
Set-based Simulation for Design and Verification
of Simulink Models

Olivier Bouissou, Samuel Mimram, Baptiste Strazzulla
CEA, LIST, Gif-sur-Yvette, France
Email: firstname.lastname@cea.fr

Alexandre Chapoutot
ENSTA ParisTech, Palaiseau, France

Email: alexandre.chapoutot@ensta-paristech.fr

Abstract—Model-based design is a widely used methodology
for the development of embedded critical software, such as
a discrete controller for a continuous plant. In this setting,
numerical simulation of both the plant and the controller plays
a crucial role, since it is used to validate the design choices in
the early stages of development. However, classical numerical
simulation has inherent limitations: it is of limited precision
and cannot deal with the intrinsic non-determinism present in
complex systems. In this article, we present a tool named HySon
that overcomes these drawbacks. It takes as input a Simulink
model of a control-command system with non-deterministic
uncertainties and automatically computes flow-pipes that contain
all possible trajectories of the system. We show on some examples
how HySon can be used to improve the quality of model-based
design.

I. INTRODUCTION

The typical workflow for embedded software development
generally involves at least two teams of engineers, respectively
developing the hardware system and the software. For example,
during the elaboration of a control-command software, the first
team designs the controller, while the second one implements
the resulting algorithm on a specific hardware target. We have
presented in Figure 1 a simplified workflow model as it can
be found in DO178 compliant aeronautics development [14].
In order to reduce the time-to-market and to increase the
confidence in the developments both teams use tools to help
them. Usually, at system level, Matlab/Simulink is used to
describe and simulate both the physical plant and the controller
in a uniform model. At the software level, the SCADE Suite is
often used because its code generator is qualified for software
up to DAL-A level. The development process for the software
is thus generally much more rigorous than the development
process for the system, while verification and validation of the
software with respect to system requirements are needed.

A large number of bugs in software is caused by bad
specification of requirements, which occurs early in the devel-
opment process. It is therefore crucial to ensure that all corner
cases have been correctly addressed at the model level. This is
usually done by performing many simulations, with the hope
of covering the majority of typical behaviors of the system
depending on its parameters: those parameters are generally
uncertain, i.e. the specification does not give their precise
value but only a range in which they should lie. However,
it cannot be ensured that all the cases have been considered
since parameters usually lie in an infinite domain. Starting
from this observation, we have developed a tool named HySon,
whose aim is to analyze Simulink models used by system
engineers to discover bugs or to validate the control algorithms

System

Software

System requirements

High-level requirements

Model (Arch. + LLR)

Source code

Object code

Verification of
object code
with HiLR

Review of
source code

Model
validation

Figure 1: Simplified life-cycle in model-based development.

early in the development process: instead of performing lots
of simulations, it can compute an over-approximation of all
the possible behaviors resulting from (possibly infinite) sets
of parameters in one simulation pass. The correct-by-design
simulation process has been achieved by an in-depth adaptation
of classical simulation algorithms, such as those implemented
in Simulink, in order to convert them to set-based simulation,
which is able to manipulate sets of trajectories.

The rest of this article is organized as follows: in Section II
we present our method on a simple yet realistic example, in
Section III we describe our tool and in Section IV we give
some details on the mathematical foundation of our method.
Finally, Section V shows the various usages one can make of
HySon on some examples.

II. A MOTIVATING EXAMPLE

We motivate our approach on a simple yet representative
example of a controller and show how HySon can be used to
increase the confidence in the controller design. We consider
a cruise-control system. The plant is a simple model of a
vehicle moving horizontally on a road with some friction. The
dynamics of the speed v is given by v̇ = (u− b v) /m where u

is the power given by the engine, m is the mass of the vehicle,
b is the friction of the road and v̇ is the derivative of v with
respect to time t. The controller acts on the power u in order
for the vehicle to reach a user-specified speed vr. We chose to
use a discrete PI (proportional-integrator) controller given by:
u(tk) = kp · (vr − v(tk)) + ki · h ·

∑k
i=0(vr − v(ti)) where kp and

ki are respectively the proportional and integral gains, and the

Figure 2: Simulink representation of the cruise-control model.
The gray blocks represent the continuous plant system.

tk are the sampling instants given by tk = k h where h is the
sampling rate. Figure 2 shows the Simulink implementation of
this system. It should be noted that the sensor block on the
left converts a continuous signal into a discrete one.

In a classical model-based design approach, the design
choices for the controller (the choice of a PI controller, and of
the parameters kp and ki) are validated by running some simu-
lations of the system for various values of vr, and verifying that
in each case the high level specifications (maximum overshoot,
settling time, etc.) are verified. We see three limitations to this
method. First, in this setting, only a finite number of input
values vr can be tested. However, the driver may choose any
value for vr within a known range. Classically, the extreme
values of vr are tested plus some random values in the full
range, but this does not ensure a sufficient coverage for the
tests cases, as pointed out in [14, Chap 9.2]. Second, when the
plant is designed, it is assumed that the mass of the vehicle,
for example, is perfectly known. This is often not the case,
especially when such physical components are supplied by
an external partner: such physical parameters are generally
only known up to some precision, and a small variation of
a parameter may greatly change the dynamics of the plant
(especially for complex non-linear dynamics). The simulation
of the plant with one value m for the mass of the vehicle may
thus not be significant if the real mass is 1.01×m (i.e. there was
a 1% error). Finally, the sensor block in this system samples
its continuous input signal at a constant rate. It models a perfect
sensor that does not introduce any measurement noise, which
is not realistic since sensors tend to add random noise, thus
perturbing the controller scheme.

