
Focusing in Asynchronous Games

Samuel Mimram?

CEA LIST / École Polytechnique

Abstract. Game semantics provides an interactive point of view on proofs,
which enables one to describe precisely their dynamical behavior during
cut elimination, by considering formulas as games on which proofs induce
strategies. We are specifically interested here in relating two such semantics
of linear logic, of very different flavor, which both take in account concur-
rent features of the proofs: asynchronous games and concurrent games.
Interestingly, we show that associating a concurrent strategy to an asyn-
chronous strategy can be seen as a semantical counterpart of the focusing
property of linear logic.

A cut-free proof in sequent calculus, when read from bottom up, progressively
introduces the connectives of the formula that it proves, in the order specified
by the syntactic tree constituting the formula, following the conventions induced
by the logical rules. In this sense, a formula can be considered as a playground
that the proof will explore. The formula describes the rules that this exploration
should obey, it can thus be abstractly considered as a game, whose moves are
its connectives, and a proof as a strategy to play on this game. If we follow the
principle given by the Curry-Howard correspondence, and see a proof as some sort
of program, this way of considering proof theory is particularly interesting because
the strategies induced by proofs describe very precisely the interactive behavior of
the corresponding program in front of its environment.

This point of view is at the heart of game semantics and has proved to be very
successful in order to provide denotational semantics which are able to describe
precisely the dynamics of proofs and programs. In this interactive perspective, two
players are involved: the Proponent, which represents the proof, and the Opponent,
which represents its environment. A formula induces a game which is to be played
by the two players, consisting of a set of moves together with the rules of the game,
which are formalized by the polarity of the moves (the player which should play a
move) and the order in which the moves should be played. The interaction between
the two players is formalized by a play, which is a sequence of moves corresponding
to the part of the formula being explored during the cut-elimination of the proof
with another proof. A proof is thus described in this setting by a strategy which
corresponds to the set of interactions that the proof is willing to have with its
environment.

? CEA LIST, Laboratory for the Modelling and Analysis of Interacting Systems, Point
Courrier 94, 91191 Gif-sur-Yvette, France. E-mail: samuel.mimram@cea.fr. This work
has been supported by the CHOCO (“Curry Howard pour la Concurrence”, ANR-07-
BLAN-0324) French ANR project.

mailto:samuel.mimram@cea.fr

This approach has been fruitful for modeling a wide variety of logics and pro-
gramming languages. By refining Joyal’s category of Conway games [12] and Blass’
games [7], Abramsky and Jagadeesan were able to give the first fully complete game
model of the multiplicative fragment of linear logic extended with the MIX rule [3],
which was later refined into a fully abstract model of PCF (Programming Lan-
guage of Computable Functions) [4]. Here, “fully complete” and “fully abstract”
essentially mean that the model is very precise, in the sense that every strategy is
definable (i.e. is the interpretation of a proof or a program); more details can be
found in Curien’s survey on the subject [9]. Giving such a precise model of this
language, introduced by Plotkin [18], was considered as a corner stone in com-
puter science because it is a prototypical programming language, consisting of the
λ-calculus extended with base data types and a fixpoint operator. At exactly the
same time, Hyland and Ong gave another fully abstract model of PCF based on a
variant of game semantics called pointer games [11]. In this model, definable strate-
gies are characterized by two conditions imposed to strategies (well-bracketing and
innocence). This setting was shown to be extremely expressive: relaxing in vari-
ous ways these conditions gave rise to fully abstract models of a wide variety of
programming languages with diverse features such as references, control, etc.

Game semantics is thus helpful to understand how logic and typing regulate
computational processes. It also provides ways to analyze them (for example by
doing model checking [2]) or to properly extend them with new features [9], and
this methodology should be helpful to understand better concurrent programs.
Namely, concurrency theory being relatively recent, there is no consensus about
what a good process calculus should be (there are dozens of variants of the π-cal-
culus and only one λ-calculus) and what a good typing system for process calculus
should be: we believe that the study of denotational semantics of those languages
is necessary in order to reveal their fundamental structures, with a view to possi-
bly extending the Curry-Howard correspondence to programming languages with
concurrent features. A few game models of concurrent programming languages
have been constructed and studied. In particular, Ghica and Murawski have built
a fully abstract model of Idealized Algol (an imperative programming language
with references) extended with parallel composition and mutexes [10] and Laird a
game semantics of a typed asynchronous π-calculus [13].

