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Abstract. Precategories generalize both the notions of strict n-category and sesquicat-
egory: their definition is essentially the same as the one of strict n-categories, excepting
that we do not require the various interchange laws to hold. Those have been proposed
as a framework in which one can express semi-strict definitions of weak higher categories.
In particular, in dimension 3, Gray categories are particular 3-precategories which have
been shown to be equivalent to tricategories; and in dimension 4, definitions of semi-strict
tetracategories have been proposed, and used as the basis of proof assistants such as
Globular. In this article, we are mostly interested in free precategories. Those can be
presented by generators and relations, using an appropriate variation on the notion of
polygraph (aka computad), and earlier works have shown that the theory of rewriting
can be generalized to this setting, enjoying most of the fundamental constructions and
properties which can be found in the traditional theory: with respect to this, polygraphs
for precategories are much better behaved than their counterpart for strict categories.
We further study here why this is the case, by providing several results which show that
precategories and their associated polygraphs bear properties which ensure that we have
a good syntax for those. In particular, we show that the category of polygraphs for
precategories form a presheaf category.
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Introduction
Strict polygraphs. The notion of polygraph, also known as computad, was introduced by
Street [48] and Burroni [13] as a generalization of the notion of presentation for strict n-
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categories, thus extending the now classical notions of presentation for groups and monoids
introduced by Dehn [19] and Thue [52]. From an algebraic point of view, they constitute
the right notion of “free n-category”, in the sense that they have been established as
being the cofibrant objects in the folk model structure on the category of n-categories [44,
37]. They thus allow for computing various invariants of categories, as well as showing
coherence theorems, based on the construction of resolutions (or cofibrant replacements)
of categories of interest. For this reason, one is often interested in constructing coherent
presentations of low-dimensional categories, which are polygraphs whose underlying free
category is suitably equivalent to the original one.

In order to be able to perform practical computations, one is generally looking for
polygraphs which are as small as possible. This task can be often be achieved by using
techniques originating from rewriting theory [7, 51], suitably generalized to this setting,
which exploits the orientation of relations in a presentation. Namely, when the presentation
is terminating and confluent, generators corresponding to relations between relations can
be found as confluence diagrams for critical branchings. This idea originates in the works
of Squier on presented monoids [46, 47, 35] and has been the starting point of a series of
works exploring higher dimensional rewriting [30, 31, 40, 24], which has since then been
further generalized to various algebraic structures such as term rewriting systems [41],
algebras [29] or operads [42]. While polygraphs have thus been proved to be quite a useful
tool, they are still quite unsatisfactory on many aspects.
Limitations of strict polygraphs. From a categorical point of view, strict polygraphs are
adapted to strict n-categories, but those are known not to be equivalent to weak n-categories,
which are the real objects of interest. Namely, already starting from dimension 3, not every
tricategory is equivalent to a 3-category: the best we can do is to strictify associativity and
unitality, and show that every tricategory is equivalent to a Gray category [26]. We should
underline here that this is not the only possible partial strictification: another possibility
consists in strictifying everything but the identities [34]. Following the terminology of
this article, a Gray category is a 3-precategory equipped with interchange isomorphisms
satisfying suitable axioms. Another categorical defect of polygraphs is the fact that they
do not form a presheaf category. It is namely noted in [16] that this cannot be the case
because of “the lack of an ordering” of 2-dimensional (and higher) cells, since composition
is commutative for 2-cells with identity source and target. More formally, an abstract
explanation of the fact that polygraphs do not form a presheaf category can be found
in [39] and an elementary proof of this fact can be found in [17]. One route to solve this
consists in restricting to polygraphs where generators do not have identity sources (or
targets), which has successfully been explored by Henry [33, 32]. Our exploration consists
here in taking the other route and “add ordering” to morphisms.

From a rewriting point and computer science point of view, polygraphs, when considered
as rewriting systems, lack a fundamental property found in most settings for rewriting:
we expect that a finite rewriting system has a finite number of critical branchings, but
this is not the case starting from dimension 3. This was first observed by Lafont [36]
and further studied by Guiraud and Malbos who showed that, because of this, there
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are finite convergent 3-polygraphs without finite derivation type [30]. From a practical
perspective, this causes problems. Namely, representing the possibly infinite families of
critical branchings is a difficult challenge, even in low dimensions [45]. But in fact, even
providing a concrete representation of the morphisms is a challenge, because there is
no canonical representative of morphisms in free categories, up to the axioms of strict
n-categories.
Polygraphs for precategories. For these reasons, it seems natural to investigate the
framework of n-precategories whose definition is similar to the one of strict n-categories,
excepting that we do not require the interchange laws to hold. In particular, in dimension 2,
those correspond to Street’s sesquicategories [49]. We have defined in [22, 23] an associated
notion of polygraph and developed a theory of rewriting in this setting (interestingly,
Araújo has recently independently come up with a very similar notion [5]). It seems
that, in this setting, most of the limitations mentioned above vanish. First, we now have
canonical representatives of morphisms in free n-precategories [23], a property which was
first observed by Makkai while studying strict n-categories [39, Section 8], which makes
them suitable for implementing software performing computation on morphisms. For
this reason, they are also used internally in the Globular graphical proof assistant [53,
8]. Second, a finite rewriting system has a finite number of critical branchings, and those
can be computed effectively. Third, we have a hope of being able to deal with weak
higher-categories in this setting. Namely, we have already mentioned that Gray categories
are equivalent to tricategories and are particular 3-precategories, and putative definitions
of semistrict 4-categories based on 4-precategories have been proposed [8]. Note that the
polygraph corresponding to a Gray category is almost never finite, but the infinite families
of generators we add are regular enough to be dealt with in a uniform way [22, 23].
Properties of polygraphs. In this article, we further study of the category of n-
polygraphs for n-precategories. Most importantly, we show that they form a presheaf
category. Our proof is based on the characterization of concrete presheaf categories given
by Makkai [39]. Simultaneously and independently, another proof of this result has been
given by Araújo [5]. We should also mention that a notion of polygraph for weak categories
has been developed and shown to be a presheaf category in [18]. Our approach gives
rise to much smaller polygraphs and thus more amenable computations, although it is
not entirely clear (yet) how to encode weak n-categories in our setting, excepting in low
dimensions.
Plan of the paper. We begin by introducing precategories and associated polygraphs
(Section 1) and show that functors between precategories induced by polygraphs have the
important property of being Conduché (Section 2), which is used subsequently. Most of
the remainder of the paper is devoted to showing that polygraphs form a presheaf category.
Our proof is based on Makkai’s theorem characterizing presheaf categories (recalled in
Section 3). In order to make computations on cells in free precategories, it is useful to
consider their support (Section 4). These allow defining and studying polyplexes (Section 5)
which are shapes parametrizing compositions in precategories. This finally allows us to
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show that polygraphs form a presheaf category (Section 6). As a nice by-product, we
derive a parametric adjunction together with an associated generic-free factorization for
precategories, which gives a more conceptual view of the good syntactical properties of
precategories (Section 7). Finally, we leave two open questions on homotopical aspects
of polygraphs of precategories. First, whether polygraphs are the cofibrant objects for a
reasonable model structure on precategories (we explain that the usual proof for strict
categories does not immediately generalize to precategories), and second, whether the
presheaf category of polygraphs is able to model homotopy types (we explain why the
proof used by Henry for regular plexes [32] does not adapt here) (Section 8).

1. Precategories and their polygraphs
We recall here the definition of n-precategories as algebras over globular sets, as well as
their elementary properties. We also recall the associated notion of polygraph, introduced
in earlier works [22, 23], which is a particular instance of the very general notion of
polygraph associated to a monad on globular sets introduced by Batanin [10].

The notion of precategory was first introduced by Street, in dimension 2, under the
name of sesquicategory: this means a “1½-category”, since sesquicategories have more
structure than 1-categories, but less than 2-categories (they lack the interchange law). The
general definition of precategory was (implicitly) given by Makkai in [39, Section 8], who
used them to deal with the word problem for free strict categories. Later, they were used
as data structures for the Globular proof assistant [53] and more recently for studying
coherent presentations of Gray categories in [23] and coherence for adjunctions [6, 4].

In the following, given n ∈ N, we write N<n for the subset {0, . . . , n − 1} of N, and
N≤n for N<n+1.
Globular sets. Given n ∈ N∪{ω}, an n-globular set (X, ∂−, ∂+) (often simply denoted X)
is the data of sets Xk for k ∈ N≤n together with functions ∂−i , ∂+

i : Xi+1 → Xi for i ∈ N<n

as in

X0 X1 X2 · · · Xk Xk+1 · · ·
∂−

0

∂+
0

∂−
1

∂+
1

∂−
2

∂+
2

∂−
k−1

∂+
k−1

∂−
k

∂+
k

∂−
k+1

∂+
k+1

such that

∂−i ◦ ∂−i+1 = ∂−i ◦ ∂+
i+1 ∂+

i ◦ ∂−i+1 = ∂+
i ◦ ∂+

i+1

for i ∈ N<n. When there is no ambiguity on i, we often write ∂− and ∂+ for ∂−i
and ∂+

i respectively. An element u of Xi is called an i-globe of X and, for i > 0, the
globes ∂−i−1(u) and ∂+

i−1(u) are respectively called the source and target and u. Given
n-globular sets X and Y , a morphism of n-globular sets between X and Y is a family of
functions F = (Fk : Xk → Yk)k∈N≤n

, such that

∂−i ◦ Fi+1 = Fi ◦ ∂−i ∂+
i ◦ Fi+1 = Fi ◦ ∂+

i
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for i ∈ N<n. We write Globn for the category of n-globular sets. We have canonical
truncation and inclusion functors

T G
n : Globn+1 → Globn and IG

n+1 : Globn → Globn+1

which respectively forget the (n+1)-globes and add an empty set of (n+1)-globes. They
organize into an adjunction IG

n+1 ⊣ T G
n . It is direct from definition that Globn is a

presheaf category. In particular, it implies that it is locally finitely presentable, complete
and cocomplete [1].

For ϵ ∈ {−,+} and j ≥ 0 with j ≤ n− i, we define a morphism ∂ϵ
i,j : Xi+j → Xi by

∂ϵ
i,j = ∂ϵ

i ◦ ∂ϵ
i+1 ◦ · · · ◦ ∂ϵ

i+j−1

called the iterated source (resp. target) operation when ϵ = − (resp. ϵ = +). We
generally omit the index j when there is no ambiguity and simply write ∂ϵ

i (u) for ∂ϵ
i,j(u).

Given i, k, l ∈ N≤n with i < min(k, l), we write Xk ×i Xl for the pullback

Xk ×i Xl Xl

Xk Xi .