When we face only one such uncertainties, Monte-Carlo
simulations may offer a good level of confidence in a reason-
able time. However, when various sources of uncertainties are
combined, the number of simulations required to get a good
coverage of all cases is exponential, and random simulations
can no longer be used. The solution we are advocating for in
this paper is set-based simulation. To wit, it is a way to perform
exhaustive testing of the system by adapting the simulation
algorithm to propagate sets of values instead of simply values
(represented as floating-point numbers). For example, consider
an uncertain mass for the vehicle, and assume that the mass
lies within the range [990, 1010]. Using HySon, we can run the
simulation of the system without having to randomly chose one
value of the mass in this range: we automatically propagate the
whole interval. The result of this set-based simulation is then

Figure 3: Blocks introducing a uniform noise in a sensor.

a sequence of sets (in details, they are encoded affine forms,
see Section IV) that contain all the possible values for one
random simulation at each simulation time.

On our cruise-control example, we run HySon with two
uncertain parameters: the input value vr is within the range
[12, 15] and the mass of the vehicle is within the range
[990, 1010]. We also modified the sensor block to introduce
a 10% random noise: at each sampling time, the measured
value vd is vd = (1 + α)v where α ∈ [−0.1, 0.1]. To do this
in Simulink, we only have to replace the Sensor block of
Figure 2 with the blocks of Figure 3, and set the parameter
of the Gain block to the interval [−0.1, 0.1]. Note there is a
difference about what uncertainty means for the parameters m
or vr, and the noise: the first are uncertain but constant during
a whole simulation, while the noise takes a new value at each
simulation step. This kind of difference is taken into account
and handled by HySon. Figure 4 shows the upper and lower
limits of the sets obtained for one simulation in HySon, as
well as 3000 random simulations in Simulink. As shown by
this example, the set-based simulation proposed by HySon is
both complete (it runs all simulations at once) and precise (it
does not introduce much pessimism, i.e. over-approximations
in the set of possible trajectories). Remark that using HySon,
we could analyze the effect of sensor noise on the controller
without any other assumptions on the value of this noise than
its bounds. In particular, we did not assume any probability
distributions on the noise as such assumptions are difficult to
prove.

Figure 4: Result of HySon on the uncertain cruise-control
system: the dark thick lines are the bounds computed by HySon
while the gray dots are random simulations in Simulink.

III. SOFTWARE ARCHITECTURE

The overall architecture of HySon is depicted in Figure 5.
The tool takes as input two kinds of programs: either a
Simulink model or a program written in the special hybrid
language named “ODE”. The source program is parsed in order

Simulink

ODE

Hybrid IR Imperative Optim.

Interpreter

Native

Figure 5: HySon architecture: both languages Simulink and
ODE are compiled into a single intermediate representation,
optimized, and executed.

to generate an intermediate representation, which roughly con-
sists of a sequence of equations. This transformation follows
the operational semantics of Simulink, as described in [3].
Currently, the parser handles many of the commonly-used
blocks, both continuous and discrete and has been extended
since [3] with a fully-fledged integrator (reset and saturation),
subsystems and signal routing. HySon handling uncertain
parameters, the parser supports ranges in addition to usual
floating-point parameters. Those improvements required a fix-
point equation to determine the dimension of a signal and
a mix of two different orders of evaluation to handle the
reset and external initialization. This representation is then
transformed into an imperative program resulting from the
implementation of the integration scheme and zero-crossing
algorithm, as described in Section IV. Various optimization
passes are then performed on the resulting program such as
constants propagation, dead code elimination, etc. Finally, the
program can be executed directly using a built-in interpreter, or
native code can be emitted (currently by compiling a generated
OCaml program).

We now quickly present the ODE language, as well as the
Simulink parser and the difficulties that had to be overcome
during its elaboration.

ODE language. A dynamical system is easily described in
our ODE language, which offers a way to provide a textual
description of dynamical systems. A program in this language
consists of a list of equations of the form v=e where v is a
variable name and e is an arithmetic equation. Each variable
represents a signal, i.e. a (discrete or continuous) function
of time, whose values can either be reals or booleans. For
example, the meaning of z=x+y is that x, y and z are signals
such that z(t) = x(t)+y(t) holds at each instant t. Special kind
of equations can be used in order to define the dynamics of the
system. First, differential equations are expressed by defining
the derivative of a variable over time as the value of some
expression: we write it v’=e where v is a variable and e is
an arithmetic expression. In this case, the initial value of the
variable v must be specified using the syntax init v = v0.
Second, discrete events are defined using the syntax on(b)
do {s} where b is a boolean expression and s is a sequence
of simple equations. For example, the event on(z<=0) do
{v=-v} represents the bouncing of a ball on the floor: as soon
as the ball hits the floor (its altitude z is 0), its speed gets
reversed. An example of ODE program is given in Figure 6,
which describes the classical bouncing-ball system [20].

Simulink parser. If the ODE language is useful for experi-
menting with small examples, real-world applications are often

init v = 15.;
init z = [10.,10.2];
Initial value of z is unknown in [10,10.2]
gravity = -9.81;
elasticity = 0.8;
v’ = gravity;
z’ = v;
on z < 0 do { v = -elasticity*v; z = 0; };
output (z);

Figure 6: ODE implementation of the bouncing ball.

coded in Simulink. We thus implemented a frontend which
translates Simulink models into our intermediate representa-
tion. In order to do so, the blocks are sorted according to
the links given between the blocks, in order to determine the
order in which they are going to be evaluated. When cycles
occur in the diagram, those must contain integrator blocks
(algebraic loops are not allowed in HySon) which indicate
where they should be broken, as explained below. Potentially,
external initial conditions must be evaluated first and the state
ports require to have the integrator block evaluated twice. In
addition, we also consider the Initial Condition block which
behaves as a source during initialization and as a link by just
conveying its input otherwise. To handle all these special cases,
two orders actually co-exist: one for the initialization phase and
one for the simulation phase.