In this paper, we take a more logical point of view and are specifically inter-
ested concurrent denotational models of linear logic. The idea that multiplicative
connectives express concurrent behaviors is present since the beginnings of linear
logic: it is namely very natural to see a proof of A` B or A⊗ B as a proof A in
“parallel” with a proof of B, the corresponding introduction rules being

` Γ,A,B
` Γ,A`B

[`] and
` Γ,A ` ∆,B
` Γ,∆,A⊗B

[⊗]

with the additional restriction that the two proofs should be “independent” in the
case of the tensor, since the corresponding derivations in premise of the rule are two
disjoint subproofs. Linear logic is inherently even more parallel: it has the focusing
property [6] which implies that every proof can be reorganized into one in which
all the connectives of the same polarity at the root of a formula are introduced at
once (this is sometimes also formulated using synthetic connectives). This property,

originally discovered in order to ease proof-search has later on revealed to be fun-
damental in semantics and type theory. Two game models of linear logic have been
developed in order to capture this intuition. The first, by Abramsky and Melliès,
called concurrent games, models strategies as closure operators [5] following the
domain-theoretic principle that computations add information to the current state
of the program (by playing moves). It can be considered as a big-step semantics
because concurrency is modeled by the ability that strategies have to play multiple
moves at once. The other one is the model of asynchronous games introduced by
Melliès [14] where, in the spirit of “true concurrency”, playing moves in parallel is
modeled by the possibility for strategies to play any interleaving of those moves
and these interleavings are considered to be equivalent. We recall here these two
models and explain here that concurrent games can be related to asynchronous
games using a semantical counterpart of focusing. A detailed presentation of these
models together with the proofs of many properties evoked in this paper can be
found in [16,17].

1 Asynchronous games

Recall that a graph G = (V,E, s, t) consists of a set V of vertices (or positions),
a set E of edges (or transitions) and two functions s, t : E → V which to every
transition associate a position which is called respectively its source and its target.
We write m : x −→ y to indicate that m is a transition with x as source and y as
target. A path is a sequence of consecutive transitions and we write t : x −→→ y to
indicate that t is a path whose source is x and target is y. The concatenation of
two consecutive paths s : x −→→ y and t : y −→→ z is denoted s · t. An asynchronous
graph G = (G, �) is a graph G together with a tiling relation �, which relates
paths of length two with the same source and the same target. If m : x −→ y1,
n : x −→ y2, p : y1 −→ z and q : y2 −→ z are four transitions, we write
diagrammatically

z

y1

p ==zzz
∼ y2

qaaDDD

x
m

aaDDD
n

==zzz
(1)

to indicate that m · p � n · q. We write ∼ for the smallest congruence (wrt concate-
nation) containing the tiling relation. This relation is called homotopy because it
should be thought as the possibility, when s and t are two homotopic paths, to
deform “continuously” the path s into t. From the concurrency point of view, an
homotopy between two paths indicates that these paths are the same up to re-
ordering of independent events, as in Mazurkiewicz traces. In the diagram (1), the
transition q is the residual (in the sense of rewriting theory) of the transition m
after the transition m, and similarly p is the residual of n after m; the event (also
called move) associated to a transition is therefore its equivalence class under the
relation identifying a transition with its residuals. In the asynchronous graphs we
consider, we suppose that given a path m ·p there is at most one path n ·q forming
a tile (1). We moreover require that a transition should have at most one residual
after another transition.