⌟
∂−

i

∂+
i

Given p ∈ N and k0, . . . , kp ∈ N≤n, a sequence of globes u0 ∈ Xk0 , . . . , up ∈ Xkp is
said i-composable for some i < min(k0, . . . , kp), when ∂+

i (uj) = ∂−i (uj+1) for j ∈ N<p.
Given k ∈ N≤n and u, v ∈ Xk, the globes u and v are said parallel when k = 0
or ∂ϵ

k−1(u) = ∂ϵ
k−1(v) for ϵ ∈ {−,+}. In order to avoid dealing with the side condi-

tion k = 0, we use the convention that X−1 is the terminal set {∗} and that ∂−−1, ∂
+
−1 are

the unique function X0 → X−1.
Precategories. Given n ∈ N ∪ {ω}, an n-precategory C is an n-globular set (whose
k-globes are called k-cells in this context) together with, for k ∈ N<n, identity operations

idk+1 : Ck → Ck+1

for which we use the same notation conventions as the identity operations on strict
categories, and, for k, l ∈ N∗n, composition operations

∗k,l : Ck ×min(k,l)−1 Cl → Cmax(k,l)

which satisfy the axioms below. Given i, k, l ∈ N≤n with i = min(k, l) − 1, since the
dimensions of the cells determine the indices of the composition to be used, we often
write ∗i for ∗k,l. In this way, we still make explicit the most important information which
is the dimension i of composition. The axioms of n-precategories are the following:

(P-i) for k ∈ N<n and u ∈ Ck,

∂−k (idk+1
u ) = u = ∂+

k (idk+1
u ),
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(P-ii) for i, k, l ∈ N≤n such that i = min(k, l) − 1, (u, v) ∈ Ck ×i Cl, and ϵ ∈ {−,+},

∂ϵ(u ∗i v) =


u ∗i ∂

ϵ(v) if k < l,
∂−(u) if k = l and ϵ = −,
∂+(v) if k = l and ϵ = +,
∂ϵ(u) ∗i v if k > l,

(P-iii) for i, k, l ∈ N≤n with i = min(k, l) − 1, given (u, v) ∈ Ck−1 ×i Cl,

idu ∗i v =
v if k ≤ l,

idu∗iv
if k > l,

and, given (u, v) ∈ Ck ×i Cl−1,

u ∗i idv =
u if l ≤ k,

idu∗iv
if l > k,

(P-iv) for i, k, l,m ∈ N≤n with i = min(k, l) − 1 = min(l,m) − 1, and u ∈ Ck, v ∈ Cl

and w ∈ Cw such that u, v, w are i-composable,

(u ∗i v) ∗i w = u ∗i (v ∗i w),

(P-v) for i, j, k, l, l′ ∈ N≤n such that

i = min(k,max(l, l′)) − 1, j = min(l, l′) − 1 and i < j,

given u ∈ Ck and (v, v′) ∈ Cl ×j Cl′ such that u, v are i-composable,

u ∗i (v ∗j v
′) = (u ∗i v) ∗j (u ∗i v

′)

and, given (u, u′) ∈ Cl ×j Cl′ and v ∈ Ck such that u, v are i-composable,

(u ∗j u
′) ∗i v = (u ∗i v) ∗j (u′ ∗i v).

Note that, provided that the Axioms (P-i) to (P-iv) are satisfied, Axiom (P-v) can be
shown to be equivalent to the more symmetrical axiom

(P-v)’ for every i, j, k ∈ N≤n satisfying i < j < k, and cells u1, u2 ∈ Ci+1, v1, v2 ∈ Cj+1
and w ∈ Ck such that u1, w, u2 are i-composable and v1, w, v2 are j-composable, we
have

u1 ∗i (v1 ∗j w ∗j v2) ∗i u2 = (u1 ∗i v1 ∗i u2) ∗j (u1 ∗i w ∗i u2) ∗j (u1 ∗i v2 ∗i u2).
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1.1. Example. Given a 2-precategory C with two 2-cells ϕ and ψ as in

x y z

f

f ′

g

g′

⇓ ϕ ⇓ ψ

there are two ways to compose ϕ and ψ together, given by

(ϕ ∗0 g) ∗1 (f ′ ∗0 ψ) and (f ∗0 ψ) ∗1 (ϕ ∗0 g
′)

that can be represented using string diagrams by
f g

ϕ

ψ

f ′ g′

and

f g

ψ

ϕ

f ′ g′

and these two composites are not expected to be equal in C. Moreover, by our definition
of precategories, there is no such thing as a valid cell ϕ ∗0 ψ, and the string diagram

f g

ϕ ψ

f ′ g′

makes no sense in this setting.
Given two n-precategories C and D, a morphism of n-precategories (or n-functor)

between C and D is a morphism of n-globular sets F : C → D such that

– F (idk+1
u ) = idk+1

F (u) for k ∈ N<n and u ∈ Ck,

– F (u∗i v) = F (u) ∗iF (v) for i, k, l ∈ N≤n with i = min(k, l) − 1 and (u, v) ∈ Ck ×i Cl.

We write PCatn for the category of n-precategories thus defined. We have canonical
truncation and inclusion functors

T C
n : PCatn+1 → PCatn and IC

n+1 : PCatn → PCatn+1

which respectively forget the (n+1)-cells and add a set of (n+1)-cells consisting of formal
identities of n-cells. They organize into an adjunction IC

n+1 ⊣ T C
n .

The globular monad of n-precategories. The above definition of n-precategories
directly translates into an essentially algebraic theory so that the category PCatn is locally
finitely presentable [1]. There is a forgetful functor

Un : PCatn → Globn

which maps an n-precategory to its underlying n-globular set, and this functor is induced
by the inclusion of the essentially algebraic theory of n-globular sets into the one of
n-precategories. We thus have the following [20, Proposition 1.4.2.4]:
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1.2. Proposition. The category PCatn is locally finitely presentable, complete and
cocomplete. Moreover, the functor Un is a right adjoint which preserves directed colimits.
The above proposition states the existence of a functor

Fn : Globn → PCatn

which is left adjoint to Un, sending an n-globular set to the n-precategory it freely generates.
Moreover, the functor Un can be shown monadic using Beck’s monadicity theorem [20,
Proposition 1.4.2.5]:

1.3. Proposition. For every n ∈ N ∪ {ω}, the functor Un is monadic.
This shows that, for n ∈ N ∪ {ω}, PCatn is the category of algebras for a monad
T n : Globn → Globn on n-globular sets (the monad induced by the above adjunction).
Polygraphs of precategories. In fact, for n ∈ N, the monad T n is adequately derived
by truncation from T ω [20, Theorem 1.4.2.8], the latter being truncable in the sense of
Batanin [10]. By general arguments on globular algebras, this allows the definition of
polygraphs for the theory of precategories.

The category of n-polygraphs Poln (for n-precategories) is defined by induction on n,
together with a functor

(−)∗,n : Poln → PCatn

often written (−)∗, which associates to an n-polygraph the n-precategory it freely generates,
as follows. We first define Pol0 = Glob0 (which is isomorphic to Set) and (−)∗,0 = F0
(which is the identity functor on Set). Now, given n ∈ N, assuming Poln and (−)∗,n
defined in dimension n, we define Poln+1 as the pullback

Poln+1 Globn+1

Poln Globn

Gn+1

T P
n

⌟
T G

n

Un(−)∗,n

The functor T P
n : Poln+1 → Poln, called the n-truncation functor for polygraphs, admits a

left adjoint IP
n+1 : Poln → Poln+1, which extends an n-polygraph P as an (n+1)-polygraph

with an empty set of (n+1)-generators (using the description of polygraphs given just
below). The image P∗ under (−)∗,n+1 of an (n+1)-polygraph P is defined as the pushout

Fn+1 IG
n+1 T G

n Gn+1 P Fn+1 Gn+1 P

IC
n+1(T P

n P)∗ P∗

(Fn+1 iGn Gn+1)P

αP

⌜

where iGn is the counit of the adjunction IG
n+1 ⊣ T G

n and αP is the composite

Fn+1 IG
n+1 T G

n Gn+1 P IC
n+1 Fn Un(−)∗,n T P

n P IC
n+1(T P

n P)∗∼ (IC
n+1 εn(−)∗,n T P

n)P
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where the left morphism comes from the isomorphism between Fn+1 IG
n+1 and IC

n+1 Fn

seen as left adjoints with the same right adjoint and the equality T G
n Gn+1 = Un(−)∗,n T P

n

by definition of Gn+1 and T P
n , and where εn in the morphism on the right is the counit of

the adjunction Fn ⊣ Un. Intuitively, P∗ is obtained by freely generating an (n+1)-precate-
gory from (T P

n P)∗ by attaching the (n+1)-generators described by Gn+1 P. The mapping
P 7→ P∗ then naturally extends to a functor (−)∗,n : Poln+1 → PCatn, which concludes
the inductive definition of polygraphs of precategories. More details on this construction
can be found in [20, 23].

Since the monad of the theory of precategory is truncable, given n ∈ N, an n-poly-
graph P can be alternatively described as a diagram in Set of the form

P0 P1 P2 . . . Pn−1 Pn

P∗0 P∗1 . . . P∗n−2 P∗n−1

e0

d−
0

d−
0

e1

d−
1

d−
1 e2

d−
n−2

d−
n−2

en

d−
n−1

d−
n−1

∂−
0

∂+
0

∂−
1

∂+
1

∂−
n−2

∂+
n−2

where, for i ∈ N<n, ei is the embedding of the i-generators Pi into the set P∗i of freely
generated i-cells, such that

∂−i ◦ d−i+1 = ∂−i ◦ d+
i+1 and ∂+

i ◦ d−i+1 = ∂+
i ◦ d+

i+1

for i ∈ N<n. Note that the above description is the same as the original definition of
polygraphs by Burroni [13], excepting that the sets P∗i of i cells are freely generated as
i-precategories instead of strict i-categories.

By general properties on locally presentable categories, we have:

1.4. Proposition. Given n ∈ N ∪ {ω}, Poln is a locally finitely presentable category. In
particular, it is complete and cocomplete.
Proof. The 2-category of locally presentable categories, right adjoints (resp. left adjoints)
and natural transformations is closed under bipullbacks (see [12, Theorem 2.18, Theorem
3.15]). A pullback along an isofibration happens to be a bipullback and the pullback of T G

n

along Un can be shown to be a left adjoint and again an isofibration. Then, its pullback by
(−)∗,n, which is known (see [10, Proposition 3.1]) to be a left adjoint, is again a left adjoint
whose domain Poln is a locally presentable category. A more detailed study shows that
Poln is locally finitely presentable with finite polygraphs as finitely presentable objects.
See [21, Proposition 3.3.3] for the local presentability and [20, Theorem 1.3.3.19] for the
local finite presentability.
In the following, we will write 1 for the terminal object of Poln, for n ∈ N ∪ {ω}.

2. Free functors are Conduché
Free precategories on polygraphs enjoy useful properties, thanks to which we have a
nice syntax for morphisms in those, as we now show. It should be noted that many of



10

those are not valid in the usual setting of polygraphs for strict categories (as opposed to
precategories). One remarkable such property of free precategories is that their cells can
be described as canonical compositions of generators, which happen to be unique for a
given cell, so that we prefer to call them normal forms. These normal forms are adequately
reflected by free functors, since the latter reflect elementary compositions: in other words,
they satisfy the analogue of the Conduché property for strict categories [28]. In addition
to providing convenient tools in the proofs, we will see in subsequent sections that these
properties entail the existence universal shapes of compositions.
Types and contexts. Given m ≤ n ∈ N, an n-precategory C, an m-type is a pair of
parallel (m−1)-cells of C. We use the convention that there is a unique 0-type, and all
pairs of 0-cells of a precategory are parallel. Given a k-cell u ∈ C for some k ≥ m, u
has a canonical associated m-type: (∂−m−1(u), ∂+

m−1)(u)). In the following, an m-type is
thought of as the type for a formal variable, which suggests defining the notion of context
(a morphism in which the variable occurs exactly once) and of substitution (replacing the
variable by a cell).

