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Abstract
Natural numbers are isomorphism classes of finite sets and one can look for operations on sets which,
after quotienting, allow recovering traditional arithmetic operations. Moreover, from a constructivist
perspective, it is interesting to study whether those operations can be performed without resorting to
the axiom of choice (the use of classical logic is usually necessary). Following the work of Bernstein,
Sierpiński, Doyle and Conway, we study here “division by two” (or, rather, regularity of multiplication
by two). We provide here a full formalization of this operation on sets, using the cubical variant of
Agda, which is an implementation of the homotopy type theory setting, thus revealing some interesting
points in the proof. As a novel contribution, we also show that this construction extends to general
types, as opposed to sets.
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1 Introduction

Dividing sets without choice. Natural numbers can be defined as equivalence classes of
finite sets under isomorphism: they allow one to count the number of elements of a finite
set. Taking this point of view, it is natural to ask whether the usual operations on natural
numbers are quotients of reasonable corresponding operations on sets, which would moreover
generalize to infinite sets: these operations on sets have the advantage of being more explicit,
in the sense that we produce a bijection instead of a mere equality. For instance, it is clear
that addition and multiplication of natural numbers respectively correspond to disjoint union
and cartesian product of sets. Namely, writing |A| for the cardinal of a finite set A, i.e. its
equivalence class under isomorphism, we have |A ⊔ B| = |A| + |B| and |A × B| = |A| × |B|.
This process of finding operations which correspond to already known ones after quotienting
is also known as categorification in the context of (higher) category theory.

The next operation one might be tempted to implement is subtraction by 1 or predecessor
function (subtraction by a finite number can of course be obtained by iterating it). Since
predecessor of zero is not defined, we rather want to show that successor is regular, i.e. that
m + 1 = n + 1 implies m = n. In terms of sets, this means that from a bijection A ⊔ 1 ≃ B ⊔ 1,
we should be able to construct a bijection A ≃ B, where 1 denotes any set with one element:
this is easily performed (and detailed in Section 2). Similarly, one can try to construct “division
by 2”: given natural numbers m and n, we want to show that m × 2 = n × 2 implies m = n. In
terms of sets, this means that from a bijection A × 2 ≃ B × 2, we should be able to construct
a bijection A ≃ B (where, of course, 2 denotes any set with two elements). Well, again, this is
easily performed: if the sets are finite, we are essentially in the setting of natural numbers,
and if the sets are infinite we have A ≃ A ⊔ A ≃ B ⊔ B ≃ B. Case settled.

However, a constructivist will immediately notice that we have used two debatable principles
in the previous reasoning: the excluded middle (any set is finite or not) and the axiom of
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10:2 Division by two, in homotopy type theory

choice (in order to construct a bijection A ≃ A⊔A when A is infinite). It is thus natural to ask
whether such an operation can still be performed in a more constructive setting, i.e. without
resorting to one or both principles. Such questions can be traced back to the early 20th
century: Bernstein gave a proof in his PhD thesis in 1901 [1] (see also [7, chapter 14]) that
division by 2 could be performed in classical Zermelo-Fraenkel set theory without the axiom of
choice (ZF). His proof was later much simplified by Sierpiński in 1922 [16]. The generalization
to division by a finite cardinal was apparently solved in 1926 by Lindenbaum and Tarski [11],
but their solution was not published and got forgotten, and Tarski found in 1949 a new solution
to the problem which, this time, was published [18]. While working on this problem, Conway
and Doyle managed to reconstruct what they believe is Lindenbaum and Tarski’s original
proof [3]. This article, which we discovered after the recent death of the first author, was our
first introduction to the subject, and we mostly follow the proof given there: it is written
in a delightful semi-formal way and we urge the reader to have a look at it. Since then, the
construction of the division was refined and simplified [4, 15] and variants were explored [12].

As mentioned earlier, most efforts were concentrated on constructing division without the
axiom of choice, but one can also wonder whether the excluded middle is necessary. The
answer is unfortunately positive: this was shown in [17] by exhibiting a non-boolean topos in
which multiplication by 2 is not regular.

Formalizing division by two. In this paper, we present a full formalization, in the Agda
proof assistant, of division by 2, closely following Conway and Doyle’s proof [3], whose code is
publicly available [13]. Before going any further, let us first answer the obvious question: why
would we want to do such a thing?

A first reason is to make sure that the results do actually hold. While there is no particular
reason to have doubts about the validity of the constructions and associated proofs, the two
primary sources [16, 3] are respectively written in a very concise way and in an informal way
and it is reassuring to have a fully detailed proof, especially since it is easy to unknowingly
use a non-constructive principle such as the axiom of choice. Moreover the point of being
constructive is precisely to be able to construct thing (or, more precisely, programs), which
we put in application here. Finally, detailing the proof, enables one to formulate interesting
conjectures and opens research tracks.

