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))

m(e, x1) = x1 m(x1, e) = x1

m(i(x1), x1) = e m(x1, i(x1)) = e

The equations in red are derivable from the other.

xe = (ex)e = ((x−−x−)x)e = (x−−(x−x))e = (x−−e)e

= x−−(ee) = x−−e = x−−(x−x) = (x−−x−)x = ex = x
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Finding small axiomatizations

Can we find minimal (or small) axiomatizations for theories?
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One relation for (abelian) groups

In 1938, Tarski observed that the theory of abelian groups can be
axiomatized with two operations d : 2, a : 0 and one relation

d(x1, d(x2, d(x3, d(x1, x2)))) = x3

where a ensures that we exclude the empty model.

A one-based theory is a theory which can be axiomatized with
only one axiom.
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The quest for one-based theories

There is an interesting line of efforts to find one-based theories:
I 1938: abelian groups is one-based
I 1952: groups is one-based
I 1965: semi-lattices is not one-based
I 1970: distributive lattices is not one-based

lattices is one-based (300 000 sym. / 34 var.)
I 1973: boolean algebras is one-based (≥ 40 000 000 symb.)
I 2002: boolean algebras is one-based (12 symb.)
I 2003: lattices is one-based (29 symb. / 8 var.)
I . . .
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Not one-based theories

We are interested in showing that theories are not one-based:
I existing proofs are tricky and specific to particular theories
I they rely on finding counter-examples using some models

Here, instead
I we provide a method which is entirely automatic
I but it does not provide an answer in every case
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The general method
Algorithm

1. start from a theory T
2. orient it so that you get a terminating and confluent

rewriting system

3. feed it to the computer and compute

H2(T ) ∈ N

4. we know that we need at least H2(T ) relations

Note that:
I the theory might not be orientable as a convergent rs
I we might compute H2(T ) = 0
I we have examples where it works though :)
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Good!
Let’s switch to something else.
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Suppose that you have a space (e.g. a simplicial complex) and
you want to compute the number of “holes” in it. There is a very
efficient way of doing this:

homology

ab

c

−a
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Homology
Suppose that our space looks like this:

y
g

��
⇑α

x

f
@@

h
// z i // z ′

I we allow taking linear combinations of “building blocks”
I we define the boundary of a block as target - source:

∂(f ) = y − x ∂(α) = f + g − h

I “potential holes” can be detected as those with zero
boundary:

∂(f + g − h) = ∂(f ) + ∂(g)− ∂(h)

= (y − x) + (z − y)− (z − x) = 0

I we have to remove those that are boundaries

∂(α) = f + g − h
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Homology
Formally, given our space X :

y
g

��
⇑α

x

f
@@

h
// z i // z ′

we consider the chain complex (i.e. ∂i−1 ◦ ∂i = 0)

. . .
∂2 // k {α} ∂1 // k {f , g, h, i} ∂0 // k {x , y , z , z ′}

C2

=

C1
=

C0

=

and we can compute the i-th homology groups:

Hi(X ) = ker ∂i+1/ im ∂i

The intuition is that the rank of Hi(X ) counts the number of
“holes” in dimension i .
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Homology

The i-th homology group is defined by

Hi(X ) = ker ∂i+1/ im ∂i

with
∂i : Ci+1 → Ci

In particular, we have that

dim(Ci) ≥ dim(Hi(X ))

i.e.
Ci = k {x1, . . . , xn}

with
n ≥ dim(Hi(X ))
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A theory as a space

Suppose that we can see a theory T as a “space” with
I points: N
I edges: operations
I surfaces: relations
I volumes: relations between relations (e.g. critical pairs)

2

m(x1,m(i(x2),x2))

""

=

m(x1,e) //

=
e

<< 1

then
dim(H2(T ))

is a lower bound on the number of relations!
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An example

Consider the term rewriting system with generators

f : 2 g : 2 a : 0 b : 0 c : 0

together with rules

A : f (a, x1)⇒ g(a, x1) A′ : f (x1, a)⇒ g(x1, a)

B : f (b, b)⇒ g(b, b) C : f (c , c)⇒ g(c , c)

It is terminating with one confluent critical pair

f (a, a)

A〈a〉
#+

A′〈a〉

3;

V

Φ g(a, a)
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An example
Note that all the rules

A : f (a, x1)⇒ g(a, x1) A′ : f (x1, a)⇒ g(x1, a)

B : f (b, b)⇒ g(b, b) C : f (c , c)⇒ g(c , c)

have the same “balance”:

∂1(A) = g + a − f − a = g − f

= ∂1(A′) = ∂1(B) = ∂1(C )

so that we have

∂1(A′ − A) = ∂1(A′)− ∂1(A) = 0

∂1(B − A) = ∂1(B)− ∂1(A) = 0

∂1(C − A) = ∂1(C )− ∂1(A) = 0

i.e. there are 3 “potential holes”.
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An example
Similarly, the “balance” of the critical pair

f (a, a)

