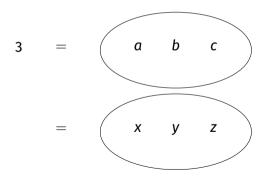
Division by two, in homotopy type theory

<u>Samuel Mimram</u> Émile Oleon FSCD conference August 3, 2022

Natural numbers as sets

The **natural numbers** \mathbb{N} can be defined as the equivalence classes of finite sets under isomorphism (= cardinals).

For instance,



When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?

When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?

For instance,

• addition is the quotient of disjoint union:

$$3+2$$
 = $a b c \sqcup x y$ = $a b c x y$ = 5

When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?

For instance,

• addition is the quotient of disjoint union:

$$3+2$$
 = $a b c \sqcup x y$ = $a b c x y$ = 5

• product is the quotient of cartesian product:

$$3 \times 2 = (a \ b \ c) \times (x) = (a,x) (b,x) (c,x) = 6$$

When we have an operation on natural number we can therefore ask:

is the quotient of some operation on sets?

This is satisfactory when it is the case because

- this is more "constructive": we replace equality by isomorphism,
- we have an extension of the operations to infinite sets,
- we can study which axioms of set theory we need to perform this.

Next interesting operation is subtraction by 1

Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

m + 1 = n + 1 implies m = n

Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

m + 1 = n + 1 implies m = n

At the level of sets, this means that we should have

$$A \sqcup \{\star\} \simeq B \sqcup \{\star\}$$
 implies $A \simeq B$

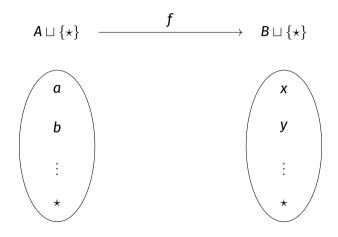
Next interesting operation is subtraction by 1 (or, rather, regularity of successor):

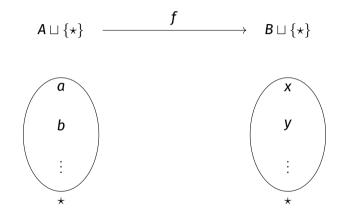
m + 1 = n + 1 implies m = n

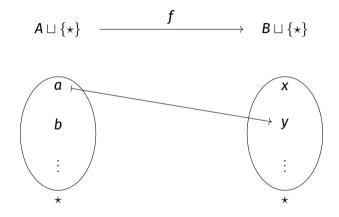
At the level of sets, this means that we should have

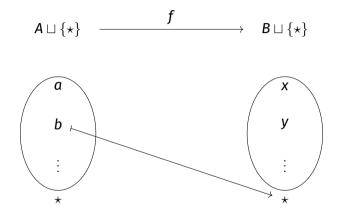
$$A \sqcup \{\star\} \simeq B \sqcup \{\star\}$$
 implies $A \simeq B$

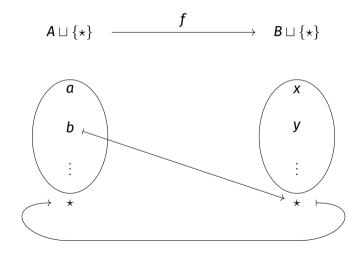
We see that this approach feels more constructive!

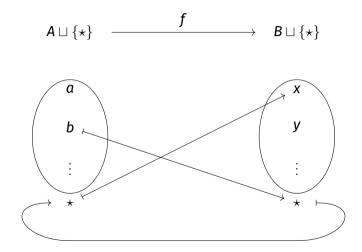


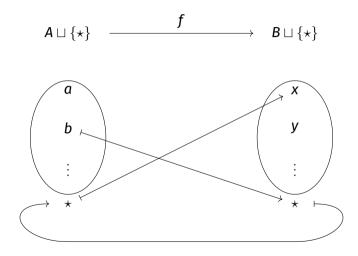












(trace!)

Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

 $m \times 2 = n \times 2$ implies m = n

Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

 $m \times 2 = n \times 2$ implies m = n

At the level of sets, this means that we should have

$$A \times \{0, 1\} \simeq B \times \{0, 1\}$$
 implies $A \simeq B$

Division by 2

Next interesting operation is division by 2 (or, rather, regularity of doubling):

 $m \times 2 = n \times 2$ implies m = n

At the level of sets, this means that we should have

$$A \times \{0, 1\} \simeq B \times \{0, 1\}$$
 implies $A \simeq B$

And this is indeed the case:

- if the two sets are finite, we are essentially working with natural numbers,
- otherwise we have $A \simeq A \sqcup A \simeq B \sqcup B \simeq B$.

Division by 2, constructively

This could have been the end of my talk

Division by 2, constructively

This could have been the end of my talk unless we wonder

can this be performed **constructively**?

Division by 2, constructively

This could have been the end of my talk unless we wonder

can this be performed **constructively**?

Namely, we have been using two dubious principles in the proof of division by 2:

This could have been the end of my talk unless we wonder

can this be performed **constructively**?

Namely, we have been using two dubious principles in the proof of division by 2:

• the excluded-middle: any set is finite or not,

This could have been the end of my talk unless we wonder

can this be performed **constructively**?

Namely, we have been using two dubious principles in the proof of division by 2:

- the excluded-middle: any set is finite or not,
- the **axiom of choice**: to construct the bijection $A \simeq A \sqcup A$.

This could have been the end of my talk unless we wonder

can this be performed **constructively**?

Namely, we have been using two dubious principles in the proof of division by 2:

- the excluded-middle: any set is finite or not,
- the **axiom of choice**: to construct the bijection $A \simeq A \sqcup A$.

It turns out excluded-middle seems unavoidable so that we focus on AC.

History of division

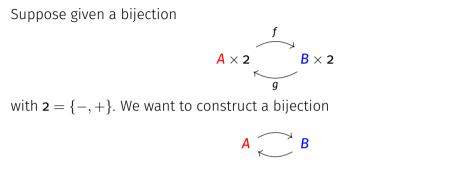
- 1901: Bernstein gives a construction of division by 2 in ZF
- 1922: Serpiński simplifies the construction
- 1926: Lindenbaum and Tarski construct division by n
- 1943: Tarski forgets about the construction finds a new one
- 1994: Conway and Doyle manage to reinvent the 1926 solution
- 2015: Doyle, Qiu and Schartz further simplify the construction
- 2018: Swan shows that excluded middle is unavoidable by exhibiting a non-boolean topos in which ×2 is not regular

Still an active research topic :)

In this work

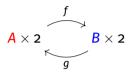
We started from Conway and Doyle's 1994 paper Division by three:

- we focus on division by 2,
- we formalize the results in Agda,
- we generalize from sets to *spaces*.



without using the axiom of choice.

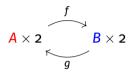
Suppose given a bijection



This data secretly corresponds to a directed graph:

• the elements of $A \times 2$ and $B \times 2$ are vertices,

Suppose given a bijection



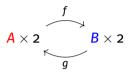
This data secretly corresponds to a directed graph:

- the elements of $\textbf{A}\times\textbf{2}$ and $\textbf{B}\times\textbf{2}$ are vertices,
- the elements of \underline{A} and \underline{B} are edges: for $\underline{a} \in \underline{A}$,

$$(\mathbf{a},-) \xrightarrow{\mathbf{a}} (\mathbf{a},+)$$

with $2 = \{-,+\}$

Suppose given a bijection



This data secretly corresponds to a directed graph:

- the elements of $A \times 2$ and $B \times 2$ are vertices,
- the elements of \underline{A} and \underline{B} are edges: for $\underline{a} \in \underline{A}$,

$$(\mathbf{a},-) \xrightarrow{\mathbf{a}} (\mathbf{a},+)$$

with $2 = \{-, +\}$

• we identify any two vertices related by the bijection.