Using these orders, we can also propagate dimensions
through each links to handle mux/demux blocks. To do that, we
create a special fixpoint equation that determines the dimension
of each link and solve it using a Kleene iteration. Note that
we could have used Matlab to obtain the evaluation order and
dimensions, but we chose to re-implement the sorting and the
dimension algorithms so that HySon can be used independently
from Matlab. Using the order of evaluation and the dimension
of links, we can then translate the model into the formalism
specific to HySon and then simulate the model.

The evaluation of the integrators (continuous and discrete)
is among the most important part of the simulation process,
and its implementation is quite subtle since those blocks
are highly configurable. Two main features of the integrator
blocks are saturation (which allows to not take the input in
account as long as the output is above or below a certain
threshold), and the reset of the internal state of the integrator.
The saturation mechanism is implemented by internally adding
a zero-crossing event (see Section IV): when the output is
above the threshold and the input is positive, the integrator
integrates zero instead of the input, until the input becomes
negative (the situation where the output is below the threshold
is similar). The reset operation in Simulink uses the state port,
which is a second output whose value is equal to the output
of the integrator except when a reset occurs. It is mainly
used to break algebraic loops, since the condition to reset
the integration can potentially depend on its own output. For
continuous integration, the zero-crossing detection handles that
case, but for discrete-time integration, which is sequential, the
integrator has to first emit its result through the state port and
then check, once every blocks it depends on are evaluated, if
the condition is met before outputting an appropriate result.

A large effort has been made to handle most of the options
of integrator blocks (including different kinds of integration
scheme for discrete-time integrators) so that HySon can be
used on many models without requiring modifications. Note
that other parsers of Simulink models exist, in particular
the Gene-auto parser [22]. Our tool handles a larger set of
Simulink blocks, including continuous blocks such as the
integrator block while Gene-auto focuses on discrete time
models.

In the rest of this article, we only present examples in
the ODE language or as differential equations, since those are
more readable on paper, but our tool could of course takes as
input the same systems written in Simulink.

IV. GUARANTEED SET-BASED SIMULATION

The foundations of the tool HySon are based on a series
of previous works by the authors. First, an operational se-
mantics of a realistic subset of Simulink language, involving
both continuous- and discrete-time blocks, was rigorously
defined [3]. This semantics was then extended in order to
deal with uncertainties, modeled as parameters lying in interval
values, hence showing that the simulation engine of Simulink
could be adapted in order to compute with sets of values [5].
Finally, classical numerical integration methods (RK4, ODE23,
etc.) were adapted in order to compute a safe enclosure of the
solution of an ordinary differential equation [4]. We recall here
the main ingredients on which the set-based simulation used
in HySon is based.

Problem to solve. A Simulink model is associated to a hybrid
dynamical system of the simplified form:

ẏ = fc(y,xn, u) continuous-time function (1a)
xn+1 = fd(y,xn, u) discrete-time function (1b)

z = g(y,xn, u) output function (1c)

with x (resp. y) the discrete (resp. continuous) states of the
model, u being the input, and y the output. The time derivative
of y is denoted by ẏ = dy

dt
. The simulation, i.e. the numerical

resolution of Equations (1), uses an iterative method which
successively evaluates Equations (1c), (1b) and (1a). The main
idea of the simulation algorithm, see [3] for further details,
is: at iteration n, from the states yn, xn and the input un

the algorithm computes an output zn and updates the internal
states y and x which will be used in the next iteration. In
case of Equation (1a), the value for y at next considered
instant is computed using a numerical integration algorithm.
It is often the case for complex, industrial systems that some
parameters are uncertain (for example the mass of the vehicle
in the introductory example). We model these uncertainties by
allowing the functions fc and fd to depend on some uncertain
parameters. In other words, we consider the system

ẏ = fc(y,xn, u, pc) (2a)
xn+1 = fd(y,xn, u, pd) (2b)

z = g(y,xn, u) (2c)

where pc and pd are formal, unknown but bounded parameters.
We assume that we are given sets of possible values for these
parameters: pc ∈ Pc and pd ∈ Pd. Each choice of the unknown
parameters pc and pd gives rise to a new dynamical system
which, when simulated, produces an output signal z. The goal

of HySon is to compute efficiently and precisely an over-
approximation of all the signals z for every possible value
of the unknown parameters in Pc and Pd. This is what we
call set-based simulation, that uses the same algorithms as for
numerical simulation but the functions in Equation (2) and the
numerical methods are extended to manipulate sets of values.
The second use of HySon is to compute guaranteed set-based
simulation, in which the tool computes an over-approximation
of the mathematical solution of Equations (2) rather than of
their numerical simulation. This can be used to safely compute
bounds on the trajectories of the physical system represented
by the equations. In the rest of this section, we detail the
methods used to achieve these goals. First, we present our
encoding for sets of values, based on the notion of affine
forms [15].

