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Natural numbers as sets

The natural numbers N can be defined as the equivalence classes of finite sets

under isomorphism (= cardinals).

For instance,

3 = a b c

= x y z
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Operations on sets

When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?
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For instance,

• addition is the quotient of disjoint union:

3+2 = a b c ⊔ x y = a b c x y = 5

• product is the quotient of cartesian product:

3×2 = a b c × x
y =

(a, x) (b, x) (c, x)
(a, y) (b, y) (c, y) = 6
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Operations on sets

When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?

This is satisfactory when it is the case because

• this is more “constructive”: we replace equality by isomorphism,

• we have an extension of the operations to infinite sets,

• we can study which axioms of set theory we need to perform this.
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Subtraction by 1

Next interesting operation is subtraction by 1

(or, rather, regularity of successor):

m+ 1 = n+ 1 implies m = n

At the level of sets, this means that we should have

A ⊔ {⋆} ≃ B ⊔ {⋆} implies A ≃ B

We see that this approach feels more constructive!
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Subtraction by 1
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Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

m× 2 = n× 2 implies m = n

At the level of sets, this means that we should have

A× {0, 1} ≃ B× {0, 1} implies A ≃ B

And this is indeed the case:

• if the two sets are finite, we are essentially working with natural numbers,

• otherwise we have A ≃ A ⊔ A ≃ B ⊔ B ≃ B.
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Division by 2, constructively

This could have been the end of my talk

unless we wonder

can this be performed constructively?

Namely, we have been using two dubious principles in the proof of division by 2:

• the excluded-middle: any set is finite or not,
• the axiom of choice: to construct the bijection A ≃ A ⊔ A.

It turns out excluded-middle seems unavoidable so that we focus on AC.
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History of division

• 1901: Bernstein gives a construction of division by 2 in ZF

• 1922: Serpiński simplifies the construction

• 1926: Lindenbaum and Tarski construct division by n
• 1943: Tarski forgets about the construction finds a new one

• 1994: Conway and Doyle manage to reinvent the 1926 solution

• 2015: Doyle, Qiu and Schartz further simplify the construction

• 2018: Swan shows that excluded middle is unavoidable

by exhibiting a non-boolean topos in which ×2 is not regular

Still an active research topic :)
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In this work

We started from Conway and Doyle’s 1994 paper Division by three:

• we focus on division by 2,

• we formalize the results in Agda,

• we generalize from sets to spaces.
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The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

A× 2 B× 2

f

g

with 2 = {−,+}. We want to construct a bijection

A B

without using the axiom of choice.
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The Conway-Doyle-Serpiński construction of division by 2

Suppose given a bijection

A× 2 B× 2

f

g

This data secretly corresponds to a directed graph:

• the elements of A× 2 and B× 2 are vertices,

• the elements of A and B are edges: for a ∈ A,

(a,−) (a,+)
a

with 2 = {−,+}
• we identify any two vertices related by the bijection.
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The bijection as a graph

For instance, suppose

A = {a,a′} B = {b,b′}

and consider the bijection

A× 2 B× 2

a− b−

a+ b+

a′− b′−

a′+ b′+

a+ b+

a− b−

b′− a′+

b′+ a′−

a b

b′ a′
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The bijection as a graph

For instance, suppose

A = {a,a′} B = {b,b′}

and consider the bijection

A× 2 B× 2

a− b−

a+ b+

a′− b′−

a′+ b′+

a+ = b+

a− = b′− a′+ = b−

a′− = b′+

a

b′

b

a′
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Properties of the graph

a+ = b+

a− = b′− a′+ = b−

a′− = b′+

a

b′

b

a′

Note that:

• every vertex is connected to exactly two edges

• in a path, edges alternate between elements of A and B
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Chains
a+ = b+

a− = b′− a′+ = b−

a′− = b′+

a

b′

b

a′

A chain is a connected component.

It is enough to make a bijection between the edges in A and in B in every chain.

Suppose that we pick a distinguished edge in every chain:

• every other edge is reachable from this one,

• we can thus send every element to the “next” one.

We thus only need to pick an orientation in every chain . . .

which is not obvious without choice!
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Bracketing

Consider a chain

· · · · · · · · · · ·

We can interpret arrows as brackets, which does not require an orientation:

• if all the brackets are matching: we have a bijection,

• otherwise the non-matched brackets can have the following form:

• · · · · · · · · · · ·
we can use any arrow as an orientation!

• · · · · · · · · · · ·
we have a canonical choice of an arrow for orientation!