An m-context E for an m-type (s, t) is defined by induction on m, together with the
evaluation E[u] of E at a cell of m-type (s, t):

– there is a unique 0-context of the unique 0-type, denoted [−], and the evaluation of
it at a cell u ∈ C is u,

– an (m+1)-context of type (s, t) is a triple E = (l, E ′, r) with l, r ∈ Cm, and E ′ an
m-context of type (∂−m−1(s), ∂+

m−1(t)) such that ∂+
m(l) = E ′[s] and E ′[t] = ∂−m(r), and

the evaluation E[u] of E at a cell u is defined by E[u] = l ∗m E ′[u] ∗m r.

Alternatively, an m-context E can be thought of as an expression of the form

lm ∗m−1 (· · · ∗1 (l1 ∗0 [−] ∗0 r1) ∗1 · · · ) ∗m−1 rm

where the li, ri ∈ Ci are the i-cells occurring in the definition of E for i ∈ N≤m, and its
evaluation at a cell u as the cell obtained by replacing [−] by u in the above expression.
Normal forms. We have the following normal form for the cells of free precategories:

2.1. Theorem. Given m ∈ N and a polygraph P ∈ Polω, every m-cell of P∗ can be written
uniquely as

E1[g1] ∗m−1 · · · ∗m−1 Ek[gk]
for some unique g1, · · · , gk ∈ Pm and (m−1)-contexts E1, . . . , Ek of the corresponding
types.

Proof. We only sketch the proof, which is detailed in [23, Theorem 1.8.3]. One can
adequately orient the axioms (P-i)–(P-v) of precategories in order to obtain a terminating
and locally confluent rewriting system on the formal expressions of cells of free precategories.
By standard arguments of rewriting theory [7], this gives the existence and unicity of
normal forms.
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2.2. Remark. A consequence of the above theorem is that the embeddings ei : Pi → P∗i
introduced earlier are injective. Thus, given g ∈ Pi, we will often omit ei and write g for
both the element of Pi and the cell of P∗i .
From the unicity of normal forms, we can easily deduce a lifting property of both identities
and generators (which is also valid in the setting of strict categories, even though shown
with different arguments [39, 20]):

2.3. Proposition. Let F : P → Q ∈ Polω be a morphism of polygraphs, k ∈ N≤n

and u ∈ P∗k. The following hold:

(i) when k > 0, if there exists a cell ũ′ ∈ Q∗k−1 such that F ∗(u) = idk
ũ′, then there exists

a cell u′ ∈ P∗k−1 such that u = idk
u′,

(ii) if there exists a generator g̃ ∈ Qk such that F ∗(u) = g̃, then there exists a genera-
tor g ∈ Pk such that u = g.

We should also mention now that composition in free precategories is cancellative. This
does not seem to be deducible from the more general properties developed in the next
sections.

2.4. Proposition. Given P ∈ Polω and u, v1, v2 ∈ P∗ such that u ∗i v1 = u ∗i v2 for some
i, then v1 = v2.

Proof. Note that, by the input and output dimension conditions of ∗i, we necessarily
have that the dimension of v1 is the one of v2. We do an induction on the dimension of
the resulting cell u ∗i v1 and distinguish three cases depending on the relative dimensions
of u, v1 and v2.

– Suppose that u, v1, v2 ∈ P∗i+1. By unicity of the decomposition of (i+1)-cells of free
precategories (Theorem 2.1) and its compatibility with i-composition as concatena-
tion, we have v1 = v2.

– Suppose u ∈ P∗i+1 and v1, v2 ∈ P∗n with n > i+ 1. We reason by induction on v1.

– Suppose that v1 = α for some generator α ∈ Pn. Then, by the definition of
composition and the normal forms, we have that v2 = α.

– Suppose that v1 = E1[α] for some generator α ∈ Pn and m-context E1 with
0 < m < n. By the definition of composition and the unicity of normal forms,
we have v2 = E2[α]. Let (lj, E ′j, rj) = Ej for j ∈ {1, 2}. If m = i+ 1, then, by
unicity of normal forms, we have u ∗i l1 = u ∗i l2, E ′1[α] = E ′2[α] and r1 = r2.
By the beginning of the proof, we have l1 = l2, so that v1 = v2. Otherwise, if
m > i+ 1, then u ∗i l1 = u ∗i l2, u ∗i E

′
1[α] = u ∗i E

′
2[α] and u ∗i r1 = u ∗i r2. By

the different induction hypotheses, we have l1 = l2, E ′1[α] = E ′2[α] and r1 = r2,
so that v1 = v2.
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– If v1 = E1
1 [α1]∗n−1 · · ·∗n−1E

k
1 [αk], then we have v2 = Ek

2 [α1]∗n−1 · · ·∗n−1E
k
2 [αk]

such that u ∗i E
j
1[αj] = u ∗i E

j
2[αj]. By the previous argument, we have

Ej
1[αj] = Ej

2[αj], so that v1 = v2.

– Suppose that u ∈ P∗n, v1, v2 ∈ P∗i+1 with n > i+ 1. We reason by induction on u.

– If u = idu′ , then we have u′ ∗i v1 = u′ ∗i v2, so that v1 = v2 by induction.
– If u = E[α] for some (n−1)-context E, then let (l, E ′, r) = E. We then have
r ∗i v1 = r ∗i v2 so that, by induction hypothesis, v1 = v2.

– If u = E1[α1] ∗n−1 · · · ∗n−1 Ek[αk] for some k ≥ 1, α1, . . . , αk ∈ Pn and contexts
E1, . . . , Ek, then we have in particular E1[α1] ∗i v1 = E1[α1] ∗i v2 so that we can
conclude v1 = v2 by the previous case.

– Suppose that u, v1, v2 ∈ P∗i+1, v1, v2 ∈ P∗i+1 with n > 0. By the unicity of normal
forms, we can uniquely write u as E1[α1]∗i · · ·∗iE

k[αk] and vj as E1
j [β1

j ]∗i · · ·∗iE
lj
j [βlj

j ]
for j ∈ {1, 2} for some adequate k, l1, l2 ∈ N, i-contexts E·, E·1, E·2 and (i+1)-gene-
rators α·, β·1 and β·2. By considering the induced normal forms on u ∗i v1 and u ∗i v2
by concatenation, we deduce by unicity of normal forms that l1 = l2 and E·1 = E·2
and β·1 = β·2, so that v1 = v2.

2.5. Remark. Note that Proposition 2.4 does not hold for polygraphs of strict categories.
Indeed, considering the 2-polygraph of strict precategories P defined by

P0 = {x} P1 = {f : x → x} P2 = {α : idx ⇒ f},

we have α ∗0 idf ̸= idf ∗0 α while

α ∗1 (α ∗0 idf ) = α ∗0 α = α ∗1 (idf ∗0 α)

in the free strict 2-category P∗. Graphically,

x x x
α⇓

f

α⇓
f

= x x xα⇓
f

α⇓
f

= x x x
α⇓

f
f

α⇓

Conduché functors. We now introduce the notion of (strict) Conduché functor for
precategories, following the work of Guetta in the case of strict categories [28]. Informally,
these functors have a “co-functoriality” property, in the sense that cells mapped to compos-
ites are themselves composites. The notion of weak Conduché functor was introduced by
Guiraud in a seemingly unrelated context [25] as a necessary and sufficient condition for a
functor F : C → D between strict n-categories to be exponentiable, i.e., for the pullback
functor F← : Cat/D → Cat/C to have a right adjoint.
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Let n ∈ N ∪ {ω}, C,D ∈ PCatn and F : C → D be an n-functor. We say that F
is n-Conduché when it satisfies that, for all i, k1, k2, k ∈ N∗n with i = min(k1, k2) − 1
and k = max(k1, k2), u ∈ Ck, i-composable v1 ∈ Dk1 and v2 ∈ Dk2 such that

F (u) = v1 ∗i v2,

there exist unique i-composable u1 ∈ Ck1 and u2 ∈ Ck2 such that

F (u1) = v1 and F (u2) = v2 and u1 ∗i u2 = u.

As in the case of strict categories, the Conduché property implies a unique lifting of
identities:

2.6. Proposition. Given n ∈ N∪ {ω} and F : C → D ∈ PCatn an n-Conduché functor,
if

F (u) = idv

for some k ∈ N<n, u ∈ Ck+1, and v ∈ Dk, then there exists a unique u′ ∈ Ck such that

F (u′) = v and u = idu′.

Proof. Since idv = idv ∗k idv, by the Conduché property, there exist unique u1, u2 ∈ Ck+1
such that F (u1) = idv, F (u2) = idv and u = u1∗ku2. Moreover, we have that F (id∂−

k
(u)) = v

and u = id∂−
k

(u) ∗k u so that u1 = id∂−
k

(u) and u2 = u. Symmetrically, we have that u1 = u

and u2 = id∂+
k

(u). Thus, u = id∂−
k

(u) ∗k id∂+
k

(u), so that ∂−k (u) = ∂+
k (u) and u = idu′

with u′ = ∂−k (u). Uniqueness is immediate.
Unlike for strict categories, we have the remarkable property that all free functors of
precategories are Conduché:

2.7. Proposition. Given m ∈ N∪{ω} and a morphism F : P → Q ∈ Polm, the m-functor
F ∗ : P∗ → Q∗ is m-Conduché.

Proof. For the sake of simplicity, we only handle the case m = ω. Suppose given n ∈ N
and an n-cell u ∈ P∗n such that F (u) = ū1 ∗i ū2. We reason by case analysis on the relative
dimensions of ū1 and ū2.

– If ū1, ū2 ∈ Q∗n then i = n−1. By the unicity of normal forms and its compatibility with
∗n−1, there are unique u1, u2 such that F ∗(uk) = ūk for k ∈ {1, 2} and u = u1 ∗n−1 u2.

– Suppose ū1 ∈ Q∗i+1 and ū2 ∈ Q∗n. If there are u1, u2 such that F ∗(uk) = ūk for
k ∈ {1, 2} and u = u1 ∗i uu, then they are unique since, by the previous point, u1
and ∂−i+1(u2) are uniquely determined by ∂−i+1(u) = u1 ∗i u

−
2 and F ∗(u1) = ū1 and

F ∗(u−2 ) = ∂−i+1(u2). Moreover, since u = u1 ∗i u2, we have that u2 is unique by
Proposition 2.4. So unicity holds. For existence, we reason by induction on n and
ū2.