Computing with sets of values. In order to represent sets
of values, we use affine arithmetic [9] which can be seen as
a much improved interval arithmetic which is able to track
linear correlations between the variables of the model. We
chose this domain because it can represent sets of values
quite accurately, in a compact way, and usual operations
can reasonably be computed on those. A set of values in
this domain is represented by an affine form â, which is a
formal expression of the form â = α0 +

∑n
i=1 αiεi where the

coefficients αi are real numbers, α0 being called the center of
the affine form, and the εi are formal variables ranging over
the interval [−1, 1]. Obviously, an interval a = [a1, a2] can be
seen as the affine form â = α0 + α1ε with α0 = (a1 + a2)/2 and
α1 = (a2−a1)/2. All classical operations (addition, subtraction,
multiplication, ...) are defined over affine forms. For instance,
given x̂ = x0 +

∑n
i=1 xiεi and ŷ = y0 +

∑n
i=1 yiεi, their sum and

product are computed using the following formulas:

x̂+ ŷ = x0 + y0 +
n∑
i=1

(xi + yi)εi

x̂× ŷ = x0y0 +
n∑
i=1

(x0yi + y0xi)εi +Rεn+1

where εn+1 is a new noise symbol introduced to represent the
over-approximation performed by the linearisation of the mul-
tiplication, and R =

(∑n
i=1 |xi|

)
×
(∑n

i=1 |yi|
)
. This arithmetic

reduces the impact of the dependency problem of interval
arithmetic, e.g. if a = [1, 2] and we compute a − a the result
in interval arithmetic is [−1, 1] while with affine arithmetic is
0, see [5] for more details. We use this arithmetic to both
simulate and safely solve Equations (2). These operations rely
on a rather simple algorithm that we detail next.

Set-based numerical simulation. Given a system given by
Equations (2) with an initial state given by two affine forms
ŷ0 and x̂0, the following algorithm computes a sequence of
affine forms ŷn and x̂n:

Input: x̂0, ŷ0, t0, h;
n = 0;
loop until tn ≥ tend

evaluate g(ŷn, x̂n, u)

compute x̂n+1 = fd(ŷn, x̂n, u,Pd)

ŷn+1 = solve ode
(
ẏ(t) = fc(y(t), x̂n,Pc), ŷn, h

)
ŷn+1 = solve zc(ŷn, ŷn+1)

n = n+ 1; tn+1 = tn + h

This algorithm depends on two functions: solve ode and
solve zc. solve ode computes the next value of the con-
tinuous variables given the current value ŷn, the ODE and the
chosen step-size h. Note that efficient algorithms also modify
the step-size according to user-defined tolerances, but we here
only give a simplified version that keeps the step-size constant,
see [5] for further details on variable step-size. The second
function, solve zc, detects and applies special events that
occur between two discretization instants. Depending on the
chosen implementation for these two functions (guaranteed or
not), we either obtain a set-based simulation or a guaranteed
set-based simulation algorithm.

Set-based numerical integration. The main algorithms used
to perform numerical integration of ODEs are explicit Runge-
Kutta methods [21]. For example, Heun method defines ŷn+1

from x̂n and ŷn as:

k̂1 = fc(ŷn, x̂n,Pc)

k̂2 = fc(ŷn + hk̂1, x̂n,Pc)

ŷn+1 = ŷn + h
2

(k̂1 + k̂2)

The evaluation of such scheme using affine form arithmetic
produces a tight enclosure of all the simulations one would
perform for any uncertain parameter, even for stiff non-linear
dynamics.

EXAMPLE 1. Let us consider the evolution of a quadrotor
(some form of helicopter lifting system with four rotors), which
is a continuous system with 12 variables with a highly non-
linear dynamics (due to the presence of numerous trigonomet-
ric operations) given by the following equations [2]:

φ̇1 = φ2 φ̇2 = θ2ψ2a1 + θ2a2Ωr + b1u2

θ̇1 = θ2 θ̇2 = φ2ψ2a3 − φ2a4Ωr + b2u3

ψ̇1 = ψ2 ψ̇2 = θ2φ2a5 + b3u4
ż1 = z2

ż2 = g − u1 cos(θ) cos(φ)/m

ẋ1 = x2

ẋ2 = u1 (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)) /m

ẏ1 = y2

ẏ2 = u1 (cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)) /m

(3)

with

Ω1 = αzcz + αθcθ − αψcψ Ω2 = αzcz − αφcφ + αψcψ

Ω3 = αzcz − αθcθ − αψcψ Ω4 = αzcz + αφcφ + αψcψ

Ωr = β (Ω2 + Ω4 − Ω1 − Ω3)

u1 = γ (Ω1 + Ω2 + Ω3 + Ω4) u2 = γ (Ω4 − Ω2)

u3 = γ (Ω1 − Ω3) u4 = β (Ω2 + Ω4 − Ω1 − Ω3)

a1 = (Iyy − Izz)/Ixx a2 = Jr/Ixx

a3 = (Izz − Ixx)/Iyy a4 = Jr/Iyy

a5 = (Ixx − Iyy)/Izz b1 = l/Ixx

b2 = l/Iyy b3 = 1.0/Izz

(4)

with constants

αz = 7987.2 β = 7.5 · 10−7

αθ = αφ = 34727.0 γ = 3.13 · 10−5

αψ = 333333.3

Figure 7: Altitude z in the quadrotor example 1.

where Ixx, Iyy, Izz (inertia moments), Jr (rotor inertia) and l

(distance to center) are physical constants of the engine, and
the continuous controller is given by

cz = 1.0− 0.23 (100(zr − z)− 20z2) /(cos(φ) cos(θ))

cφ = 0.8 (φr − φ)− 0.4φ2

cθ = 1.2 (θr − θ)− 0.4θ2

cψ = (ψr − ψ)− 0.4ψ2

(5)

We consider here an instance of the system with the following
uncertain parameters:

• the initial value for z is in [0, 0.1],

• the reference value zr for z is in [1, 2],

• the physical parameters of the system are uncertain:
the inertial moments Ixx and Iyy are in [0.007, 0.012],
Izz ∈ [0.01, 0.02] and l ∈ [0.2, 0.3].