In each case we can pick an orientation without choice.
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A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

• we know that the following are independent

• the law of excluded middle: for any proposition A,

A ∨ ¬ A

• the axiom of choice: for f : A → Type,

((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥

• we have access to HITs, which are useful (propositional trunc., quotient types)

• we generalize the result from sets to spaces

14



A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

• we know that the following are independent

• the law of excluded middle: for any proposition A,

A ∨ ¬ A

• the axiom of choice: for f : A → Type,

((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥
• we have access to HITs, which are useful (propositional trunc., quotient types)

• we generalize the result from sets to spaces

14



A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

• we know that the following are independent

• the law of excluded middle: for any proposition A,

A ∨ ¬ A

• the axiom of choice: for f : A → Type,

((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥
• we have access to HITs, which are useful (propositional trunc., quotient types)

• we generalize the result from sets to spaces

14



A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

• we know that the following are independent

• the law of excluded middle: for any proposition A,

A ∨ ¬ A

• the axiom of choice: for f : A → Type,

((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥

• we have access to HITs, which are useful (propositional trunc., quotient types)

• we generalize the result from sets to spaces

14



A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

• we know that the following are independent

• the law of excluded middle: for any proposition A,

A ∨ ¬ A

• the axiom of choice: for f : A → Type,

((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥
• we have access to HITs, which are useful (propositional trunc., quotient types)

• we generalize the result from sets to spaces

14



A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

• we know that the following are independent

• the law of excluded middle: for any proposition A,

A ∨ ¬ A

• the axiom of choice: for f : A → Type,

((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥
• we have access to HITs, which are useful (propositional trunc., quotient types)

• we generalize the result from sets to spaces

propositions

14



A formalization in homotopy type theory

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

• we know that the following are independent

• the law of excluded middle: for any proposition A,

A ∨ ¬ A

• the axiom of choice: for f : A → Type,

((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥
• we have access to HITs, which are useful (propositional trunc., quotient types)

• we generalize the result from sets to spaces

sets 14



From sets to spaces

We have formalized the original result:

Theorem
For any two types A and B which are sets,

A × 2 ≃ B × 2 → A ≃ B.

but also the generalization

Theorem
For any two types A and B,

A × 2 ≃ B × 2 → A ≃ B.

≃ ≃

Note: we should use equivalences instead of isomorphisms for types.
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Agda formalization

Consider the type 2 with two elements src and tgt

and suppose fixed a bijection

A × 2 ≃ B × 2

with A and B sets. We define

• Arrows = A ⊎ B

• Ends = Arrows × 2

= dArrows

The idea:

·(a , src) · (a , tgt)
a

We also have functions

arr : dArrows → Arrows fw : Arrows → dArrows

(a,src) 7→ a a 7→ (a,src)

(a,tgt) 7→ a

16
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Reachability

· · · · · · · · · · ·

We can then define a function:

iterate : Z → dArrows → dArrows

And thus

reachable : dArrows → dArrows → Type

reachable e e' = Σ[ n ∈ Z ] (iterate n e ≡ e')

as well as

is-reachable : dArrows → dArrows → Type

is-reachable e e' = ∥ reachable e e' ∥

17
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Revealing rechability

Recall,

reachable e e’ = Σ[ n ∈ Z ] (iterate n e ≡ e’)

is-reachable e e’ = ∥ reachable e e’ ∥

Clearly, reachable e e’ → is-reachable e e’

Proposition
Conversely, is-reachable e e’ → reachable e e’

Proof.
Since A and B are sets, so is dArrows = (A ⊎ B) × 2.

Thus reachable e e’ is a proposition,

which is moreover decidable because we are classical.

Supposing reachable e e’, since we have a way to enumerate Z,

we can therefore find an n : Z such that iterate n e ≡ e’.
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we can therefore find an n : Z such that iterate n e ≡ e’.
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Chains

We are tempted to define chains as

Σ[ e ∈ dArrows ] (Σ[ e’ ∈ dArrows ] (is-reachable e e’))

However, this are rather pointed chains.

A satisfactory definition of chains

dChains = dArrows / is-reachable

and similarly, we define chains as

Chains = Arrows / is-reachable-arr
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Building the bijection chainwise

Given a chain c, we write chainA c (resp. chainB c) for the type of its elements

in A (resp. B).

Lemma
If, for every chain c, we have chainA c ≃ chainB c, then A ≃ B.

Proof.
Given a relation R on a type A, the type is the union of its equivalence classes:

A ≃ Σ[ c ∈ A / R ] (fiber [ ] c)

The result can be deduced from this and standard equivalences.
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Types of chain

Recall that a chain c can be

• well-bracketed:

· · · · · · · · · · ·
( ( ) ( ) )

• a switching chain:

· · · · · · · · · · ·

• a slope:

· · · · · · · · · · ·

By excluded-middle, we know that we are in one of those three cases

(provided we show that they are propositions).