The bijection as a graph

For instance, suppose

 $A \times 2$

a-

a+

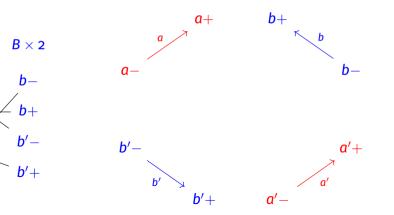
a'-

a′+

 $A = \{a, a'\}$

and consider the bijection

 $B = \{b, b'\}$

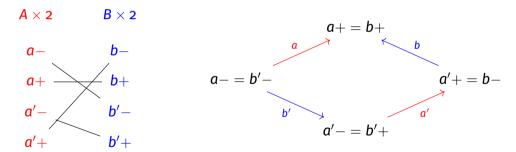


The bijection as a graph

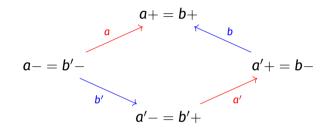
For instance, suppose

 $\mathbf{A} = \{\mathbf{a}, \mathbf{a}'\} \qquad \qquad \mathbf{B} = \{\mathbf{b}, \mathbf{b}'\}$

and consider the bijection



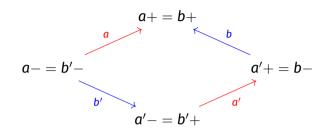
Properties of the graph



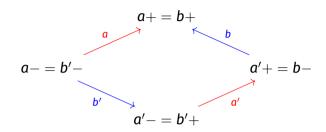
Note that:

- every vertex is connected to exactly two edges
- in a path, edges alternate between elements of A and B

Chains

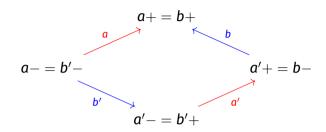


A chain is a connected component.



A chain is a connected component.

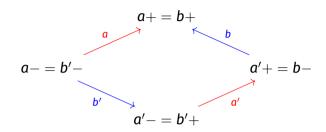
It is enough to make a bijection between the edges in **A** and in **B** in every chain.



A chain is a connected component.

It is enough to make a bijection between the edges in **A** and in **B** in every chain.

Suppose that we pick a distinguished edge in every chain:

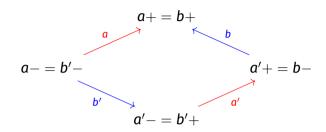


A chain is a connected component.

It is enough to make a bijection between the edges in **A** and in **B** in every chain.

Suppose that we pick a distinguished edge in every chain:

• every other edge is reachable from this one,

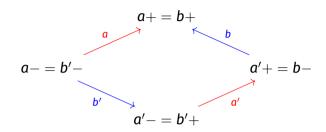


A chain is a connected component.

It is enough to make a bijection between the edges in **A** and in **B** in every chain.

Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every element to the "next" one.



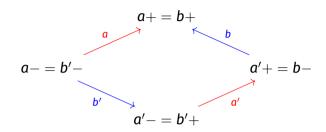
A chain is a connected component.

It is enough to make a bijection between the edges in **A** and in **B** in every chain.

Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every element to the "next" one.

We thus only need to pick an orientation in every chain



A chain is a connected component.

It is enough to make a bijection between the edges in **A** and in **B** in every chain.

Suppose that we pick a distinguished edge in every chain:

- every other edge is reachable from this one,
- we can thus send every element to the "next" one.

We thus only need to pick an **orientation** in every chain ... which is not obvious without choice!

Consider a chain

Consider a chain

 $\cdots \xrightarrow{(} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{)} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{)} \cdots$

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following form:

Consider a chain

 $\cdots \xrightarrow{(} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{)} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{)} \cdots$

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following form:
 - $\bullet \quad \cdots \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \cdots$

we can use any arrow as an orientation!

Consider a chain

 $\cdots \xrightarrow{(} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{)} \cdots$

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following form:

we can use any arrow as an orientation!

 $\bullet \quad \cdots \longleftarrow \cdot \longleftarrow \cdot \longleftarrow \cdot \longmapsto \cdot \longrightarrow \cdots \longrightarrow \cdots$

we have a canonical choice of an arrow for orientation!