We simulated this system using HySon up to 5 seconds, and
at the end of the simulation we got z ∈ [1.09445, 2.0945] (the
output of the simulation is shown in Figure 7). The simulation
took 24.64s. We also ran 1000 Monte Carlo simulations of
the system and got, in 99.79s, an interval of [1.09446, 2.0918].
This demonstrates both the efficiency and the precision of our
simulation engine, even for highly non-linear systems.

Guaranteed set-based numerical integration. The previous
Heun method computes a value ŷn+1 from ŷn that approximates
the set of values

Yh =
{
y(h) | ẏ(t) = fc(y(t), xn, pc), y(0) ∈ ŷn, xn ∈ x̂n, pc ∈ Pc

}
Yh is the set of values of the solution of the ODE (2a) for
any initial value in ŷn, any constant value for xn ∈ x̂n and
any parameter pc ∈ Pc. We thus have ŷn+1 ≈ Yh. The goal
of a guaranteed set-based numerical integration is to solve
Equation (2a) so that we obtain an affine form Ŷn+1 enclosing
the solution Yh: we want Yh ⊆ Ŷn+1. To do so, we have to
bound the error introduced by numerical integration method
and we showed, in [4] for the class of explicit Runge-Kutta
integration methods (including the Heun method described
above), that it can be done by bounding the remainder of
a suitable Taylor series. Based on [4], HySon can solve
Equation (1) with different guaranteed numerical integration
methods which makes it more adaptable to the different kinds
of differential equations used to model plants.

For example, if we consider Heun solver again, we may
write ŷn+1 as ŷn+1 = Φ(ŷn, h) where Φ is the function

Φ :


Rm × R+ → Rm

(y, t) 7→ y + t
2

(
fc(y, x̂n,Pc)

+fc(y + t · fc(y, x̂n,Pc), x̂n,Pc)
)

Then, if we write φ(t) = Φ(ŷn, t), we have that

ŷn+1 − Yh ⊆
h3

6

(
dφ3

dt3
([0, h])−

df2c
dt2

(ŷ, x̂n,Pc)

)
(6)

where ŷ is an affine form over-approximating the set of values
of the solution to the differential equation between time 0 and
h. This set is computed using Picard iteration as in [19], [4],
and an evaluation of (6) then gives a precise and sound bound
on Yh.

Set-based zero-crossing events. In some cases, the
continuous-time dynamics is made of several modes. As a
simple example, consider a mass-spring system with two
different stiffness coefficients depending on the position of the
mass as depicted in Figure 8: the stiffness of the spring is k1
when the mass is close to the wall and k2 otherwise.

The switching between the two modes is usually detected
by looking at the sign of a function, named zero-crossing
function. In the case of the mass-spring system this function
could be positive if the position of the mass is between the
wall and the length `, negative otherwise, and the switching
instant is given when the function is zero. A challenge for the
simulation engine is to detect this kind of event, named state-
event or zero-crossing event, since the time when they occur is
not known a priori, contrarily to the time-events associated to
the sampling rate of discrete-time sub-systems which is fixed
throughout the simulation.

To handle state-events in our simulation framework, we
extend Equations (1) to take zero-crossing functions in ac-
count. More precisely, we extend the mathematical model of
the continuous-time dynamic, with a zero-crossing function v,
such that

ẏ =

{
fc,1(y,xn, u) if v(y) ≤ 0

fc,2(y,xn, u) otherwise
with y(0) = y0, v(y0) < 0

The dynamic of the continuous-time systems follows fc,1 until
v equals to zero, and then it follows fc,2 (we have described
systems with only two modes for simplicity but the general
case with possibly more modes is similar). In this case,
the simulation algorithm must detect and locate the exact
time when the function v is zero. Note that to respect all
the hypotheses under which the solution of the continuous
dynamics exists, the simulation treats this problem in two
steps: first numerically integrate the ODE and then solve the

m

k1

`

k2

Figure 8: A mass-spring system with two different stiffness.

equation v(y(t)) = 0 that is find the time instant where v is
zero.

The classical numerical approach to deal with this kind
of equations is to use an interpolation polynomial p in order
to approximate the solution y and find the zeros of v. In
consequence, we need to solve v(p(t)) = 0 instead of v(y(t)) = 0

with a bisection-like algorithm. Note that the polynomial ap-
proximation avoids the use of numerical integration methods,
which are computationally expensive, to find zeros of v, which
depends on y, and then increases the performance of the
simulation. We recall the main steps of this method to facilitate
the understanding of our contribution on this particular feature
in the set-based simulation framework. Assume that we follow
the dynamic ẏ = fc,1(y,xn, u) and we want to detect an event
associated to the zero-crossing function v. After a successful
numerical integration between instants tn and tn+1, we have
the available information: at instant tn we know the solution
yn, and at instant tn+1 we know yn+1. To detect an event
we compute v(yn) and v(yn+1) and we compare the signs
of these two results. If the sign is different then an event is
detected. Note that this approach is not safe as for example
the function v may change its sign twice during the integration
step, see [23] for further explanations. If an event is detected
then the simulator looks for the precise time when the event
occurs, i.e. when v is zero. To do so, it uses an Hermite-
Birkhoff approximation which from yn, yn+1 and fc,1(yn) and
fc,1(yn+1) defines the polynomial function

p(t) = (2τ3 − 3τ2 + 1)yn + (τ3 − 2τ2 + τ)hfc,1(yn)

+ (−2τ3 + 3τ2)yn+1 + (τ3 − τ2)hfc,1(yn+1) (7)

with τ = (t− tn)/h and h = tn+1− tn. This polynomial function
is then used in a iterative algorithm to solve v(p(t)) = 0.