We consider formulas of the multiplicative and additive fragment of linear logic
(MALL), which are generated by the grammar

A ::= A`A | A⊗A | A&A | A⊕A | X | X∗

where X is a variable (for brevity, we don’t consider constants). The ` and &
(resp. ⊗ and ⊕) connectives are sometimes called negative or asynchronous (resp.
positive or synchronous). A position is a term generated by the following grammar

x ::= † | x` x | x⊗ x | &L x | &R x | ⊕L x | ⊕R x

The de Morgan dual A∗ of a formula is defined as usual, for example (A⊗B)∗ =
A∗ ` B∗, and the dual of a position is defined similarly. Given a formula A, we
write pos(A) for the set of valid positions of the formula which are defined induc-
tively by † ∈ pos(A) and if x ∈ pos(A) and y ∈ pos(B) then x` y ∈ pos(A`B),
x ⊗ y ∈ pos(A ⊗ B), &Lx ∈ pos(A & B), &Ry ∈ pos(A & B), ⊕Lx ∈ pos(A ⊕ B)
and ⊕Ry ∈ pos(A⊕B).

An asynchronous game G = (G, ∗, λ) is an asynchronous graph G = (V,E, s, t)
together with a distinguished initial position ∗ ∈ V and a function λ : E → {O,P}
which to every transition associates a polarity : either O for Opponent or P for
Proponent. A transition is supposed to have the same polarity as its residuals,
polarity is therefore well-defined on moves. We also suppose that every position x
is reachable from the initial position, i.e. that there exists a path ∗ −→→ x. Given a
game G, we write G∗ for the game G with polarities inverted. Given two games G
and H, we define their asynchronous product G‖H as the game whose positions
are VG‖H = VG×VH , whose transitions are EG‖H = EG×VH+VG×EH (by abuse of
language we say that a transition is “in G” when it is in the first component of the
sum or “in H” otherwise) with the source of (m,x) ∈ EG × VH being (sH(m), x)
and its target being (tH(m), x), and similarly for transitions in VG × EH , two
transitions are related by a tile whenever they are all in G (resp. in H) and the
corresponding transitions in G (resp. in H) are related by a tile or when two of
them are an instance of a transition in G and the two other are instances of a
transition in H, the initial position is (∗G, ∗H) and the polarities of transitions are
those induced by G and H.

To every formula A, we associate an asynchronous game GA whose vertices are
the positions of A as follows. We suppose fixed the interpretation of the free vari-
ables of A. The game GA`B is obtained from the game GA‖GB by replacing every
pair of positions (x, y) by x ` y, and adding a position † and an Opponent tran-
sition † −→ †` †. The game GA⊕B is obtained from the disjoint union GA +GB
by replacing every position x of GA (resp. GB) by &Lx (resp. &Rx), and adding
a position † and two Opponent transitions † −→ &L† and † −→ &R†. The games
associated to the other formulas are deduced by de Morgan duality: GA∗ = G∗A.
This operation is very similar to the natural embedding of event structures into
asynchronous transition systems [19]. For example, if we interpret the variable X
(resp. Y) as the game with two positions † and x (resp. † and y) and one transition

between them, the interpretation of the formula (X ⊗X∗) & Y is

&L(x⊗ x∗)

&L(x⊗ †)

55lllll
∼ &L(† ⊗ x∗)

iiSSSSS

&L(† ⊗ †)

iiRRRRR
55kkkkk

&Ry

&L†

OO

&R†

OO

†

iiSSSSSSSSSS

77nnnnnnn

We have made explicit the positions of the games in order to underline the fact that
they correspond to partial explorations of formulas, but the naming of a position
won’t play any role in the definition of asynchronous strategies.

A strategy σ on a game G is a prefix-closed set of plays, which are paths whose
source is the initial position of the game. To every proof π of a formula A, we
associate a strategy, defined inductively on the structure of the proof. Intuitively,
these plays are the explorations of formulas allowed by the proof. For example,
the strategies interpreting the proofs

π

` Γ,A,B
` Γ,A`B

[`] and

π

` Γ,A
` Γ,A⊕B

[⊕L]

will contain plays which are either empty or start with a transition † −→ † ` †
(resp. † −→ ⊕L†) followed by a play in the strategy interpreting π. The other
rules are interpreted in a similar way. To be more precise, since the interpretation
of a proof depends on the interpretation of its free variables, the interpretation
of a proof will be an uniform family of strategies indexed by the interpretation of
the free variables in the formula (as in e.g. [3]) and axioms proving ` A,A∗ will
be interpreted by copy-cat strategies on the game interpreting A. For the lack of
space, we will omit details about variables and axioms.