Consider a chain

 $\cdots \xrightarrow{(} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{)} \cdot \xrightarrow{(} \cdot \xrightarrow{)} \cdot \xrightarrow{)} \cdots$

We can interpret arrows as brackets, which does not require an orientation:

- if all the brackets are matching: we have a bijection,
- otherwise the non-matched brackets can have the following form:

 $\bullet \quad \cdots \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \cdots$

we can use any arrow as an orientation!

 $\bullet \quad \cdots \longleftarrow \cdot \longleftarrow \cdot \longleftarrow \cdot \longmapsto \cdot \longrightarrow \cdots \longrightarrow \cdots$

we have a canonical choice of an arrow for orientation!

In each case we can pick an orientation without choice.

We have formalized this result in classical homotopy type theory (Cubical Agda):

• we have more confidence in the result (sketchy papers, choice of orientation)

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of excluded middle: for any proposition A,
 - A \lor ¬ A

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of **excluded middle**: for any *proposition* **A**, **A** \lor \neg **A**
 - the axiom of choice: for f : A → Type,

 $((x : A) \rightarrow \parallel f x \parallel) \rightarrow \parallel ((x : A) \rightarrow f x) \parallel$

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of excluded middle: for any proposition A,

A \lor ¬ A

• the axiom of choice: for f : A → Type,

 $((x : A) \rightarrow \parallel f x \parallel) \rightarrow \parallel ((x : A) \rightarrow f x) \parallel$

• we have access to HITs, which are useful (propositional trunc., quotient types)

We have formalized this result in classical homotopy type theory (Cubical Agda):

- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of excluded middle: for any proposition A,

A \lor ¬ A

• the axiom of choice: for f : A → Type,

 $((x : A) \rightarrow \parallel f x \parallel) \rightarrow \parallel ((x : A) \rightarrow f x) \parallel$

- we have access to HITs, which are useful (propositional trunc., quotient types)
- we generalize the result from sets to spaces

We have formalized this result in classical homotopy type theory (Cubical Agda):

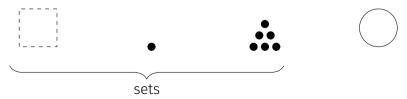
- we have more confidence in the result (sketchy papers, choice of orientation)
- we know that the following are independent
 - the law of excluded middle: for any proposition A,

A \lor ¬ A

• the axiom of choice: for f : A → Type,

 $((x : A) \rightarrow \parallel f x \parallel) \rightarrow \parallel ((x : A) \rightarrow f x) \parallel$

- we have access to HITs, which are useful (propositional trunc., quotient types)
- we generalize the result from sets to spaces



From sets to spaces

We have formalized the original result:

Theorem

For any two types A and B which are sets,

$$\mathbf{A} \, \star \, 2 \, \simeq \, \mathbf{B} \, \star \, 2 \qquad \rightarrow \qquad \mathbf{A} \, \simeq \, \mathbf{B}.$$

From sets to spaces

We have formalized the original result:

Theorem

For any two types **A** and **B** which are sets,

$$\mathbf{A} \, \star \, 2 \, \simeq \, \mathbf{B} \, \star \, 2 \qquad \rightarrow \qquad \mathbf{A} \, \simeq \, \mathbf{B}.$$

but also the generalization

Theorem For any two types A and B,

$$A \times 2 \simeq B \times 2 \qquad \rightarrow \qquad A \simeq B.$$

From sets to spaces

We have formalized the original result:

Theorem

For any two types **A** and **B** which are sets,

$$\mathbf{A} \star \mathbf{2} \simeq \mathbf{B} \star \mathbf{2} \quad \rightarrow \quad \mathbf{A} \simeq \mathbf{B}.$$

but also the generalization

Theorem For any two types **A** and **B**,

$$A \times 2 \simeq B \times 2 \qquad \rightarrow \qquad A \simeq B.$$

Note: we should use equivalences instead of isomorphisms for types.