14

– If ū2 = Ē[ᾱ] for some (i+1)-context Ē = (l̄, Ē ′, r̄), then, by unicity of normal
forms, u = E[α] for some α ∈ P, and (i+1)-context E = (l, E ′, r), and we
moreover have F ∗(l) = ū1 ∗i l̄, F ∗(E[α]) = Ē[ᾱ] and F ∗(r) = r̄. By the first
part, there are u1 and l̃ such that l = u1 ∗i l̃, so that Ẽ = (l̃, E ′, r) satisfies that
u = u1 ∗i Ẽ[α], F ∗(u1) = ū1 and F ∗(Ẽ[α]) = Ē[ᾱ].

– If ū2 = Ē[ᾱ] for some (j+1)-context Ē = (l̄, Ē ′, r̄) with j > i, then, by unicity of
normal forms, u = E[α] for some α ∈ P, and (j+1)-context E = (l, E ′, r), and
we moreover have F ∗(l) = ū1 ∗i l̄, F ∗(E ′[α]) = ū1 ∗i Ē

′[ᾱ] and F ∗(r) = ū1 ∗i r̄. By
the other induction hypothesis, there are u1

1, u
2
1, u

3
1, l̃, ũ′, r̃ such that l = u1

1 ∗i l̃,
E ′[α] = u2

1 ∗i ũ
′ and r = u3

1 ∗i r̃. Since

u1
1 ∗i ∂

+
j (l̃) = ∂+

j (l) = ∂−j (ũ′) = u2
1 ∗i ∂

−
j (Ē ′[ᾱ])

and F ∗(u1
1) = F ∗(u2

1) = ū1 and F ∗(∂+
j (l̃)) = F ∗(∂−j (ũ′)) = ∂+

j (l̄), by unicity, we
have u1

1 = u2
1 and ∂+

j (l̃) = ∂−j (ũ′). Similarly, u2
1 = u3

1 and ∂+
j (ũ′) = ∂−j (r̃). Thus,

writing u1 for u1
1 and u2 for l̃ ∗j ũ

′ ∗j r̃, we have that u = u1 ∗i u2 is the wanted
decomposition for u.

– If ū2 = Ē1[ᾱ1]∗n−1 · · ·∗n−1Ēk[ᾱk], then, by unicity of normal forms, we have that
u = E1[α1]∗n−1 · · · ∗n−1Ek[αk] such that F ∗(El[αl]) = ū1 ∗i Ēl[ᾱl]. By induction
hypothesis, we get ul

1 and ul
2 such that El[αl] = ul

1 ∗i u
l
2, F ∗(ul

1) = ū1 and
F ∗(ul

2) = Ēl[ᾱl]. Using the same argument as earlier, we get that u1
1 = · · · = uk

1
and u1

2, . . . , u
k
2 are (n−1)-composable so that, writing u1 for u1

1 and u2 for
u1

2 ∗n−1 · · · ∗n−1 u
k
2, we have a decomposition u = u1 ∗i u2 satisfying the wanted

properties.

– Suppose ū1 ∈ Q∗n and ū2 ∈ Q∗i+1. This case is similar to the previous one.

2.8. Remark. In the context of strict categories, the above property does not always hold
since liftings might not be unique. As a concrete counter-example, consider the polygraphs
P and Q defined by

P0 = {x} P1 = ∅ P2 = {α : idx ⇒ idx, β : idx ⇒ idx}
Q0 = {y} Q1 = ∅ Q2 = {γ : idy ⇒ idy}.

We then have a morphism F : P → Q sending α and β to γ, and the associated 2-functor
F ∗ sends both α ∗0 β and β ∗0 α to γ ∗0 γ.

A nice application of the above Conduché properties is the characterization of monomor-
phisms of polygraphs. First, we briefly observe the equivalence between monomorphisms
of precategories and dimensionwise injections.
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2.9. Proposition. Given n ∈ N ∪ {ω} and F : C → D ∈ PCatn, the following are
equivalent:

(i) F is a monomorphism,

(ii) Fk is a monomorphism for every k ≤ n.
Proof. The theory of n-precategories is sketchable and the functor (−)k : PCatn → Set,
which to a precategory associates its set of k-cells is induced by a sketch morphism. It is
thus a right adjoint [9, Section 4, Theorem 4.1]. In particular, it preserves monomorphisms.
Thus, (i) implies (ii). Moreover, since the functors (−)k for k < n+ 1 are jointly faithful,
we have that (ii) implies (i).
We then have the following characterization property for monomorphisms of polygraphs,
which are in particular preserved by the functor (−)∗:

2.10. Proposition. Given n ∈ N ∪ {ω} and F : P → Q ∈ Poln, the following are
equivalent:

(i) F is a monomorphism,

(ii) Fk is a monomorphism for every k ≤ n,

(iii) F ∗ is a monorphism in PCatn.
Proof. We show this property by induction on n. (ii) clearly implies (i).

Conversely, assuming (i), by induction hypothesis, we have that Fk and F ∗k are monomor-
phisms for k < n. Now, let x, y ∈ Pn such that Fn(x) = Fn(y). In particular, we have
F ∗n−1(∂ϵ(x)) = F ∗n−1(∂ϵ(y)) for ϵ ∈ {−,+}, so that ∂ϵ(x) = ∂ϵ(y) for ϵ ∈ {−,+}, by injec-
tivity of F ∗n−1. Consider the n-polygraph R such that T P

n−1 R = T P
n−1 P and Rn = z with

dϵ
n−1(z) = ∂ϵ(x) for ϵ ∈ {−,+}. Then, we have two canonical morphisms Gx, Gy : R → P,

verifying Gx(z) = x and Gy(z) = y. We then have F ◦Gx = F ◦Gy, so that Gx = Gy since
F is a monomorphism. In particular, we have x = y. Thus, Fn is injective, so (ii) holds.

By Theorem 2.1, the embedding eP
k : Pk → P∗k (resp. eQ

k : Qk → Q∗k) is a monomorphism.
Thus, (iii) implies (ii), since eQ

k ◦Fk = F ∗k ◦ eP
k and the right-hand side of the latter equation

is a monomorphism by Proposition 2.9.
Conversely, assume (ii). Let u, v ∈ P∗n such that F ∗(u) = F ∗(v). We show that u = v by

induction on an expression defining u. If u = idu′ for some u′ ∈ P∗n−1, by Propositions 2.6
and 2.7, there exists v′ ∈ P∗n−1 such that v = idv′ . We thus have F ∗(u′) = F ∗(v′) and
u′ = v′ by induction hypothesis. If u = u1∗iu2 for some i < n and i-composable u1, u2 ∈ P∗,
then by Proposition 2.7, there exists i-composable v1, v2 ∈ P∗ such that v = v1 ∗i v2 and
F ∗(uk) = F ∗(vk) for k ∈ {1, 2}, so that uk = vk by induction hypothesis, and u = v.
Finally, if u = eP,n(g) for some g ∈ Pn then v = eP

n(h) for some h ∈ Pn by Proposition 2.3.
But then, we have

eQ
n (Fn(g)) = F ∗(eP

n(g)) = F ∗(eP
n(h)) = eQ

n (Fn(h))
where eQ

n ◦Fn is a monomorphism by hypothesis and Remark 2.2. Thus, g = h and u = v.
Hence, (iii) holds.



16

3. Makkai’s criterion for presheaf categories
We now recall the criterion given by Makkai [39] to detect whether a category C is a
presheaf category in the expected way, i.e., relatively to a concretization functor C → Set.
In the case of a presheaf category, the objects of the base category are recognized as the
“suitably initial” elements of the concretization. Makkai used this criterion to show that
polygraphs for strict categories do not form a presheaf categories in the expected way,
where the concretization functor maps a polygraph to the set of all generators. We will use
this criterion in Section 6 to prove that, in the case of precategories, we do get a presheaf
category.

A concrete category is a category C endowed with a functor

|−|C : C → Set.

The above concretization functor should be understood as a candidate set-theoretic
representation of C: for c an object of C, the set |c| describes the candidate elements of the
associated presheaf. The following canonical example should provide a good illustration of
this intuition.

3.1. Example. Let C be a small category. Ĉ has a canonical structure of concrete category,
where |−|Ĉ is defined on preasheaves P ∈ Ĉ by

|P |Ĉ =
⊔

c∈C0

P (c)

and extended in the expected way to morphisms between presheaves.
In the following, we will be interested in the concretization functor given by the following
example:

3.2. Example. The functor |−| : Polω → Set which maps P ∈ Polω to

|P| =
⊔

k∈N
Pk

equips Polω with a structure of concrete category.
Later, we will study the properties of Polω equipped with the above concretization

functor. Another concretization functor on Polω that will be of interest for us is given by
the example below:

3.3. Example. There is a functor |−| : PCatω → Set which maps C ∈ PCatω to

|C| =
⊔

k∈N
Ck

By precomposition with the functor (−)∗ : Polω → PCatω, we obtain the functor

|(−)∗| : Polω → Set
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which maps P ∈ Polω to
|P∗| =

⊔
k∈N

P∗k

and also equips Polω with a structure of concrete category.
In order to distinguish between the two preceding structures of concrete category on Polω,
we use the convention that we write Polω when considering the concrete category structure
on Polω given by |−| and Pol∗ω when considering the concrete category structure on Polω

given by |(−)∗|.
An equivalence of concrete categories between concrete categories (C, |−|C) and (D, |−|D)

is the data of an equivalence of categories E : C → D and a natural isomorphism

Φ: |−|D ◦ E ⇒ |−|C.

When such an equivalence exists, (C, |−|C) and (D, |−|D) are said concretely equivalent.
One might then consider the following natural question:

When is some concrete category (C, |−|C) concretely equivalent
to a presheaf category (Ĉ, |−|Ĉ) for some small category C?

When it is the case, we say that (C, |−|C) is a concrete presheaf category.
Given a concrete category (C, |−|C), the category of elements Elt(C) of C is the category
– whose objects are the pairs (X, x) where X ∈ C0 and x ∈ |X|C, and

– whose morphisms from (X, x) to (Y, y) are the morphisms f : X → Y ∈ C such
that |f |C(x) = y.

Given a morphism f : (X, x) → (Y, y) as above, we say that y is a specialization of x. An
object (X, x) ∈ Elt(C) is principal when, for every morphism f : (Y, y) → (X, x) ∈ Elt(C)
such that f is a monomorphism in C, we have that f is an isomorphism; it is primitive
when it is principal and, for all f : (Y, y) → (X, x) ∈ Elt(C) where (Y, y) is principal, f is
an isomorphism.

3.4. Example. Let C be a small category and consider the canonical concrete category
structure on Ĉ given by Example 3.1. Given P ∈ Ĉ and c ∈ C, we write ιc for the
canonical injection P (c) → ⊔

c∈C P (c). The category Elt(Ĉ) has
– as objects the pairs (P, ιc(x)) where P ∈ Ĉ and x ∈ P (c), and

– as morphisms from (P, ιc(x)) to (Q, ιd(y)) the natural transformations α : P ⇒ Q
such that c = d and αc(x) = y.

Given (P, ιc(x)) ∈ Elt(Ĉ), we have the following.
– (P, ιc(x)) is principal when P is the smallest subpresheaf P ′ of P such that x ∈ P ′(c).

In particular, for all c ∈ C, (C(−, c), ιc(idc)) ∈ Elt(Ĉ) is principal.