Properties characterizing definable strategies were studied in the case of alter-
nating strategies (where Opponent and Proponent moves should alternate strictly
in plays) in [15] and generalized to the non-alternating setting that we are con-
sidering here in [16,17]. We recall here the basic properties of definable strategies.
One of the interest of these is that they allow one to reason about strategies in
a purely local and diagrammatic fashion. It can be shown that every definable
strategy σ is

– positional : for every three paths s, t : ∗ −→→ x and u : x −→→ y, if s ·u ∈ σ, s ∼ t
and t ∈ σ then t · u ∈ σ. This property essentially means that a strategy is a
subgraph of the game: a strategy σ induces a subgraph Gσ of the game which
consists of all the positions and transitions contained in at least one play in σ,
conversely every play in this subgraph belongs to the strategy when the strat-
egy is positional. In fact, this graph Gσ may be seen itself as an asynchronous
graph by equipping it with the tiling relation induced by the underlying game:

the fact that games and strategies are mathematical structures of comparable
nature is conceptually appealing and technically useful in this setting.

– deterministic: if the graph Gσ of the strategy contains a transition n : x −→ y2
and a Proponent transition m : x −→ y1 then it also contains the residual of m
along n, this defining a tile of the form (1).

– receptive: if σ contains a play s : ∗ −→→ x and there exists an Opponent
move m : x −→ y in the game then the play s ·m : ∗ −→→ y is also in σ.

– total : if σ contains a play s : ∗ −→→ x and there is no Opponent transition
m : x −→ y in the game then either the position x is terminal (there is no
transition with x as source in the game) or there exists a Proponent transi-
tion m : x −→ y such that s ·m is also in σ.

2 Focusing in linear logic

In linear logic, a proof of the form depicted on the left-hand side of

π1

` A,B,C
` A`B,C

[`]
π2

` D
` A`B,C ⊗D

[⊗]

π1

` A,B,C
π2

` D
` A,B,C ⊗D

[⊗]

` A`B,C ⊗D
[`]

can always be reorganized into the proof depicted on the right-hand side. This
proof transformation can be seen as “permuting” the introduction of ⊗ after the
introduction of ` (when looking at proofs bottom-up). From the point of view
of the strategies associated to the proofs, the game corresponding to the proven
sequent contains †` †, † ⊗ †

†, † ⊗ †

p 66mmmm
∼ †` †, †

qhhQQQQ

†, †
m

hhQQQQQQ n

66mmmmmm

and the transformation corresponds to replacing the path m ·p by the path n · q in
the strategy associated to the proof. More generally, the introduction rules of two
negative connectives can always be permuted, as well as the introduction of two
positive connectives, and the introduction rule of a positive connective can always
be permuted after the introduction rule of a negative one. Informally, a negative
(resp. positive) can always be “done earlier” (resp. “postponed”). We write π ≺ π′
when a proof π′ can be obtained from a proof π by a series of such permutations
of rules.

These permutations of rules are at the heart of Andreoli’s work [6] which re-
veals that if a formula is provable then it can be found using a focusing proof
search, which satisfies the following discipline: if the sequent contains a negative
formula then a negative formula should be decomposed (negative phase), otherwise
a positive formula should be chosen and decomposed repeatedly until a (necessar-
ily unique) formula is produced (positive phase) – this can be formalized using a
variant of the usual sequent rules for linear logic. From the point of view of game
semantics, this says informally that every strategy can be reorganized into one
playing alternatively a “bunch” of Opponent moves and a “bunch” of Proponent
moves.