We can adapt the previous algorithm to deal with uncer-
tainties using affine arithmetic for evaluating the function v

and the interpolation polynomial p, hence we have a set-based
detection of zero-crossing event. The detection of the event
is translated into a comparison of signs between the affine
evaluations of v with ŷn at time tn and ŷn+1 at time tn+1,
note this approach is still not safe. The enclosure of the time
instants of the zero-crossing events still uses a bisection-like
algorithm using the affine evaluations of p, see [5]. We now
deal with a continuum of zero-crossing events instead of one
single event. This induces different situations in the detection
of zero-crossing event depicted in Figure 9. In Case a, the
whole set of trajectories generates a set of zero-crossing event
then we have to enclose an interval of times associated to it.
In Case b, a part of the trajectories generates a zero-crossing
event while the other part not. In that case, we can split the set
of trajectories in two subsets and continue the simulation with
each subset. An other solution is to continue the simulation by
gathering all the values generated by the integration until all
the trajectories stop generating an zero-crossing event and then
post-process the list of values to enclose the time associated
to the zero-crossing event. In Case c, due to the pessimism of
the affine arithmetic, we may detect some spurious events that
we detect events that are not in the real system. In that case,
the algorithm used to compute the enclosure of the time of the
zero-crossing event should detect the absence of event.

We propose in this article to adapt this approach in order

Case a

v(y)

t
tn

tn+1

Case b

v(y)

t
tn tn+1

Case c

v(y)

t
tn tn+1

Figure 9: Three cases for zero-crossing events. Exact trajec-
tories are depicted in dark gray, the over-approximated flow
pipes in light gray.

to guarantee the detection of event and the computation of the
time when zero-crossing event occurs.

Guaranteed set-based zero-crossing events. The challenge
in defining a guaranteed detection of zero-crossing event is
twofold, the detection of the event must be guaranteed and
the computation of the enclosure of time instants must also be
guaranteed. We explain in the sequel our contribution on these
two challenges.

We guarantee the detection of the occurrence of a zero-
crossing event by using the result of a Picard iteration. Recall
that the Picard iteration produces an enclosure of the solution
ŷ of ẏ = f(y,xn, u) on the time interval [tn, tn+1]. So evaluating
with affine arithmetic v with ŷ produces a safe enclosure of the
behavior of v on the interval [tn, tn+1] hence if zero is in the
result of this evaluation then we guarantee the presence of at
least one event. Note also that due to the pessimism of affine
evaluation, we can detect spurious events but the method is
safe.

We guarantee the computation of the zeroes of v by
defining a safe interpolation polynomial. The idea is to bound
the interpolation error in order to safely enclose the solution y

between to integration time instants and use this safe interpo-
lation to find an enclosure of the time at which the dynamics
changes. Suppose given ŷn, ŷn+1, fc,1(ŷn) and fc,1(ŷn+1) as
affine forms, we can define the polynomial function as in
Equation (7). We know that the interpolation error, that is
the maximal distance between the interpolation polynomial
function and the exact function, is

y(t;y0)− p(t) =
y(4)(ξ)

4!
(t− tn)2(t− tn+1)2 with ξ ∈ [t0, tn]

which can be reformulated as

y(t;y0)− p(t) =
f (3)(ξ,y(ξ))

4!
(t− tn)2(t− tn+1)2

with ξ ∈ [tk, tk+1]. In other words, we can express the interpola-
tion error in terms of the derivatives of f the function defining
the continuous dynamics. In consequence, to guarantee the
polynomial interpolation, it is enough to know an enclosure
ŷ of the solution y(t) of IVP on the interval [tk, tk+1]. And
fortunately, we can reuse the result of the Picard operator in
that context, that is the meaning of Theorem 1.

THEOREM 1. Let p̂(t) be the interpolation polynomial based
on guaranteed solutions ŷn and ŷn+1 of an IVP (1a) and affine
forms of fc,1(ŷn) and fc,1(ŷn+1), and let ŷ be the result of the

Picard operator. We have, ∀t ∈ [tk, tk+1],

y(t) ∈
(
p̂(t) +

f (3)([tk, tk+1], ŷ)

4!
(t− tn)2(t− tn+1)2

)

Using the guaranteed interpolation polynomial function of
the solution of the IVP between time instants tn and tn+1, we
can safely enclose by iterative methods the time when zero-
crossing events occur.

Guaranteed floating-point computations. Due to the fi-
nite representation of floating-point numbers, most operations
on those (even simple ones such as addition) give rise to
approximation errors. In the context of a very unstable or
stiff system, this can lead to large accumulated errors during
a simulation. This is why those are considered in HySon:
the ideal theoretical simulation of the system using infinite
precision real numbers is guaranteed to be contained in the
interval of values provided by the simulation.

V. HYSON FEATURES

We now present in more details the kinds of systems HySon
can handle and the information one can obtain with this tool.

Plant design. HySon can handle continuous blocks in
Simulink (such as the integrator block) as well as non-
linear operations. It also supports zero-crossing detection
and advanced Simulink blocks such as resets, subsystems,
mux/demux or signal routing. In this way, HySon can be
used to validate the design of complex plants with non-linear
behaviors. In particular, it can be used to check the robustness
of a plant design with respect to perturbations expressed as
uncertain parameters.