Consider the type 2 with two elements src and tgt

Consider the type 2 with two elements src and tgt and suppose fixed a bijection

$${\rm A}~{\times}~2~{\simeq}~{\rm B}~{\times}~2$$

with **A** and **B** sets.

Consider the type 2 with two elements src and tgt and suppose fixed a bijection

 ${\rm A}~{\times}~2~{\simeq}~{\rm B}~{\times}~2$

with A and B sets. We define

- Arrows = A 🖽 B
- Ends = Arrows $\times 2$ = dArrows

The idea:

(a , src)
$$\cdot \xrightarrow{a} \cdot (a , tgt)$$

Consider the type 2 with two elements src and tgt and suppose fixed a bijection

 ${\rm A}~{\times}~2~{\simeq}~{\rm B}~{\times}~2$

with A and B sets. We define

- Arrows = A 🖽 B
- Ends = Arrows $\times 2$ = dArrows

The idea:

(a , src)
$$\cdot \xrightarrow{a} \cdot$$
 (a , tgt)

We also have functions

arr : dArrows \rightarrow Arrowsfw : Arrows \rightarrow dArrows(a,src) \mapsto aa \mapsto (a,src)(a,tgt) \mapsto a

Reachability

 $\cdots \longrightarrow \cdot \longleftrightarrow \cdot \longleftrightarrow \cdot \longleftrightarrow \cdot \longleftrightarrow \cdot \longleftrightarrow \cdot \longleftrightarrow \cdots$

We can then define a function:

iterate : $\mathbb{Z} \rightarrow dArrows \rightarrow dArrows$

Reachability

We can then define a function:

iterate : $\mathbb{Z} \rightarrow dArrows \rightarrow dArrows$

And thus

```
reachable : dArrows \rightarrow dArrows \rightarrow Type
reachable e e' = \Sigma[ n \in \mathbb{Z} ] (iterate n e \equiv e')
```

Reachability

We can then define a function:

iterate : $\mathbb{Z} \rightarrow dArrows \rightarrow dArrows$

And thus

```
reachable : dArrows \rightarrow dArrows \rightarrow Type reachable e e' = \Sigma[ n \in \mathbb Z ] (iterate n e \equiv e')
```

as well as

```
is-reachable : dArrows → dArrows → Type
is-reachable e e' = || reachable e e' ||
```

Recall,

```
reachable e e' = \Sigma[ n \in \mathbb{Z} ] (iterate n e \equiv e')
is-reachable e e' = \parallel reachable e e' \parallel
```

Clearly, reachable e e' → is-reachable e e'

Recall,

```
reachable e e' = \Sigma[ n \in \mathbb{Z} ] (iterate n e \equiv e')
is-reachable e e' = \parallel reachable e e' \parallel
```

Clearly, reachable e e' → is-reachable e e'

```
Proposition
Conversely, is-reachable e e' → reachable e e'
```

Proof.

Recall,

```
reachable e e' = \Sigma[ n \in \mathbb{Z} ] (iterate n e \equiv e')
is-reachable e e' = \parallel reachable e e' \parallel
```

Clearly, reachable e e' → is-reachable e e'

```
Proposition
Conversely, is-reachable e e' → reachable e e'
```

Proof.

Since A and B are <u>sets</u>, so is dArrows = (A \uplus B) × 2.

Recall,

```
reachable e e' = \Sigma[ n \in \mathbb{Z} ] (iterate n \in \mathbb{R} e')
is-reachable e e' = \| reachable e e' \|
Clearly, reachable e e' \rightarrow is-reachable e e'
Proposition
Conversely, is-reachable e e' \rightarrow reachable e e'
```

Proof.

```
Since A and B are <u>sets</u>, so is dArrows = (A \uplus B) \times 2.
Thus reachable e e' is a proposition,
```

Recall,

```
reachable e e' = \Sigma[ n \in \mathbb{Z} ] (iterate n e \equiv e')
is-reachable e e' = \parallel reachable e e' \parallel
```

Clearly, reachable e e' → is-reachable e e'

Proposition
Conversely, is-reachable e e' → reachable e e'

Proof.