All this suggests that proofs in sequent calculus are too sequential: they contain
inessential information about the ordering of rules, and we would like to work with
proofs modulo the congruence generated by the ≺ relation. Semantically, this can
be expressed as follows. A strategy σ is courteous when for every tile of the form (1)
of the game, such that the path m · p is in (the graph Gσ of) the strategy σ, and
either m is a Proponent transition or p is an Opponent transition, the path n · q is
also in σ. We write σ̃ for the smallest courteous strategy containing σ. Courteous
strategies are less sequential than usual strategies: suppose that σ is the strategy
interpreting a proof π of a formula A, then a play s is in σ̃ if and only if it is a
play in the strategy interpreting some proof π′ such that π ≺ π′.

Strategies which are positional, deterministic, receptive, total, courteous and
satisfy the cube property (which enforces diagrammatically a variant of the domain-
theoretic stability property) are called ingenuous and are very well behaved: they
form a compact closed category, with games as objects and ingenuous strategies σ
on A∗‖B as morphisms σ : A → B, which is a denotational model of MLL,
which can be refined into a model of MALL by suitably quotienting morphisms.
Composition of strategies σ : A→ B and τ : B → C in this category is defined as
usual in game semantics by “parallel composition and hiding”: the plays in τ ◦ σ
are obtained from interactions of σ and τ , which are the plays on the game A‖B‖C
whose projection on A‖B (resp. B‖C) is in σ (resp. τ) up to polarities of moves,
by restricting them to A‖C. Associativity of the composition is not trivial to show
and relies mainly on the determinism property, which implies that if a play in τ ◦σ
comes from two different interactions s and t then there it also comes from a third
interaction u which is greater than both s and t wrt the prefix modulo homotopy
order.

3 Concurrent games
We recall here briefly the model of concurrent games [5]. A concurrent strategy ς
on a complete lattice (D,6) is a continuous closure operator on this lattice. Recall
that a closure operator is a function ς : D → D which is

1. increasing : ∀x ∈ D,x 6 ς(x)
2. idempotent : ∀x ∈ D, ς ◦ ς(x) = ς(x)
3. monotone: ∀x, y ∈ D,x 6 y ⇒ ς(x) 6 ς(y)

Such a function is continuous when it preserves joins of directed subsets. Infor-
mally, an order relation x 6 y means that the position y contains more information
than x. With this intuition in mind, the first property expresses the fact that play-
ing a strategy increases the amount of information in the game, the second that a
strategy gives all the information it can given its knowledge in the current position
(so that if it is asked to play again it does not have anything to add), and the
third that the more information the strategy has from the current position the
more information it has to deliver when playing.

Every such concurrent strategy ς induces a set of fixpoints defined as the set
fix(ς) = { x ∈ D | ς(x) = x }. This set is (M) closed under arbitrary meets and
(J) closed under joins of directed subsets and conversely, every set X ⊆ D of
positions which satisfies these two properties (M) and (J) induces a concurrent
strategy X• defined by X•(x) =

∧
{ y ∈ X | x 6 y }, whose set of fixpoints is pre-

cisely X.

Suppose that G is a game. Without loss of generality, we can suppose that G
is simply connected, meaning that every position is reachable from the initial po-
sition ∗ and two plays s, t : ∗ −→→ x with the same target are homotopic. This
game induces a partial order on its set of positions, defined by x 6 y iff there
exists a path x −→→ y, which can be completed into a complete lattice D by for-
mally adding a top element >. Now, consider a strategy σ on the game G. A
position x of the graph Gσ induced by σ is halting when there is no Proponent
move m : x −→ y in σ: in such a position, the strategy is either done or is waiting
for its Opponent to play. It can be shown that the set σ◦ of halting positions of an
ingenuous strategy σ satisfies the properties (M) and (J) and thus induces a con-
current strategy (σ◦)

•
. Conversely, if for every positions x, y ∈ D we write x 6P y

when y 6= > and there exists a path x −→→ y containing only Proponent moves,
then every concurrent strategy ς induces a strategy ς defined as the set of plays
in G whose intermediate positions x satisfy x 6P ς(x) – and these can be shown
to be ingenuous. This thus establishes a precise relation between the two models:

Theorem 1. The two operations above describe a bijection between the ingenuous
strategies on a game G and the concurrent strategies on the domain D induced by
the game G.