EXAMPLE 2. We consider a train model1 and check its be-
havior with a step input. A simulation of this system shows
that the response time is small (around 30s) and that the
oscillations before entering the steady state are small (see
Figure 10, dashed line). We introduced a 10% uncertainty on
the mass of the train and run set-based simulations in HySon.
Result is shown on Figure 10, full lines. We could prove that
the uncertain system had the same settling time and that the
oscillations remained bounded. Note that, although this model
is linear, it must be simulated on a long time (up to t = 1000s).
HySon is stable enough to handle this long simulation time.

Open loop controller. HySon also treats discrete systems.
In particular, we handle various sampling times in different
blocks, and discrete blocks such as the Unit-Delay, the Zero-
Order Hold or the Discrete-Time Integrator. It also handles
logic operations and mathematical functions. It can thus be
used to perform formal verification of discrete systems in
Simulink, as it is done by abstract interpretation tools like [8],
[10] on software. Beside an earlier detection of bugs, this can
be useful to easily define representative inputs of the system,
using the Signal Builder block of Simulink for example.

EXAMPLE 3. Consider a dynamical system given by
ÿ + 0.6ẏ + y + y3 = u, that we call the Duffing system, and we
consider u to be the signal defined by Figure 11a, in dotted. To
handle more representative inputs, we introduce uncertainties

1http://bit.ly/16T5QWF

http://bit.ly/16T5QWF

0 10 20 30 40 50

0

5

10

Figure 10: Simulations of the train system: Simulink plot in
dashed lines and HySon bounds, zooming on the first 50
seconds.

0 5 10 15 20 25 30
0

2

4

6

(a) Inputs of the system. In dotted, the initial input. In gray, the set
of all inputs considered with the uncertainties.

0 5 10 15 20 25

−2

0

2

(b) Outputs of the system with the uncertain inputs.

Figure 11: Inputs and outputs for the Duffing system.

on the switching times t1 and t2 of u and on the derivative of u
between t1 and t2. This gives a set of signals contained in the
gray region of Figure 11a. We also show how the dynamical
system responds to these inputs in Figure 11b. We see that
during the uncertain switching phase, the upper and lower
bounds of the output seem to diverge, but the output remains
stable as all trajectories finally converge towards 0. The reason
of the local instability is that we don’t know during the switch
phase the value of u so that all possible values between the
upper and lower bounds. This explain the local divergence on
the output y as the value of u is then very large.

Closed-loop controller. Finally, the main advantage of HySon
is that it can analyze closed-loop systems as shown by the
cruise-control system of Section II. Using the set-based simula-
tion algorithms, we can estimate the properties of the controller
(overshoot, settling time, ...) even in presence of uncertainties.
To do that, we mainly add observer to the system that infer
the requested property. For example, an observer that should

compute the overshoot of a certain variable v will detect,
using a zero-crossing event, when the derivative v̇ becomes
0, indicating a local maximum or minimum for v. We then
can compute the maximal value vm of v during the simulation
and thus the overshoot, defined as (vm − vr)/vr if vr is the
reference value.Using the guaranteed version of the simulation
algorithms, we can prove maximal and minimal bounds on
these properties. In this way, HySon can be used for robust
control design and can help reduce the safety margins taken
when designing a controller as it can consider realistic models
of sensors and uncertainties and it precisely computes the
propagation of these uncertainties through the system.

EXAMPLE 4. We consider a vehicle whose dynamics is given
by the non-linear equations

mv̇ = f(u, v)− fa(v)− fg(v)− fd(v) (8)

where

f(u, v) = 2280u

(
1− 0.4

(
12v

420
− 1

)2
)

is the engine force with u is the control input (the desired
speed is noted vr), v the speed of the car, m its mass and g

the gravitational constant. The force fa = 0.01mg is the rolling
friction, the force fg = 0.4992v2 is the aerodynamic drag and
and the force fd = mg sin(θ) is the road slope force where θ is
the slope angle.

The PI control is defined by

u = kp (vr − v) + ei

ėi = ki (vr − v)
(9)

The uncertain parameters are the slope θ ∈ [0.2, 0.5] of the
road, and in the initial condition of the speed of the car:
v(0) ∈ [15, 20].

To compute the over-shoot of the system, we add the
following zero-crossing event:

wo = max(wo, v) when v̇ = 0

In this way, the final value of wo is the maximal value of v,
allowing to compute the overshoot. The table below gives the
value of the overshoot inferred by HySon and by 100 and 1000
Monte-Carlo simulations.

HySon Monte Carlo
100 1000

wo Time (s) wo Time (s) wo Time (s)
[30.18,31.89] 10.14 [30.54,31.76] 3.4 [30.48,31.83] 33.92

VI. CONCLUSION AND FUTURE WORK

We have presented HySon, a guaranteed set-based sim-
ulator for Simulink, illustrating on simple examples some
of its potential applications in an industrial context. Starting
from a Simulink model that may contain both discrete and
continuous blocks as well as uncertainties in some parameters,
HySon computes the set of all possible simulation traces for
any value of the uncertain parameters. In this way, HySon
can be use to validate the design choices by providing a
more reliable simulation process than Monte-Carlo simula-
tions. HySon also provides a guaranteed simulation process in
which the numerical algorithms used for simulation are turned

into guaranteed algorithms that compute over-approximations
rather than approximations. HySon can be used to formally
prove the safety of a closed-loop controller.