Since **A** and **B** are <u>sets</u>, so is dArrows = $(A \oplus B) \times 2$. Thus **reachable** e e' is a proposition, which is moreover decidable because we are classical.

Recall,

```
reachable e e' = \Sigma[ n \in \mathbb{Z} ] (iterate n e \equiv e')
            is-reachable e e' = || reachable e e' ||
Clearly reachable e e' → is-reachable e e'
Proposition
Conversely, is-reachable e e' → reachable e e'
Proof.
Since A and B are sets, so is dArrows = (A \uplus B) \times 2.
Thus reachable e e' is a proposition,
which is moreover decidable because we are classical.
Supposing reachable e e', since we have a way to enumerate \mathbb{Z}.
we can therefore find an \mathbf{n} : \mathbb{Z} such that iterate \mathbf{n} \in \mathbf{e}?
```

We are tempted to define chains as

```
\Sigma[ e \in dArrows ] (\Sigma[ e' \in dArrows ] (is-reachable e e'))
```

We are tempted to define chains as

```
\Sigma[\ e\ \in\ dArrows\ ] (\Sigma[\ e'\ \in\ dArrows\ ] (is-reachable e e'))
```

However, this are rather *pointed* chains.

Chains

We are tempted to define chains as

```
\Sigma[ e \in dArrows ] (\Sigma[ e' \in dArrows ] (is-reachable e e'))
```

However, this are rather *pointed* chains.

A satisfactory definition of chains

dChains = dArrows / is-reachable

Chains

We are tempted to define chains as

```
\Sigma[ e \in dArrows ] (\Sigma[ e' \in dArrows ] (is-reachable e e'))
```

However, this are rather *pointed* chains.

A satisfactory definition of chains

```
dChains = dArrows / is-reachable
```

and similarly, we define chains as

```
Chains = Arrows / is-reachable-arr
```

Building the bijection chainwise

Given a chain c, we write chainA c (resp. chainB c) for the type of its elements in A (resp. B).

Building the bijection chainwise

Given a chain c, we write chainA c (resp. chainB c) for the type of its elements in A (resp. B).

Lemma

If, for every chain c, we have chainA c \simeq chainB c, then A \simeq B.

Proof.

Given a relation R on a type A, the type is the union of its equivalence classes:

A
$$\simeq$$
 $\Sigma[$ c \in A / R] (fiber [_] c)

The result can be deduced from this and standard equivalences.

Types of chain

Recall that a chain c can be

• well-bracketed:

• a switching chain:

 $\cdots \longleftarrow \cdot \longleftrightarrow \cdots \longleftrightarrow \cdots \longleftrightarrow \cdots \longrightarrow \cdots \longrightarrow \cdots$

• a slope:

 $\cdots \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdots$

By excluded-middle, we know that we are in one of those three cases (provided we show that they are propositions).

Types of chain

Recall that a chain c can be

• well-bracketed:

• a switching chain:

 $\cdots \longleftarrow \cdot \longleftrightarrow \cdots \longleftrightarrow \cdots \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdots$

• a slope:

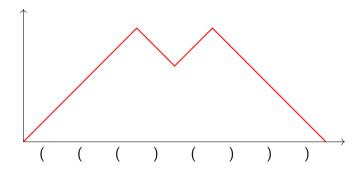
 $\cdots \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \longrightarrow \cdot \cdots$

By excluded-middle, we know that we are in one of those three cases (provided we show that they are propositions).

It only remains to show chainA c \simeq chainB c in each case (we will only present well-bracketing).