In this sense, concurrent strategies are close to the intuition of focused proofs:
given a position x, they play at once many Proponent moves in order to reach the
position which is the image of x.

However, the correspondence described above is not functorial: it does not
preserve composition. This comes essentially from the fact that the category is
compact closed, which means that it has the same strategies on the games inter-
preting the formulas A⊗B and A`B (up to the polarity of the first move). For
example, if X (resp. Y) is interpreted by the game with one Proponent tran-
sition † −→ x (resp. † −→ y), the interpretations of X∗ ` Y ∗ and X ⊗ Y are
respectively

x∗ ` y∗

x∗ ` †
77pppp
∼ †` y∗

gg

†` †
ggNNNN

77

†

OO

and

x⊗ y

x⊗ †

99

∼ † ⊗ y
neeLLL

† ⊗ †

ee
m

99sss

†

OO

Now, consider the strategy σ : X∗`Y ∗ which contains only the prefixes of the bold
path † −→→ (x∗ ` y∗) and the strategy τ : X ⊗ Y which contains only the prefixes
of bold path † −→→ (x ⊗ y). The fixpoints of the corresponding concurrent games
are respectively σ◦ = { †, † ` †, x∗ ` †, x∗ ` y∗ } and τ◦ = { x⊗ y }. From the
point of view of asynchronous strategies, the only reachable positions by both of the
strategies in X⊗Y are † and †⊗†. However, from the point of view of the associated
concurrent strategies, they admit the position x⊗y as a common position in X⊗Y .
From this observation, it is easy to build two strategies σ : A→ B and τ : B → C
such that ((τ ◦ σ)◦)

• 6= (τ◦)
• ◦ (σ◦)

•
(we refer the reader to [5] for the definition

of the composition of closure operators). In the example above, the strategy τ
is the culprit: as mentioned in the introduction, the two strategies on X and Y
should be independent in a proof of X ⊗ Y , whereas here the strategy τ makes
the move n depends on the move m. Formally, this dependence expresses the
fact that the move m occurs after the move n in every play of the strategy τ .
In [16], we have introduced a scheduling criterion which dynamically enforces
this independence between the components of a tensor: a strategy satisfying this
criterion is essentially a strategy such that in a sub-strategy on a formula of the
form A⊗B no move of A depends on a move of B and vice versa. Every definable
strategy satisfies this criterion and moreover,

Theorem 2. Strategies satisfying the scheduling criterion form a subcategory of
the category of ingenuous strategies and the operation σ 7→ (σ◦)

•
extends into a

functor from this category to the category of concurrent games.

This property enables us to recover more precisely the focusing property di-
rectly at the level of strategies as follows. Suppose that σ is an ingenuous strategy
interpreting a proof π of a sequent ` Γ . Suppose moreover that s : x −→→ y is a
maximal play in σ. By receptivity and courtesy of the strategy, this play is homo-
topic in the graph Gσ to the concatenation of a path s1 : x −→→ x1 containing only
Opponent moves, where x1 is a position such that there exists no Opponent transi-
tion m : x1 −→ x′1, and a path s2 : x1 −→→ y. Similarly, by totality of the strategy,
the path s2 is homotopic to the concatenation of a path s′2 : x1 −→→ y1 containing
only Proponent moves, where y1 is a position which is either terminal or such that
there exists an Opponent transition m : y1 −→ y′1, and a path s′′2 : y1 −→→ y.
The path s′2 consists in the partial exploration of positive formulas, one of them
being explored until a negative subformula is reached. By courtesy of the strategy,
Proponent moves permute in a strategy and we can suppose that s′2 consists only
in such a maximal exploration of one of the formulas available at the position x.
If at some point a branch of a tensor formula is explored, then by the schedul-
ing criterion it must be able to also explore the other branch of the formula. By
repeating this construction on the play s′′2 , every play of σ can be transformed
into one which alternatively explores all the negative formulas and explores one
positive formula until negative formulas are reached. By formalizing further this
reasoning, one can therefore show that

Theorem 3. In every asynchronous strategy interpreting a proof in MALL is in-
cluded a strategy interpreting a focusing proof of the same sequent.