Other tools exist for formal verification or test case gen-
eration of Simulink models [12], [18], [1], but they are
mostly concerned with discrete systems. Hybrid systems model
checking [13], [7] aims at computing over-approximations of
hybrid dynamical systems. Most tools however are based on
the hybrid automata framework that cannot express the full
complexity of Simulink models, in particular discrete blocks
with timing. Finally, the work that is closer to ours is the
BREACH toolbox and its recent applications [11], [16] that
infers possible characteristics of a closed-loop system from a
finite set of simulations. Our approach can be used to speed-up
this process as it can run infinitely many simulations at once,
precisely and efficiently.

There are clearly many ways to develop this technique,
let us now list the future challenges that we see for the
model-based verification of control systems. First, we want
to investigate the Software In the Loop phase to analyze a
software implementation of the controller interacting with the
Simulink model of the plant. This should not be too hard as
we share with the Fluctuat tool the same abstract domain.
Second, we want to extend HySon to provide the same set-
based simulations for models written in other languages, such
as Modelica or AMESim. In this way, we should also be able
to verify systems developed using different models (Simulink
and Modelica for example). The main challenge here is that
these systems are generally based on a different mathematical
model: for example, Modelica is based on Differential Alge-
braic Equations (DAEs) while Simulink is based on Ordinary
Differential Equations (ODEs). Thus, handling Modelica imply
that we integrate DAE solvers such as [19], [17] into our
framework. We also want to continue improving our technique
for formal verification of Simulink closed-loop models. To
do so, we need to infer invariants on the trajectories of the
system that remain true for unbounded time. For example,
we want to infer Lyapunov-like information about the plant
trajectories. Finally, one promising direction of improvements
is to use variants of the affine form domain that also handle
probabilistic information, such as the probabilistic affine forms
of [6]. In this way, we may provide guaranteed probabilistic
information about the output of a system, i.e. we compute
bounds on the probability distribution of the output of the
system. This makes much sense to analyze systems with
probabilistic noise for example, and we believe that such
a probabilistic information can be very useful for engineers
developing embedded systems.

REFERENCES

[1] D. Bahrami, A. Faivre, and A. Lapitre. Diversity - tg, automatic test
case generation from matlab/simulink models. In ERTS, 2012.

[2] S. Bouabdallah. Design and control of quadrotors with application to
autonomous flying. PhD thesis, 2007.

[3] O. Bouissou and A. Chapoutot. An operational semantics for Simulink’s
simulation engine. In LCTES. ACM, 2012.

[4] O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing temporal
evolution of dynamical systems using numerical methods. In NASA
Formal Methods, number 7871 in LNCS. Springer, 2013.

[5] O. Bouissou, A. Chapoutot, and S. Mimram. HySon: Precise simulation
of hybrid systems with imprecise inputs. In RSP. IEEE, 2012.

[6] O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot. A
generalization of p-boxes to affine arithmetic. Computing, 94:189–201,
2012.

[7] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer
for non-linear hybrid systems. In N. Sharygina and H. Veith, editors,
CAV, volume 8044 of Lecture Notes in Computer Science, pages 258–
263. Springer, 2013.

[8] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. M. D. Monniaux, and
X. Rival. The ASTREÉ analyzer. In ESOP, volume 3444 of LNCS,
pages 21–30. Springer, 2005.

[9] L. H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods and
Applications. Brazilian Mathematics Colloquium monographs. 1997.

[10] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine.
Towards an industrial use of fluctuat on safety-critical avionics software.
In FMICS, volume 5825 of LNCS, pages 53–69. Springer, 2009.

[11] A. Donzé. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In CAV, volume 6174 of LNCS. Springer, 2010.

[12] J.-F. Étienne, S. Fechter, and E. Juppeaux. Using Simulink design
verifier for proving behavioral properties on a complex safety critical
system in the ground transportation domain. In CSDM, 2010.

[13] G. Frehse, C. L. Guernic, A. Donzé, R. Ray, and al. et. Spaceex:
Scalable verification of hybrid systems. In CAV, 2011.

[14] GMV Company. SOMCA: Safety implications in performing SOftware
Model Coverage Analysis. Research project, EASA, 2010.

[15] E. Goubault and S. Putot. A zonotopic framework for functional
abstractions. CoRR, abs/0910.1763, 2009.

[16] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. Mining
requirements from closed-loop control models. In HSCC, 2013.

[17] P. Kunkel and V. Mehrmann. Differential-algebraic Equations: Analysis
and Numerical Solution. EMS textbooks in mathematics. European
Mathematical Society, 2006.

[18] S. Mohalik et al. Automatic test case generation from simulink/stateflow
models using model checking. STVR journal, 2013.

[19] N. Nedialkov. Interval tools for ODEs and DAEs. Technical Report CAS
06-09-NN, Dept. of Computing and Software, McMaster University,
2006.

[20] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg, 2010.

[21] L. Shampine and M. Reichelt. The MATLAB ODE Suite. Journal on
Sci. Comput., 18(1):1–22, 1997.

[22] A. Toom, T. Naks, M. Pantel, M. Gandriau, and Indrawati. Gene-Auto:
an Automatic Code Generator for a safe subset ofSimulink/Stateflow
and Scicos. In ERTS, 2008.

[23] F. Zhang, M. Yeddanapudi, and P. Mosterman. Zero-crossing location
and detection algorithms for hybrid system simulation. In IFAC, 2008.

	Introduction
	A Motivating Example
	Software Architecture
	Guaranteed Set-Based Simulation
	HySon Features
	Conclusion and Future Work
	References