21

A word over {(,)} may be interpreted as a *Dyck path*:



The **height** of the following path is **4**:

$$\cdot \xrightarrow{()} \cdot \xrightarrow{$$

The **height** of the following path is **4**:

$$\cdot \xrightarrow{()} \cdot \xrightarrow{()} \cdot \xrightarrow{()} \cdot \xrightarrow{()} \cdot \xrightarrow{()} \cdot \xrightarrow{()} \cdot$$

An arrow **a** is **matched** when it satisfies

```
\begin{split} \Sigma[n \in \mathbb{N}] &(\\ \text{height (suc n) (fw a)} \equiv 0 \land \\ &((k : \mathbb{N}) \rightarrow k < \text{suc n} \rightarrow \neg (\text{height } k (fw x) \equiv 0))) \end{split}
```

The chain of an arrow o is **well-bracketed** when every arrow reachable from o is matched.

Proposition

Being well-bracketed for a reachable arrow is a proposition, which is independent of the choice of o.

The chain of an arrow o is **well-bracketed** when every arrow reachable from o is matched.

Proposition Being well-bracketed for a reachable arrow is a proposition, which is independent of the choice of o.

A chain is **well-bracketed** when each of its arrow is well-bracketed in the above sense.

A chain is well-bracketed when each of its arrow is well-bracketed.

Remark Since

```
Chains = Arrows / is-reachable-arr
```

in order for this definition to make sense:

- we need to eliminate to a set (by definition of chains as *quotients*): here, we eliminate to HProp, which is a set, of which being well-bracketed is an element!
- we need to show that this is independent of the choice of the representative for the origin o.

A chain is **well-bracketed** when each of its arrow is well-bracketed.

Remark Since

```
Chains = Arrows / is-reachable-arr
```

in order for this definition to make sense:

- we need to eliminate to a set (by definition of chains as *quotients*): here, we eliminate to HProp, which is a set, of which being well-bracketed is an element!
- we need to show that this is independent of the choice of the representative for the origin o.

Proposition

Given a well-bracketed chain c, we have an equivalence chainA c \simeq chainB c.

The two other cases

- switching chains
- slopes

are handled similarly.

Division by 2

Theorem For any two types A and B which are sets,

$$A \times 2 \simeq B \times 2 \rightarrow A \simeq B.$$

Our aim is now to generalize the theorem to the situation where A and B are arbitrary types (as opposed to sets).

We suppose fixed an equivalence $A \times 2 \simeq B \times 2$.

The set truncation

Given a type A, we write $\parallel A \parallel_0$ for its set truncation:

$$\|\bullet \bullet \bullet \bullet \bullet \circ \circ \|_0 = \bullet \bullet$$

The set truncation

Given a type A, we write $\parallel A \parallel_0$ for its set truncation:

$$\|\bullet\bullet\bullet\bullet\bullet\bullet\circ\square_\bullet\|_{\mathsf{O}}=\bullet\bullet\bullet\bullet$$

We have a quotient map

$$|_{-}|_{O}$$
 : $A \rightarrow || A ||_{O}$

The set truncation

Given a type A, we write $\parallel A \parallel_0$ for its set truncation:

$$\|\bullet - \bullet \bullet - \bullet - \bullet\|_0 = \bullet \bullet$$

We have a quotient map

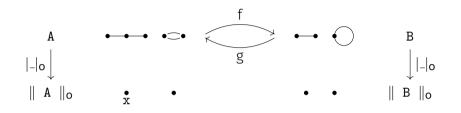
$$|_{-}|_{O}$$
 : $A \rightarrow || A ||_{O}$

The picture we should have in mind is

Given a : A,

- | a |o is its connected component,
- fiber $|_{-}|_{0} | a |_{0}$ are the elements of this connected component.

Equivalences and set truncation



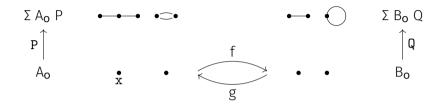
Proposition

Suppose given an equivalence $A \simeq B$ (with $f : A \rightarrow B$).