– (P, ιc(x)) is primitive when the natural transformation θ : C(−, c) → P which
maps idc to x is an isomorphism.
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3.5. Example. Considering the structure of concrete category given by Example 3.2 and
the ω-polygraph P defined by

P0 = {x} P1 = {a : x → x} Pk = ∅ for k ≥ 0,

we have that the element (P, a) is principal while not primitive. Now, considering the
ω-polygraph Q defined by

Q0 = {y, z} Q1 = {b : y → z} Qk = ∅ for k ≥ 0,

we have that the element (Q, b) is both principal and primitive.
The characterization of concrete presheaf categories given by Makkai is the following [39,
Theorem 4]:

3.6. Theorem. Let (C, |−|C) be a concrete category. C is concretely equivalent to a
presheaf category if and only if the following conditions are all satisfied:

(a) |−|C reflects isomorphisms,

(b) C is cocomplete and |−|C preserves all small colimits,

(c) the collection of isomorphism classes of primitive elements of Elt(C) is small,

(d) for every element (X, x) ∈ Elt(C), there is a morphism (U, u) → (X, x) for some
primitive element (U, u),

(e) given two morphisms f, g : (U, u) → (X, x) ∈ Elt(C) where (U, u) is primitive, we
have f = g,

(f) given two morphisms f : (U, u) → (X, x) and g : (V, v) → (X, x) of Elt(C) where
both (U, u) and (V, v) are primitive, there is an isomorphism θ : (U, u) → (V, v) such
that g ◦ θ = f .

When the conditions of the above theorem are verified, considering a chosen set of
representatives of isomorphism classes of primitive elements (U, u) in Elt(C), a possible
shape category for a concretely equivalent presheaf category is given by the full subcategory
of C spanned by the first components U of the of the representatives in this set.

4. The support function
It is often useful to consider the support of a cell in a precategory, which informally
consists in the set of generators occurring in this cell. In particular, the support will
allow us to retrieve some properties of a morphism of polygraphs F from the associated
free functor F ∗, which will turn out to be useful when studying polyplexes. A support
function for free strict categories was already introduced by Makkai for his study of the
word problem on these categories [39].
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Given n ∈ N ∪ {ω} and an n-polygraph P, we define the support function
suppP : |P∗| → P(|P|)

which to any cell in P∗ associates a set of generators of P, by induction on u ∈ P∗ as
follows:

– if u = g ∈ P0, then supp(u) = {g},

– if u = g ∈ Pk+1 for some k < n, then supp(u) = {g} ∪ supp(d−(g)) ∪ supp(d+(g)),

– if u = idu′ for some k < n and u′ ∈ P∗k, then supp(u) = supp(u′),

– if u = u1 ∗i u2 for some 0 < k1, k2 < n + 1, i = min(k1, k2) − 1 and i-composable
u1 ∈ P∗k1 and u2 ∈ P∗k2 , then supp(u) = supp(u1) ∪ supp(u2).

One can easily verify that supp respects the axioms of precategories, so that:

4.1. Lemma. The function supp is well-defined.
The function supp is moreover natural:

4.2. Lemma. Let n ∈ N∪{ω} and F : P → Q ∈ Poln. We have suppQ ◦|F ∗| = |F |◦suppP.
Proof. By induction on u ∈ P∗.
Given a polygraph P and a cell u ∈ P∗, the support of u is always finite. By restricting P
to the generators occurring in this support, on can show the following:

4.3. Proposition. Given n ∈ N ∪ {ω}, an n-polygraph P and u ∈ P∗, there exist a
finite n-polygraph P̃ , a monomorphism F : P̃ → P and ũ ∈ P̃ ∗ such that F ∗(ũ) = u
and supp(ũ) = |P̃|.

Given F : P → Q and u ∈ P∗, we write F/u : supp(u) → supp(F ∗(u)) for the restriction
of F to the support and the image of the support of u.

4.4. Lemma. Given a pair of parallel morphisms

P Q
F

G

of Polω such that F ∗(u) = G∗(u) for some u ∈ P∗, we have F/u = G/u.
Proof. By induction on n and a formula defining u.

– If u = α for some α ∈ P, then F (α) = G(α) and also F ∗(∂ϵ(α)) = G∗(∂ϵ(α)) for
ϵ ∈ {−,+}, so that F/∂ϵ(u) = G/∂ϵ(u) by induction. Thus, F/α = G/α.

– If u = idu′ , then the property follows by induction hypothesis.

– If u = u1 ∗iu2. Then, we have F ∗(u1)∗iF
∗(u2) = G∗(u1)∗iG

∗(u2). Writing !P : P → 1
for the terminal morphism in Polω, we have !∗Q(F ∗(uj)) = !∗P(uj) = !∗Q(G∗(uj)) for
j ∈ {1, 2}. Since !∗P is Conduché by Proposition 2.7, we have F ∗(uj) = G∗(uj) for
j ∈ {1, 2}. Thus, F/uj = G/uj for j ∈ {1, 2} so that F/u = G/u.
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We have the following nice description of principal elements of Elt(Polω) and Elt(Pol∗ω)
using support:

4.5. Lemma. An element (P, u) of Elt(Polω) (resp. Elt(Pol∗ω)) is principal if and only if
supp(u) = |P|.

Proof. Assume that (P, u) is principal. Then, by Proposition 4.3, there exist an el-
ement (P̃, ũ) and F : (P̃, ũ) → (P, u) such that F is a monomorphism of Polω and
supp(ũ) = |P̃|. Since (P, u) is principal, we have that F is an isomorphism. Thus,
by Lemma 4.2, we have that supp(u) = |P|.

Conversely, assume that supp(u) = |P|. Let (Q, v) be an element and F : (Q, v) → (P, u)
be a morphism where F is a monomorphism in Polω. By Lemma 4.2, we have that
|F (supp(v))| = supp(u) = |P|. Thus, Fk is surjective for every k ∈ N. Moreover, Fk is
injective by Proposition 2.10, so that Fk is an isomorphism for every k. Since |−| reflects
isomorphisms (exercise to the reader), we have that F is an isomorphism. Thus, (P, u) is
principal.
Finally, as a consequence of Lemmas 4.4 and 4.5, we have:

4.6. Lemma. Given a pair of parallel morphisms

(P, u) (Q, v)
F

G

of Elt(Pol∗ω) where (P, u) is principal, then F = G.

5. Polyplexes
We now introduce the construction of polyplexes for the cells of free precategories. Those
are polygraphs representing composition shapes such that every such cell in a polygraph
is the composite of a polyplex in a unique way. Polyplexes are themselves composed of
plexes (see next section) which are polygraphs representing generators in a polygraph.
These notions are due to Burroni [14], and were further developed by Henry [33].

Formally, a polyplex is an element (P, u) ∈ Elt(Pol∗ω) which is primitive (for the concrete
structure introduced in Example 3.3). Given an element (Q, v) in Elt(Pol∗ω), a polyplex
lifting is the data of a polyplex (P, u) and a morphism of elements F : (P, u) → (Q, v)
in Elt(Pol∗ω).

The construction of polyplexes will be carried out by induction on a formula defining a
cell. The inductive case of identities is handled by the following lemma:

5.1. Lemma. Given an element (P, u) ∈ Elt(Pol∗ω), (P, u) is a polyplex if and only if
(P, idu) is a polyplex.
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Proof. By Lemma 4.5, (P, u) is principal if and only if (P, idu) is principal. So we can
assume that both are principal.

Suppose that (P, u) is primitive. Let F : (Q, v) → (P, idu) be a morphism of elements
where Q is principal. Then, by Proposition 2.3, we have that v = idv′ for some v′ ∈ Q∗, and,
by compatibility of F ∗ with ∂−, we moreover have F ∗(v′) = u. Since supp(v) = supp(v′),
(Q, v′) is still a principal element. Thus, F is an isomorphism since (P, u) is primitive.
Hence, (P, idu) is primitive. The converse is similar.

The following Lemmas 5.2 and 5.4 and Propositions 5.6 and 5.8, handling the remaining
cases characterizing polyplexes for composites and generators together with global existence
and unicity properties, are proved by mutual induction both on the dimension of the
considered elements, and on the depth of a formula defining the cell u appearing in the
statements. First, the case of generators:

5.2. Lemma. Let (U, u) ∈ Elt(Pol∗ω). Then, the following are equivalent:

(i) (U, u) is a polyplex and there exists a generator α ∈ |U | such that u = α,

(ii) there exist polyplex liftings

Gϵ : (U ϵ, uϵ) → (U, ∂ϵ(u))

for ϵ ∈ {−,+}, principal elements (S, s) and (T, t), and morphisms

F ϵ− : (S, s) → (U ϵ, ∂−(uϵ)) F ϵ+ : (T, t) → (U ϵ, ∂+(uϵ))

for ϵ ∈ {−,+}, such that, considering the pushout

S ⊔ T U+

U− ∂U

[F +−,F ++]

[F −−,F −+] Ḡ+

Ḡ−

(U, u) is isomorphic to (Ū , ᾱ), where Ū is obtained from ∂U by adding a generator

ᾱ : Ḡ−(u−) → Ḡ+(u+).

5.3. Remark. To be precise, while in the process of proving this lemma by mutual
induction, thus relative to a chosen formula for u, the inductive use of this lemma is only
authorised when the chosen formula for u consists in one generator (which is necessarily
the α of (i)). Once the mutual induction is done, this constraint becomes useless in the
statement, so that we made a slight abuse and directly wrote the lighter version of the
statement, but one should bear in mind the constraint of the chosen formula when reading
the proof.
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Proof. Suppose that (ii) holds. By the unicity of normal forms (Theorem 2.1), it is
enough to show that (Ū , ᾱ) is primitive. First, it is principal by Lemma 4.5 since

supp(ᾱ) = {ᾱ} ∪ supp(Ḡ−(u−)) ∪ supp(Ḡ+(u+)) = |Ū |.

Second, consider a morphism H : (V, v) → (Ū , ᾱ) with (V, v) principal. By induction
hypothesis on Proposition 5.6, we have polyplex liftings

Hϵ : (Ũ ϵ, ũϵ) → (V, ∂ϵ(v))

for ϵ ∈ {−,+}. Since H∗(∂ϵ(v)) = ∂ϵ(ū), by Proposition 5.8, we can assume without loss
of generality that (Ũ ϵ, ũϵ) = (U ϵ, uϵ) for ϵ ∈ {−,+}. Since (S, s) is principal, we have, by
Lemma 4.6

H− ◦ F−− = H+ ◦ F+− and H− ◦ F−+ = H+ ◦ F++.

Thus, we derive a morphism ∂H ′ : ∂U → V from the pushout. By unicity of normal forms,
v = β for some β ∈ V . Thus, ∂H ′ can be extended to H ′ : Ū → V by putting H ′(ᾱ) = β.
Using Lemma 4.6, we can easily verify that H ′ is the inverse of H. Hence, (Ū , ū) is a
polyplex.