A motivation for introducing concurrent games was to solve the well-known
Blass problem which reveals that the “obvious” game model for the multiplicative
fragment of linear logic has a non-associative composition. Abramsky explains
in [1] that there are two ways to solve this: either syntactically by considering a
focused proof system or semantically by using concurrent games. Thanks to asyn-
chronous games, we understand here the link between the two points of view: every
proof in linear logic can be reorganized into a focused one, which is semantically
understood as a strategy playing multiple moves of the same polarity at once,
and is thus naturally described by a concurrent strategy. In this sense, concurrent

strategies can be seen as a semantical generalization of focusing, where the nega-
tive connectives are not necessarily all introduced at first during proof-search. It
should be noted that some concurrent strategies are less sequential than focused
ones, for example the strategies interpreting the multi-focused proofs [8], where
the focus can be done on multiple positives formulas in the positive phase of the
focused proof-search. Those multi-focused proofs were shown to provide canonical
representatives of focused proofs (the interpretation of the canonical multi-focused
proof can be recovered by generalizing Theorem 3). We are currently investigating
a generalization of this result by finding canonical representatives for concurrent
strategies.

The author is much indebted to Paul-André Melliès and Martin Hyland.

References

1. S. Abramsky. Sequentiality vs. concurrency in games and logic. Mathematical Struc-
tures in Computer Science, 13(04):531–565, 2003.

2. S. Abramsky, D.R. Ghica, A.S. Murawski, and L. Ong. Applying game semantics to
compositional software modeling and verification. LNCS, pages 421–435, 2004.

3. S. Abramsky and R. Jagadeesan. Games and Full Completeness for Multiplicative
Linear Logic. The Journ. of Symb. Logic, 59(2):543–574, 1994.

4. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Informa-
tion and Computation, 163(2):409–470, 2000.

5. S. Abramsky and P.-A. Melliès. Concurrent games and full completeness. In LICS,
volume 99, pages 431–442, 1999.

6. J.M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

7. A. Blass. Degrees of indeterminacy of games. Fund. Math, 77(2):151–166, 1972.
8. K. Chaudhuri, D. Miller, and A. Saurin. Canonical Sequent Proofs via Multi-

Focusing. In International Conference on Theoretical Computer Science, 2008.
9. P.L. Curien. Definability and Full Abstraction. Electronic Notes in Theoretical

Computer Science, 172:301–310, 2007.
10. D.R. Ghica and A.S. Murawski. Angelic Semantics of Fine-Grained Concurrency. In

FoSSaCS, pages 211–225, 2004.
11. M. Hyland and L. Ong. On Full Abstraction for PCF: I, II and III. Information and

Computation, 163(2):285–408, December 2000.
12. A. Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des Sciences

Mathématiques du Quebec, 1(4):46–52, 1977.
13. J. Laird. A game semantics of the asynchronous π-calculus. Proceedings of 16th

CONCUR, pages 51–65, 2005.
14. P.-A. Melliès. Asynchronous games 2: the true concurrency of innocence. In Proc.

of the 15th CONCUR, number 3170 in LNCS, pages 448–465, 2004.
15. P.-A. Melliès. Asynchronous games 4: a fully complete model of propositional linear

logic. Proceedings of 20th LICS, pages 386–395, 2005.
16. P.-A. Melliès and S. Mimram. Asynchronous Games: Innocence without Alternation.

In Proc. of the 18th CONCUR, volume 4703 of LNCS, pages 395–411, 2007.
17. S. Mimram. Sémantique des jeux asynchrones et réécriture 2-dimensionnelle. PhD

thesis, PPS, CNRS–Univ. Paris Diderot, 2008.
18. G.D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5(3):223–255, 1977.
19. G. Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in Com-

puter Science, volume 3, pages 1–148. Oxford University Press, 1995.

	Focusing in Asynchronous Games
	Samuel Mimram