It only remains to show chainA c ≃ chainB c in each case (we will only present

well-bracketing).
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Well-bracketing

A word over {(, )} may be interpreted as a Dyck path:

( ( ( ) ( ) ) )

22



Well-bracketing

The height of the following path is 4:

· · · · ·
(

1
(

1
)

−1
(

1

An arrow a is matched when it satisfies

Σ[ n ∈ N ] (

height (suc n) (fw a) ≡ 0 ∧
((k : N) → k < suc n → ¬ (height k (fw x) ≡ 0)))
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Well-bracketing

The chain of an arrow o is well-bracketed when every arrow reachable from o is

matched.

Proposition
Being well-bracketed for a reachable arrow is a proposition, which is independent
of the choice of o.

A chain is well-bracketed when each of its arrow is well-bracketed in the above

sense.
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Well-bracketing

A chain is well-bracketed when each of its arrow is well-bracketed.

Remark
Since

Chains = Arrows / is-reachable-arr

in order for this definition to make sense:

• we need to eliminate to a set (by definition of chains as quotients): here, we

eliminate to HProp, which is a set, of which being well-bracketed is an

element!

• we need to show that this is independent of the choice of the representative

for the origin o.

Proposition
Given a well-bracketed chain c, we have an equivalence chainA c ≃ chainB c.
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The two other cases

• switching chains

• slopes

are handled similarly.
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Division by 2

Theorem
For any two types A and B which are sets,

A × 2 ≃ B × 2 → A ≃ B.
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Our aim is now to generalize the theorem to the situation where A and B are

arbitrary types (as opposed to sets).

We suppose fixed an equivalence A × 2 ≃ B × 2.

28



The set truncation

Given a type A, we write ∥ A ∥0 for its set truncation:

∥ ∥0 =

We have a quotient map

| |0 : A → ∥ A ∥0

The picture we should have in mind is

A

∥ A ∥0

| |0

a

Given a : A,

• | a |0 is its connected component,

• fiber | |0 | a |0 are the elements of this connected component.
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Equivalences and set truncation

A

∥ A ∥0

| |0

B

∥ B ∥0

| |0

f

g

x

Proposition
Suppose given an equivalence A ≃ B (with f : A → B).
• There is an induced equivalence ∥ A ∥0 ≃ ∥ B ∥0.
• Given x : ∥ A ∥0, we have an equivalence

fiber | |0 x ≃ fiber | |0 (∥∥0-map f x)
30



Equivalences and set truncation

Σ A0 P

A0

P

Σ B0 Q

B0

Q
f

g
x

Proposition
Given an equivalence A0 ≃ B0 (with f : A0 → B0), and type families
P : A0 → Type and Q : B0 → Type, such that for x : A, we have

P x ≃ Q (f x)

Then Σ A0 P ≃ Σ B0 Q 30



Reachability and equivalence

Proposition
Given directed arrows a and b in ∥ dArrows ∥0 reachable from the other, we have

fiber | |0 a ≃ fiber | |0 b

Proof.
We can define functions

next : dArrows → dArrows prev : dArrows → dArrows

sending a directed arrow to the next one (in the direction), which form an

equivalence, thus

fiber | |0 a ≃ fiber | |0 (∥ next ∥0 a)

by previous proposition and we conclude by induction.
31



Dividing homotopy types by 2

Theorem
Given types A and B, we have

A × 2 ≃ B × 2 → A ≃ B

Proof.

A × 2 ≃ B × 2

∥ A × 2 ∥0 ≃ ∥ B × 2 ∥0
∥ A ∥0 × 2 ≃ ∥ B ∥0 × 2

∥ A ∥0 ≃ ∥ B ∥0

Since this bijection sends a directed arrow a to a reachable one b,

fiber | |0 a ≃ fiber | |0 b

thus A ≃ Σ[ a ∈ A ] (fiber | |0 a) ≃ Σ[ b ∈ B ] (fiber | |0 b) ≃ B
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About the LPO

We required to work in classical logic, but it might be the case that a weaker

principle (implied by excluded middle, but not provable in intuitionistic logic)

could be sufficient.

Moreover, we could not show that having division by 2 implies LEM.

A good candidate is the limited principle of omniscience (LPO):

Given a sequence f : N → Bool,
• either ∀ (n : N) ¬ (P n),
• or (n : N) (P n).
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Questions?

34