Now, assume that (i) holds. By induction hypothesis, there are polyplex liftings

Gϵ : (U ϵ, uϵ) → (U, ∂ϵ(u))

for ϵ ∈ {−,+}. By induction hypothesis on Proposition 5.6, there exists a polyplex lifting
F−− : (S, s) → (U−, ∂−(u−)). Similarly, there is a polyplex lifting of (U+, ∂−(u+)) and,
since (G−)∗(∂−(u−)) = (G+)∗(∂−(u+)), by Proposition 5.8, it can be chosen to be of the
form

F+− : (S, s) → (U+, ∂−(u+)).
Similarly, there are polyplex liftings

F−+ : (T, t) → (U−, ∂+(u−)) and F++ : (T, t) → (U+, ∂+(u+)).

Writing F ϵ for [F ϵ−, F ϵ+] for ϵ ∈ {−,+}, consider the pushout

S ⊔ T U+

U− ∂U

F +

F + Ḡ+

Ḡ−

and write Ū for the ω-polygraph obtained by adding a generator ᾱ : Ḡ−(u−) → Ḡ+(u+) to
∂U (this is well-defined, since the definition of ∂U ensures that ∂ϵ(Ḡ−(u−)) = ∂ϵ(Ḡ+(u+))
for ϵ ∈ {−,+}). By “(ii) implies (i)”, (Ū , ᾱ) is a polyplex (thus, it is principal), and we
easily deduce a polyplex lifting H : (Ū , ᾱ) → (U, α) from the above pushout. Since (U, α)
is primitive, H is an isomorphism. Thus, (ii) holds.
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The next lemma deals with the case of composites of the polyplex construction:

5.4. Lemma. Let (U, u) ∈ Elt(Pol∗ω), u1 ∈ U∗k , u2 ∈ U∗l for some k, l ∈ N, with u1 and u2
are i-composable for i = min(k, l) − 1. Then, the following are equivalent:

(i) (U, u) is a polyplex and u = u1 ∗i u2,

(ii) there exist a principal element (U ′, u′) and polyplexes (U1, u1) and (U2, u2), and
morphisms Fj : U ′ → Uj ∈ Polω and Gj : Uj → U for j ∈ {1, 2}, such that

U ′ U2

U1 U

F1

F2

G2

G1

is a pushout diagram in Polω, and such that F ∗1 (u′) = ∂+
i (u1), F ∗2 (u′) = ∂−i (u2)

and u = G1(u1) ∗i G2(u2).

5.5. Remark. Like Remark 5.3, while in the process of proving this lemma by mutual
induction, thus relative to a chosen formula for u, the inductive use of this lemma is only
authorised when the chosen formula for u is of the form e1 ∗i e2, where e1 and e2 are
formulas representing u1 and u2 of (i). Once the mutual induction is done, this constraint
becomes useless in the statement, so that we made a slight abuse and directly wrote the
lighter version of the statement, but one should bear in mind the constraint of the chosen
formula when reading the proof.
Proof. Suppose that (ii) holds. We have

supp(G∗1(u1) ∗i G
∗
2(u2)) = supp(G∗1(u1)) ∪ supp(G∗2(u2))

= G1(supp(u1)) ∪G2(supp(u2))
= G1(|U1|) ∪G2(|U2|)
= |U |

thus (U, u) is principal by Lemma 4.5. Now, consider H : (R, w) → (U, u) ∈ Elt(Pol∗ω)
with (R, w) principal. We have

H(|R|) = H(supp(w)) = supp(H∗(w)) = supp(u) = |U |

so that the underlying function Hj : Rj → Uj of H between the j-generators is surjective
for every j. Thus, H is an epimorphism. Since H∗ is Conduché by Proposition 2.7
and H∗(w) = G∗1(u1) ∗i G

∗
2(u2), there exist unique w1, w2 such that H∗(wj) = G∗j(uj)

for j ∈ {1, 2} and w = w1 ∗i w2. By induction hypothesis on Proposition 5.6, there
exist polyplex liftings H ′j : (Ũj, ũj) → (R, wj) for j ∈ {1, 2}. By induction hypothesis on
Proposition 5.8, since both (Ũj, ũj) and (Uj, uj) are polyplex liftings of (U,G∗j(uj)), we may
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assume that (Ũj, ũj) = (Uj, uj) for j ∈ {1, 2}. By Lemma 4.6, we have H ′1 ◦ F1 = H ′2 ◦ F2,
so that we obtain H ′ : U → R from the pushout. We compute that

H ′(u) = H ′(G∗1(u1) ∗i G
∗
2(u2)) = H ′1(u1) ∗i H

′
2(u2) = w1 ∗i w2 = w.

Thus, using Lemma 4.6, we easily have that H ′ ◦H = idR and H ◦H ′ = idU . Hence, (U, u)
is primitive.

Conversely, suppose that (i) holds. Then, by induction hypothesis on Proposition 5.6,
there exist Gk : (Uk, ūk) → (U, uk) with (Uk, ūk) primitive for k ∈ {1, 2}. By induction
hypothesis on Proposition 5.6, there exist F̃k : (Ũk, ũk) → (Uk, ∂

ϵ(k)
i (uk)) with (Ũk, ũk)

primitive for i ∈ {1, 2} and ϵ(1) = + and ϵ(2) = −. In particular, (Ũ1, ũ1) and (Ũ2, ũ2) are
both polyplex liftings of (U, ∂+

i (u1)). By induction hypothesis on Proposition 5.8, we can
assume that (Ũ1, ũ1) = (Ũ2, ũ2) and write (Ũ , ũ) for this element. By Lemma 4.6, we have
G1 ◦ F1 = G2 ◦ F2. Consider the pushout

Ũ U2

U1 Ū

F1

F2

Ḡ2

Ḡ1

By its universal property, we get a morphism H : Ū → U from G1 and G2. By “(ii)
implies (i)”, (Ū , G∗1(ū1) ∗iG

∗
2(ū2)) is a primitive element. Moreover, H induces a morphism

H : (Ū , G∗1(ū1) ∗i G
∗
2(ū2)) → (U, u1 ∗i u2)

of Elt(Pol∗ω). Thus, since (U, u1 ∗i u2) is primitive, H is an isomorphism.

5.6. Proposition. Given an element (P, u) ∈ Elt(Pol∗ω), there exists a polyplex lifting

F : (U, ū) → (P, u)

where (U, ū) is primitive.

5.7. Remark. As already expressed in Remarks 5.3 and 5.5, while in the middle of
the proof, the above statement is relative to a chosen formula for u in order to make
the induction well-founded. Once the induction is finished, this chosen formula becomes
useless, and we directly wrote the version of the statement without it. The same remark
holds for Proposition 5.8 below.
Proof. We reason by case analysis on the chosen formula for u.

– If u = idu′ , then, by Lemma 5.1, the conclusion follows from induction hypothesis.

– If u = u1 ∗i u2, then, by induction hypothesis, there are morphisms

Gk : (Uk, ūk) → (P, u)
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with (Uk, ūk) primitive for k ∈ {1, 2}. By induction hypothesis, there are polyplex
liftings

F k : (Ũk, ũk) → (Uk, ∂
ϵ(k)
i (ūk))

with ϵ(1) = + and ϵ(2) = −. By induction hypothesis on Proposition 5.8, we can
assume that (Ũ1, ũ1) = (Ũ2, ũ2) and write (Ũ , ũ) for this element. Since (Ũ , ũ) is
principal, we have G1 ◦ F 1 = G2 ◦ F 2. Consider the pushout

Ũ U2

U1 Ū

F 1

F 2

Ḡ2

Ḡ1

Then, by Lemma 5.4, (Ū , Ḡ1(ū1) ∗i Ḡ
2(ū2)) is a polyplex, and the universal property

of pushouts gives a polyplex lifting
H : (Ū , Ḡ1(ū1) ∗i Ḡ

2(ū2)) → (P, u).

– If u = α for some generator α ∈ P, by induction, there are polyplex liftings
Gϵ : (U ϵ, uϵ) → (P, ∂ϵ(u))

for ϵ ∈ {−,+}. By induction on Proposition 5.6, there exists a polyplex lifting
F−− : (S, s) → (U−, ∂−(u−)).

Similarly, there is a polyplex lifting of (U+, ∂−(u+)) and, since
(G−)∗(∂−(u−)) = (G+)∗(∂−(u+))

by Proposition 5.8, it can be chosen to be of the form
F+− : (S, s) → (U+, ∂−(u+)).

Similarly, there are polyplex liftings
F−+ : (T, t) → (U−, ∂+(u−)) and F++ : (T, t) → (U+, ∂+(u+)).

Writing F ϵ for [F ϵ−, F ϵ+] for ϵ ∈ {−,+}, consider the pushout

S ⊔ T U+

U− ∂U

F +

F + Ḡ+

Ḡ−

and write U for the ω-polygraph obtained from ∂U by adding a generator
ᾱ : Ḡ−(u−) → Ḡ+(u+)

(this is well-defined, since the definition of ∂U ensures that ∂ϵ(Ḡ−(u−)) = ∂ϵ(Ḡ+(u+))
for ϵ ∈ {−,+}). By Lemma 5.2, (U, ᾱ) is a polyplex, and we easily deduce a polyplex
lifting H : (U, ᾱ) → (P, α).



26

5.8. Proposition. Given two morphisms L1 : (U1, u1) → (P, u) and L2 : (U2, u2) → (P, u)
of Elt(Pol∗ω) where both (U1, u1) and (U2, u2) are primitive elements, there is an isomor-
phism Θ: (U1, u1) → (U2, u2) such that L2 ◦ Θ = L1.
Proof. We reason by case analysis on a formula for u.

– If u = idu′ , then the conclusion follows from induction hypothesis on u.

– If u = α for some α ∈ P, then, by Lemma 5.2, U1 and U2 are obtained by adding
respective top-level generators α1 and α2 to polygraphs ∂U1 and ∂U2, the latter
being expressed as pushouts

Si ⊔ T i U i,+

U i,− ∂U i

[F i,+−,F i,++]

[F i,−−,F i,−+] Ḡi,+

Ḡi,−

for some principal (Si, si), (T i, ti) and some primitive (U i,−, ui,−), (U i,+, ui,+) for
i ∈ {1, 2} as in the statement of that lemma. In particular, (U i,ϵ, ui,ϵ) are polyplex
liftings of ∂ϵ(α) for i ∈ {1, 2} and ϵ ∈ {−,+}. By induction hypothesis, for
ϵ ∈ {−,+}, there are isomorphisms Θϵ : (U1,ϵ, u1,ϵ) → (U2,ϵ, u2,ϵ). Since (S1, s1) and
(T 1, t1) are principal, we can easily verify with Lemma 4.6 that

G2,− ◦ Θ− ◦ [F 1,−−, F 1,−+] = G2,+ ◦ Θ+ ◦ [F 1,+−, F 1,++]

so that we get a morphism ∂Θ: ∂U1 → ∂U2, which extends to a morphism
Θ: U1 → U2 such that Θ(α1) = α2. A morphism Θ′ : (U2, α2) → (U1, α1) can
be built symmetrically. Using Lemma 4.6, we easily verify that Θ and Θ′ are inverse
of each other.

– If u = u1 ∗i u2, we use the pushout description from Lemma 5.2 and this case is then
handled just like the previous one.