- There is an induced equivalence $\parallel~A~\parallel_{O}~\simeq~\parallel~B~\parallel_{O}.$
- Given $x~:~\parallel~A~\parallel_{o},$ we have an equivalence

fiber $|_{-}|_{0}$ x \simeq fiber $|_{-}|_{0}$ ($||||_{0}$ -map f x)

Equivalences and set truncation



Proposition

Given an equivalence $A_0 \simeq B_0$ (with $f : A_0 \rightarrow B_0$), and type families

 $P \ : \ A_O \ \rightarrow \ Type \ and \ Q \ : \ B_O \ \rightarrow \ Type, such that for x \ : \ A, we have$

 $P x \simeq Q (f x)$

Then

Reachability and equivalence

Proposition Given directed arrows a and b in \parallel dArrows \parallel_0 reachable from the other, we have

```
fiber |_{-}|_{0} a \simeq fiber |_{-}|_{0} b
```

Proof. We can define functions

 $\texttt{next}:\texttt{dArrows} \rightarrow \texttt{dArrows} \qquad \qquad \texttt{prev}:\texttt{dArrows} \rightarrow \texttt{dArrows}$

sending a directed arrow to the next one (in the direction), which form an equivalence, thus

```
fiber |_{-}|_{0} a \simeq fiber |_{-}|_{0} (|| next ||_{0} a)
```

by previous proposition and we conclude by induction.

Theorem Given types A and B, we have

 $A \times 2 \simeq B \times 2 \longrightarrow A \simeq B$

Proof.

Theorem Given types A and B, we have

 $A \times 2 \simeq B \times 2 \longrightarrow A \simeq B$ $A \times 2 \simeq B \times 2$

Proof.

Theorem Given types A and B, we have

Proof.

Theorem Given types A and B, we have

Proof.

 $\parallel A \parallel_0 \times 2 \simeq \parallel B \parallel_0 \times 2$

Theorem Given types A and B, we have

 $A \times 2 \simeq B \times 2 \quad \rightarrow \quad A \simeq B$ $A \times 2 \simeq B \times 2$

Proof.

$$\begin{array}{c} \mathbf{A} \times \mathbf{2} \simeq \mathbf{B} \times \mathbf{2} \\ \parallel \mathbf{A} \times \mathbf{2} \parallel_{\mathbf{0}} \simeq \parallel \mathbf{B} \times \mathbf{2} \parallel_{\mathbf{0}} \\ \parallel \mathbf{A} \parallel_{\mathbf{0}} \times \mathbf{2} \simeq \parallel \mathbf{B} \parallel_{\mathbf{0}} \times \mathbf{2} \\ \parallel \mathbf{A} \parallel_{\mathbf{0}} \simeq \parallel \mathbf{B} \parallel_{\mathbf{0}} \end{array}$$

Theorem Given types A and B, we have

Proof.

 $A \times 2 \simeq B \times 2 \longrightarrow A \simeq B$ $A \times 2 \simeq B \times 2$ $\| A \times 2 \|_{0} \simeq \| B \times 2 \|_{0}$ $\| A \|_{0} \times 2 \simeq \| B \|_{0} \times 2$ $\| A \|_{0} \simeq \| B \|_{0}$

Since this bijection sends a directed arrow a to a reachable one b,

fiber $|_{-}|_{0}$ a \simeq fiber $|_{-}|_{0}$ b

Theorem Given types A and B, we have

Proof.

 $A \times 2 \simeq B \times 2 \longrightarrow A \simeq B$ $A \times 2 \simeq B \times 2$ $\| A \times 2 \|_{0} \simeq \| B \times 2 \|_{0}$ $\| A \|_{0} \times 2 \simeq \| B \|_{0} \times 2$ $\| A \|_{0} \simeq \| B \|_{0}$

Since this bijection sends a directed arrow a to a reachable one b,

About the LPO

We required to work in classical logic, but it might be the case that a weaker principle (implied by excluded middle, but not provable in intuitionistic logic) could be sufficient.

Moreover, we could not show that having division by 2 implies LEM.

A good candidate is the **limited principle of omniscience** (LPO):

```
Given a sequence f : \mathbb{N} \rightarrow Bool,
```

- either \forall (n : \mathbb{N}) \neg (P n),
- or (n : ℕ) (P n).

Questions?