A〈a〉
#+

A′〈a〉

3;

V

Φ g(a, a)

is
∂2(Φ) = A′ − A

Therefore, we have in fact two holes:

���
�XXXXA′ − A B − A C − A

The vector space generated by these two holes is a subspace of
the one generated by rules

H2(T ) ⊆ C2

and therefore we need at least to rules to present the theory.
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Invariance under axiomatization

Why do we need to use such tools?
I A fundamental property of homology is that it is invariant

under weak equivalences (= deformations of spaces)
I In the setting of theories, this will translate as

homology is invariant under the axiomatization

i.e. we have bounds on any axiomatization of the theory
I This is where we need the assumption that we have a

convergent rewriting system!
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HOMOLOGY
OF

LAWVERE
THEORIES
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Lawvere theories
All the operations described by a Lawvere theory can be encoded
into a category called a Lawvere theory:
I objects: natural numbers
I morphisms m → n: n-uples of terms with variables

in {x1, . . . , xm} up to the relations
I composition: substitution

Example
In the theory of groups, we have the morphism

〈 m(i(x3), x3) , m(x1, x2) 〉 : 3→ 2

x1 x2 x3

m

i

m
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Lawvere theories
All the operations described by a Lawvere theory can be encoded
into a category called a Lawvere theory:
I objects: natural numbers
I morphisms m → n: n-uples of terms with variables

in {x1, . . . , xm} up to the relations
I composition: substitution

Remark
The notion of equivalence can be changed from
I having the same models

to
I generating the same Lawvere theory

So, the question is:

given a Lawvere theory T , how do we define and compute Hi(T )?
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Contexts
A context is a term with one “inside hole” �.

For instance f (f (a, x2),�(x2, f (x1, x3)))

x1 x2 x3

a f

f

f

of type
2 → 3

We write K for the category of bicontexts.
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The ringoid of contexts

A ringoid R is a category enriched in Ab:
I each C(A,B) has a structure of abelian group
I the expected compatibility laws hold:

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′

0 ◦ f = 0

f ◦ 0 = 0

We write ZK for the free ringoid over contexts, modulo the
rules.
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The ringoid of contexts

We write ZK for the free ringoid over contexts, modulo the
rules: the rules have to be “linearized” in order to ensure that �
occurs once.

Example
For instance, the relation f (x1)⇒ g(x1, x1) induces the relation

g(�, x1) + g(x1,�)− f (�)

on contexts.
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Modules

A module over ZK is an Ab-enriched functor

M : ZK → Ab

This means that we have things that
I we can add
I we can put into a context

Given a context K : m → n and a “term” t ∈M(m), we write

K [t] = M(K )(t)
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Free modules

Given a family (Xn)n∈N of sets, whose elements are “n-ary
things”, we can form the free ZK-module ZKXn.

For instance, we have

x1 x2 x3

a f

f φ

f

with φ ∈ X2.
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The trivial module

We define the trivial ZK-module

Z

with one operation in each arity.
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Resolutions
Suppose given a theory T presented by a convergent algebraic
theory (= term rewriting system) with
I P1 as rules
I P2 as relations
I P3 as critical pairs

Theorem (MM16)
We have a partial free resolution, i.e. a complex

ZKP3
∂2 // ZKP2

∂1 // ZKP1
∂0 // ZK1

∂−1 // Z // 0

of Z by ZK-modules where
I the ∂i are ZK-linear maps defined from source and target
I im ∂i = ker ∂i−1
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Face maps

The face maps ∂i : ZKPi+1 → ZKPi are defined by

“target” − “source”

e.g. for each rule R : t ⇒ u we have

∂1(R) = u − t
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Homology

We define the homology (with trivial coefficients) of the
theory T as the homology of the deduced chain complex obtained
by “erasing” ZK:

ZKP3
∂2 // ZKP2

∂1 // ZKP1
∂0 // ZK1

∂−1 // Z // 0

 
ZKP3

∂′2 // ZKP2
∂′1 // ZKP1

∂′0 // ZK1

and compute
Hi(T ) = ker ∂′i−1/ im ∂

′
i
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Invariance

Theorem (classical)
The homology only depends on T : if we started from another
presentation we would have obtained the same homology.

Proof.
Between any two resolutions there is essentially one morphisms.
Therefore any two deduced chain complexes (by “erasing” ZK) are
isomorphic and in particular the homologies are isomorphic.
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CONCLUSION
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Conclusion

I we presented a generic method to compute lower bounds on
generators / relations of a presentation of an algebraic theory

I it can serve to generate simple counter-examples
I it suggests considering higher-dimensional invariants
I most of the “usual” theories are out of reach for now

(Hi(T ) = 0, commutativity, etc.)
I it suggests new research tracks in algebraic topology
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