5.9. Remark. A consequence of the existence and unicity properties above, together
with Lemma 4.6, is that the functor |(−)∗| : Polω → Set of Example 3.3 is familially
representable [15], i.e., can be expressed as a functor of the form⊔

i∈I

Hom(U i,−) : Polω → Set.

Here, I is a set of representatives (U i, ui) of all polyplexes (considered up to isomorphism
of elements in Elt(Pol∗ω)) of any dimension. Those can for instance be enumerated by
constructing one polyplex lifting for each cell of the free precategory on the terminal
polygraph. A similar description holds for the functor (−)∗k, mapping a polygraph to the
set of k-cells of the associated free precategory: the family I is now a set of representatives
for the polyplexes of dimension k up to isomorphism.
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5.10. Remark. A consequence of the canonicity of polyplex liftings given by the above
properties is that one can define a “polyplex measure” on the cells of free precategories.
Let P ∈ Polω, and write ZP for the free Z-module on |P|. Given u ∈ P∗, one can define
δP(u) as follows. Consider a polyplex lifting F : (V, v) → (P, u) and define SV ∈ ZV by
SV = ∑

g∈V g. Then, one defines δP(u) as ZF (SV ). The definition of δP(u) does not depend
on the choice of (V, v) by Lemma 4.6 and Proposition 5.8. The question of the existence
of a similar measure for free strict categories was raised by Makkai in [39]. Later, using
the standard Eckmann–Hilton for strict categories, the non-existence of such a measure
was proven [20, Proposition 2.5.2.13].

6. Polygraphs as a presheaf category
We can now use the results of the previous section in order to conclude that Polω is a
(concrete) presheaf category on the base category (also called shape category) of plexes,
which are the elementary shapes polygraphs are made of. In addition to the works of
Burroni [14] and Henry [33], this notion was also studied by Makkai [39] under the name
of computopes.

Formally, a plex is an element (P, u) ∈ Elt(Polω) which is primitive (for the concrete
structure introduced in Example 3.2). Given an element (Q, v) in Elt(Polω), a plex lifting
is the data of a plex (P, u) and a morphism of elements F : (P, u) → (Q, v) ∈ Elt(Polω).

In order to relate the properties of plexes to the ones of polyplexes proved in the
previous section, we first need to briefly discuss the link between Elt(Polω) and Elt(Pol∗ω).
We write U : Elt(Polω) → Elt(Pol∗ω) for the canonical embedding. First note that, as a
consequence of Proposition 2.3(ii), that

6.1. Lemma. The functor U is fully faithful.
We then have the following.

6.2. Proposition. Let (P, g) ∈ Elt(Polω). Then

(1) (P, g) is principal if and only if U(P, g) is principal,

(2) (P, g) is a plex if and only if U(P, g) is a polyplex.

Proof. By Lemma 4.5, (1) holds. Suppose now that both (P, g) and U(P, g) are principal.
By Proposition 2.3 (ii), U is fully faithful, so that it reflects isomorphisms. Thus, if U(P, g)
is a polyplex, then (P, g) is a plex. For the converse, note that if f : (Q, v) → U(P, g) is a
morphism of Elt(Pol∗ω), then, by Proposition 2.3 (ii), v ∈ Q, so that

(Q, v) = U(Q, v) and f = U(f).

Hence, if (P, g) is a plex, then U(P, g) is a polyplex.
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6.3. Theorem. The category Polω is a concrete presheaf category.

Proof. We verify that the various conditions of Makkai’s criterion (Theorem 3.6) are
satisfied.

(a) Clear from the definition of Polω.

(b) A consequence of general properties satisfied by categories of polygraphs derived
from a globular monad (see Propositions 1.3.3.7 and 1.3.3.15 of [20]).

(c) Since a primitive element (P, g) is principal, the polygraph P is finite. Thus, up to
isomorphism, the sets Pi can be assumed to be subsets of N. So that (c) holds.

(d) Given an element (P, g) ∈ Elt(Polω), by Proposition 5.6, there exists a polyplex
lifting F : (U, u) → (P, g) of U(P, g). By Proposition 2.3(ii), we have that u ∈ U .
Moreover, by Proposition 6.2(2), we have that (U, u) is a plex, so (d) holds.

(e) Given f, g : (U, u) → (X, x) ∈ Elt(Polω) with (U, u) a primitive plex, then we have
that U(f),U(g) : (U, u) → (X, x) ∈ Elt(Pol∗ω), so that U(f),U(g) by Lemma 4.6,
and f = g by faithfulness.

(f) Given two morphisms f : (U, u) → (X, x) and g : (V, v) → (X, x) of Elt(Polω) where
both (U, u) and (V, v) are primitive, we have by Proposition 5.8 that there is an
isomorphism

θ : U(U, u) → U(V, v) ∈ Elt(Pol∗ω)
such that U(g) ◦ θ = U(f). We conclude by the full faithfulness of U .

6.4. Remark. Following Makkai’s proof of [39, Theorem 4], the base category of the
presheaf category given by the above theorem is a small full subcategory of Polω, whose
objects are (the underlying polygraphs of) plexes, and such that every (underlying poly-
graph of a) plex is isomorphic to exactly one object of this subcategory. The objects of the
latter can thus be easily enumerated, since they are in correspondence with the generators
of the terminal polygraph 1, as plex liftings.

6.5. Remark. Like the familial representability observed in Remark 5.9, the conditions
(d), (e) and (f) proved above entails a familial representability for the functor |−| of
Example 3.2, which can be expressed as⊔

i∈I

Hom(U i,−) : Polω → Set.

Here, I is a set of representatives (U i, gi) of all plexes (considered up to isomorphism of
Elt(Polω)). By taking I to be a set of representatives of all plexes of dimension k for some
k ∈ N, one obtains a familial representability of the functor (−)k : Polω → Set.
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6.6. Remark. In [5], Araújo relies on [18, Proposition 5.14], which gives sufficient
conditions for a category to be a presheaf category on a given full subcategory. The
difference with [39, Theorem 4] is that the latter is relative to a concrete presheaf structure,
and is able to characterize the shape category as a full subcategory of primitive elements.

6.7. Remark. In order to show that Polω is a presheaf category, another method suggested
by Henry in a private communication is to use a theorem of Batanin [11, Theorem 5.2]:
given an operad whose slices are strongly regular theories, its associated category of
computads is a presheaf topos. Indeed, one can easily see that the higher slices of the
theory of precategories are simply the free monoid operad, which is strongly regular, so
that Batanin’s theorem applies.

7. Parametric adjunction and generic factorization
While Remark 5.9 asserts that the cells of free precategories on polygraphs are instances of
“universal shapes” (i.e., polyplexes), a more conceptual and general syntactical result can
be given, which encompasses both the existence of those universal shapes and the Conduché
property of free functors. This result relies on the existence of a parametric adjunction and
an associated generic factorization for the free functor (−)∗. Parametric adjunctions and
generic factorizations appear frequently in the context of algebraic higher category [50, 54,
32]: for example, the free ω-category monad functor on globular sets is parametric right
adjoint, and has an associated generic factorization. While the classical parametric right
adjoints are monad functors on presheaf categories (for which characterization criteria
have been developed, for example [55, Theorem 2.13]), the unusual fact here is that the
parametric right adjoint (−)∗ is a left adjoint, whose codomain is not a presheaf category,
but the category of n-precategories: for us, this fact reflects and summarize the good
syntactical properties of the theory of precategories.

While parametric adjunctions can easily be deduced from familial representability
properties (like Remark 5.9) in a presheaf setting (see [55, Proposition 2.10]), there is no
direct criterion in our setting, so that we have to show the parametric representability
“by hand”: we need to show that the functor (−)∗1 : Polω → PCatω/1∗ is a right adjoint,
where PCatω/1∗ is the slice category of PCatω over the free precategory on the terminal
polygraph 1, and (−)∗1 the functor induced by (−)∗. Since both Polω and PCatω/1∗ are
locally presentable categories, and that (−)∗ is a left adjoint, we are only required to show
that (−)∗1 preserves limits (see [1, Theorem 1.66]). Since Polω has a terminal object and
the computation of limits in PCatω/1∗ amounts to the computation of a connected limit
in PCatω, we simply need to show that connected limits are preserved, recovering [55,
Theorem 2.13] in our context. In the following, given k, n ∈ N, we write Dk,n, or simply
Dk for the free n-precategory with one non-identity k-cell.

7.1. Proposition. Given n ∈ N ∪ {ω}, the functor (−)∗ : Poln → PCatn preserves
connected limits.
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Proof. First note that the functor |−| : PCatn → Set is conservative; it is moreover
familially representable by the Dk’s for k < n+ 1 (a k-cell of an n-precategory C is the
same thing as a functor Dk → C) and thus preserves connected limits by [15, Theorem 2.5]
and [1, Corollary 2.45]. Since PCatn is complete, it is sufficient to show that the functor
|(−)∗| : Poln → Set preserves connected limits. But this functor is familially representable
by Remark 5.9, so that it preserves connected limits by [15, Theorem 2.5].
By the argument exposed earlier, we can conclude that:

7.2. Theorem. Given n ∈ N ∪ {ω}, the functor (−)∗1 : Poln → PCatn/1∗ is a right
adjoint. In other words, (−)∗ is a parametric right adjoint.

As a consequence, we have a generic factorization for the functor (−)∗. We recall
from [54] the notion of generic morphism in the present case: given C ∈ PCatn and
P ∈ Poln, a morphism F : C → P∗ is generic when, for any commutative square of the
form

C Q∗

P∗ R∗

G

F H∗

K∗

L∗

for some Q,R ∈ Poln, G : C → Q∗ in PCatn, H : Q → R and K : P → R in Poln, there
exists a unique L : P → Q such that G = L∗ ◦ F and K = H ◦ L. Now, given a morphism
F : C → P∗, a generic factorization is a decomposition of F as H∗ ◦G for some Q ∈ Poln,
some generic G : C → Q∗ and H : Q → P ∈ Poln. By the universal property of generic
morphisms, such a decomposition is unique up to an isomorphism Q → Q′.

7.3. Corollary. Given n ∈ N ∪ {ω}, C ∈ PCatn and P ∈ Poln, every F : C → P∗
in PCatn admits a generic factorization.

Proof. By [55, Proposition 2.6], the existence of generic factorizations follows from the
fact that (−)∗1 is a parametric right adjoint.
Some generic morphisms are easy to identify. Given n ∈ N, write Dn the ω-precategory
freely generated from one n-cell. We have:

7.4. Proposition. Given n ∈ N and P ∈ Polω, writing u for the non-identity n-cell of
Dn, a functor F : Dn → P∗ is generic if and only if (P, F (u)) is a polyplex.

Proof. We start with the first implication. Let H : (Q, v) → (P, F (u)) be a polyplex lifting
of (P, F (u)). Then, writting G : Dn → Q∗ sending u to v, we have H∗ ◦ G = (idP)∗ ◦ F .
Thus, there exists a unique lifting L : P → Q such that L∗ ◦ F = G and H ◦ L = idP. In
particular, we have that L∗(F (u)) = v and L is a monomorphism. Thus, since (Q, v) is
principal, L : (P, F (u)) → (Q, v) is an isomorphism.
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Conversely, let
Dn Q∗

P∗ R∗

G

F H∗

K∗

be a commutative square where (P, F (u)) is assumed to be a polyplex. Consider a
polyplex lifting L : (P̄, ū) → (Q, G(u)). By applying H∗, (P̄, ū) is a polyplex lifting
of H∗(G(u)) = K∗(F (u)) and so is (P, F (u)). By Proposition 5.8, we can assume
(P̄, ū) = (P, F (u)) with H ◦L = K. Moreover, since L∗(F (u)) = G(u), we have L ◦ F = G
by freeness of Dn. Finally, the unicity of the lifting L of the above square is a consequence
of Lemma 4.6.

7.5. Remark. In a related manner, given n ∈ N and v ∈ 1∗n, the image of Dn v−→ 1∗,
seen as an object of PCatω/1∗, by a left adjoint to (−)∗1 is the underlying polygraph of a
polyplex lifting of v.

7.6. Remark. The above generic factorization can be seen as a stronger version of
Proposition 2.7. Indeed, given k, l > 0 and i = min(k, l) − 1, there exists a polygraph Dk,l

such that (Dk,l)∗ is the free ω-precategory with one k-cell u1 and one l-cell u2, such that
∂+

i (u1) = ∂−i (u2). The construction of Dk,l can be seen to induce a polyplex (Dk,l, u1 ∗i u2)
by Lemma 5.4. Writting n for max(k, l) and F k,l : Dn → (Dk,l)∗ for the functor sending
the non-trivial n-cell of Dn to u1 ∗i u2, Proposition 2.7 amounts to observe that the F k,l’s
are generic by Proposition 7.4.

8. Toward homotopical properties of precategories
In this section, we report on failed attempts to study homotopical properties of categories,
leaving open questions for future works.
A folk model structure on precategories? In the setting of strict n-categories, the
usefulness of polygraphs can be explained by the facts that they are free objects such that
every category admits a description by such an object, and any two descriptions are suitably
equivalent. In more precise and modern terms, this was formalized by Lafont, Métayer
and Worytkiewicz [37], who constructed a structure of model category on the category
Catω of strict ω-categories, in which weak equivalences are the expected equivalences of
ω-categories and cofibrant objects are ω-categories freely generated by polygraphs. One
could expect that we could perform a similar construction on precategories, and construct
a model structure where weak equivalences are the expected ones and cofibrant objects
are polygraphs in the sense of this article. Whether this is possible or not is left as an
open question, but explain here that a direct adaptation of the proof of [37] does not go
through easily.

Let us first introduce some terminology. Given an ω-precategory C, we make the
following coinductive mutual definitions:
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– two cells x, y ∈ C of the same dimension are equivalent, denoted x ∼ y, when there
exists an equivalence u : x → y;

– a cell u : x → y is an equivalence when there exists ū : y → x such that u ∗ ū ∼ idx

and ū ∗ u ∼ idy.

We could then have hope for the following definition of weak equivalences. Given an
ω-functor F : C → D, F is a weak equivalence when it is “essentially surjective in every
dimension”, i.e.,

– for every 0-cell y ∈ D0, there exists x ∈ C0 such that Fx ∼ y,

– for every pair of parallel cells u, u′ ∈ C and cell v̄ : F (u) → F (u′), there exists v ∈ C
such that F (v) ∼ v̄.

The above definitions directly generalize the ones for strict categories. The construction
of the folk model structure on strict ω-categories then requires a weak division property [37,
Lemma 5], which the authors present as being “crucial”. The direct generalization of it in
the setting of precategories is as follows:

8.1. Property. [Weak division] Given an ω-precategory C together with an equiva-
lence u : x → y ∈ C1, for any 1-cells s, t : y → z and for any 2-cell w : u ∗0 s ⇒ u ∗0 t,

(a) there is a 2-cell v : s ⇒ t such that u ∗0 v ∼ w,

y

x z

y

su

u

w ⇓

t

∼ x y zu

s

t

v ⇓

(b) for any 2-cells v, v′ : s ⇒ t such that u ∗0 v ∼ w ∼ u ∗0 v
′ we have v ∼ v′.

We would also need a generalization of the above property for n-cells, but we will see
that the proof of the stated property in dimension 1 already fails to generalize from strict
categories to precategories. Consider cells u and w as in the above property, with u an
equivalence, and let us try to define the cell v. Writing r : ū ∗0 u → 1x for the 2-cell
witnessing that u is an equivalence, following [37], we are tempted to define v as

v = (r ∗0 s) ∗1 (ū ∗0 w) ∗1 (r ∗0 t)

If we picture r and w as on the left, v can be pictured as on the right:

r = ū u
w =

u s

w

u t

v =

s

w

t



FREE PRECATEGORIES AS PRESHEAF CATEGORIES 33

In particular, in the case where w is of the form w = u ∗0 v
′ for some 2-cell v′ : s ⇒ t,

we should have v ∼ v′ by (b). In the case of strict categories, this holds thanks to the
interchange law:

v = (r ∗0 s) ∗1 (ū ∗0 u ∗0 v
′) ∗1 (r ∗0 t) = (r ∗0 s) ∗1 (r ∗0 s) ∗1 v

′ ∼ v′

s

v

t

=

s

v′

t

=

s

v′

t

∼

s

v′

t

However, in the case of precategories there is no reason why this should hold. Of course,
this does not directly imply that Proposition 8.1 does not hold or that there is no suitable
model structure on precategories, but more work is required than a mere adaptation of [37].
The above also suggests that it could be interesting to investigate structures “in between”
precategories and strict categories, where the interchange law is only required to hold for
some morphisms (such as r in the above example).
A cone construction? Another homotopy-related question one might ask is whether
the underlying shape category of the presheaf category of polygraphs of precategories is
able to model homotopy types. A now standard approach to get a positive answer is to
show that this shape category is a weak test category [27, 43], i.e., a category C whose
presheaf category Ĉ can be equipped with a canonical class of weak equivalences W , such
that the induced localization Ĉ[W−1] is canonically isomorphic to the homotopy category
of spaces Hot, so that, in particular, Ĉ models all homotopy types.

A common way to show that a category is a weak test category is to exhibit a separating
décalage [43] on this category. Formally, a décalage on a catégorie C is given by a functor
D : C → C together with natural transformations

1C D ⊤α β

where ⊤ is an object of C seen as a constant functor. Such a décalage is separating when
we moreover have that

(a) for every c ∈ C0, the arrow αc : c → D(c) is a monomorphism,

(b) α is cartesian: for every morphism f : c → c′ ∈ C, the diagram

c D(c)

c′ D(c′)

αc

f D(f)

αc′

is a pullback,
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(c) for every c ∈ C0, there is no commutative diagram of the form

c′ ⊤

c D(c)

g

f βc

αc

for some c′ ∈ C0 and f : c′ → c and g : c′ → ⊤ in C1.

Following Henry’s line of proof for the case of regular plexes [32], a promising choice
of décalage in a polygraphic setting is the one where D is “cone construction” functor,
also called expansion functor : starting from a polygraph P, this functor adds to P a
0-generator o, a 1-generator x → o for each x ∈ P0, and more generally an (i+1)-generator
for each i-generator of P, so that DP appears as a combinatorial description of a cone
over the “space” defined by P. Then, continuing the definition of a décalage, one can take
α to be the canonical embedding of a polygraph into the base of its cone, ⊤ to be the
polygraph with only one 0-generator o, and β to be the marking of o as the top of each
constructed cone.

While Henry [32] used the join of strict categories [3] to define the expansion functor
on regular plexes, a more direct description of this construction was used by Ara et al. [2]
in the case of strict categories that we unsuccessfully tried to adapt to precategories. In
the following, we describe this attempt, hoping it can still benefit other settings. Write
PCat•ω for the category of pointed ω-precategories, that is, the category whose objects
are the pairs (C, o) where o ∈ C0 and the morphisms (C, oC) → (D, oD) are the functor
F : C → D such that F (oC) = oD. We have an obvious adjunction

PCatω PCat•ω

(−)⊔{o}

⊥
U

(1)

where U simply forgets the pointed 0-cell o. In order to define an expansion functor on
precategories, one wants to introduce a functor

Λ: PCat•ω → PCat•ω

such that Λ(C, o) is the ω-precategory of i-cones on (C, o) for i ∈ N: a 0-cone is some
“base” 0-cell xb ∈ C together with some 1-cell xc : xb → o of C, a 1-cone between (xb, xc)
and (yb, yc) is a “base” 1-cell fb : x → y and fc : fb ∗0 yc ⇒ xc, and so on. There is
then a natural embedding γ(C,o) : Λ(C, o) → (C, o), mapping every i-cone to its “base”
i-cell. If such a functor exists, one could then define the category of conic precategories
PCatC

ω whose objects are the triples (C, o, σ), where (C, o) is a pointed ω-precategory
and σ is a section of γ(C,o) satisfying adequate degeneracy conditions (see [2, Definition
2.2.1]), and whose morphisms are the ones of PCat•ω which adequately commute with the
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sections. In other words, an object of PCatC
ω is a pointed ω-precategory with the data of

a compatible i-cone for every i-cell, satisfying degeneracy conditions. The forgetful functor
V: PCatC

ω → PCat•ω should then admit a left adjoint, so that we get an adjunction

PCat•ω PCatC
ω

(−)C∗

⊥
V

. (2)

The expansion functor would then be the functor

D̃ = U ◦ V ◦(−)C∗ ◦ ((−) ⊔ {o}) : PCatω → PCatω

which is the underlying functor of the monad of the composition of the two adjunctions
(1) and (2). Then, one could show that this functor restricts well to polygraphs (just like
for the case of strict categories [2]), so that we get D : Polω → Polω, and then show that
D is the underlying functor of a separating décalage.

Sadly, the definition of Λ does not go through for precategories. Given a pointed
ω-precategory (C, o), even though one can follow the concrete definition of [2] to get
a globular set Λ(C, o) equipped with precategorical compositions operations, one can
show that the latter do not satisfy axiom (P-v) of precategories in general: the lack of
interchange law for precategories is again to blame here.

While it is not formally excluded that the shape category of plexes is a weak test
category, the fact that it does not admit an expansion functor while the one of regular
plexes does is already a bad sign which suggests, in addition to the difficulty to define a
notion of weak equivalences with good properties (as discussed at the beginning of this
section), that “bare” precategories are not an adequate tool for homotopical purposes
(but that does not prevent them to be used to define other adequate tools, like Gray
categories [23]).

These unsatisfactory homotopical properties seem to be deeply related to the lack
of coherence cells between different “parallel” operations that one can define in the
theory of precategories. For example, a pair of horizontally composable 2-cells can be
vertically composed in two ways (either left-then-right, or right-then-left), but the theory
of precategories does not enforce the presence of a coherence 3-cell to relate the two
resulting 2-cells on particular instances. This corresponds to the fact that the operad
of precategories is not contractible [38], in contrast with the operad of Gray categories,
or the one of weak categories, which are both known to be higher categories with good
homotopical properties. This link between homotopical properties and contractibility
should be better understood in future work, possibly providing a satisfying justification
for the necessity of coherence cells in higher categories.
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