The formalization is performed in the recent cubical variant of Agda [20] which is based on
the interpretation of homotopy type theory developed by Coquand and collaborators [2]. The
primary reason is that it offers the possibility of defining higher inductive types or HITs (those
are like regular inductive types where equalities can freely be added) such as propositional
truncation, quotients or integers, which we will see allow us to elegantly express the concepts
required in order to formalize our proof. This setting validates the univalence axiom, meaning
that we actually work in homotopy type theory or HoTT [19]. Most of the types we use are
however actually sets (contrarily to what we first hoped, see below), and this development
shows that HoTT can be very relevant for the formalization of set-theoretic results: in addition
to bringing in HITs, as mentioned above, it also allows transporting elements of dependent
types along equalities, in a computational way, and we make much use of this here. We believe
that this development also serves as a good illustration that cubical Agda and the associated
library are mature enough to formalize some non-trivial properties in traditional (set-theoretic)
mathematics.

The proof we provide roughly takes 3000 lines of Agda, whereas it takes roughly 6 pages
both in [16] and in [3, section 5] (if we exclude full-page hand-drawn figures), which should
give the reader a good idea of how many statements are left implicit in usual proofs. The
reason why we stopped at 2 and did not formalize division by 3 (or the more general case of
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dividing by a finite set, which is close) is that, while the ideas involved in the construction are
difficult to come up with, we do not expect the formalization to be significantly more difficult
although it should be significantly longer.

Cantor-Bernstein-Schröder. As noted in [3], the construction of the division by two is
closely related to the Cantor-Bernstein-Schröder (CBS) theorem. We recall that it states that
given two sets A and B equipped with injections A ↪→ B and B ↪→ A, there is a bijection
A ≃ B. The proof can be performed in classical set theory without resorting to the axiom of
choice. It has been known for some time that classical logic is necessary here: the theorem holds
in a topos with a natural number object if and only if the topos is boolean [8, lemma D.4.1.12].
More recently, it has been shown that CBS is actually equivalent to the excluded middle (the
new part being of course the left-to-right implication) [14]. Also recently, the CBS theorem
has been generalized in the setting of homotopy type theory, it has been shown by Escardó
(and also formalized in Agda) that any two types A and B equipped with mutual embeddings
(which suitably generalizes the notion of injection) are equivalent [6]. Similarly, here, we show
that division by two generalizes from sets to arbitrary types.

As for comparison, the situation regarding division by two is less explored. A non-boolean
topos in which division by two cannot be performed was exhibited [17], showing that excluded
middle is necessary to carry on the proof. However, we are not aware of an explicit internal
proof that division by two implies excluded middle, so that we leave it as an interesting open
question.

Plan of the paper. We first explain the baby case of subtraction by 1 in Section 2, recall
Conway and Doyle’s construction of division by 2 in Section 3, and the basics of homotopy
type theory in Section 4. Our formalization is detailed in Section 5, and we explain the
generalization to arbitrary types in Section 6.

2 Subtraction by 1

As a baby version of division by two, let us first present subtraction by one. The theorem we
are aiming at proving is the following one:

▶ Theorem 1. In intuitionistic ZF set theory (without choice), given two sets A and B, if
there is an isomorphism A ⊔ 1 ≃ B ⊔ 1, then there is an isomorphism A ≃ B.
Proof. We denote by ⋆ the unique element of 1. Writing f : A ⊔ 1 ⇆ B ⊔ 1 : g for the
two components of the isomorphism, we need to construct an isomorphism f ′ : A ⇆ B : g′.
We define f ′(a) = f(a) if f(a) belongs to B and f ′(a) = f(⋆) other- A B

⋆ ⋆fwise (necessarily f(⋆) belongs to B since, otherwise, we would have
f(a) = ⋆ = f(⋆) and f would fail to be injective). Graphically, the
construction of f ′ from f can be represented as on the right, which
should be familiar to people knowledgeable about traced monoidal categories. The function g′

can be defined similarly, and the two can be checked to be inverse of each other since f and g

are. ◀

The above proof can easily be formalized in Agda [13, Sub1.agda], let us detail it a bit as
an illustration. We first define an operation which to an injective function f : A ⊔ 1 → B ⊔ 1
associates its “restriction” f ′ : A → B as defined in the above proof. Naively, we are tempted
to define f ′(a) by case analysis (i.e. pattern matching) on f(a) and then by case analysis
on f(⋆) when f(a) = ⋆. However, we cannot conclude by injectivity when f(a) = f(⋆)
because of the way pattern matching works in Agda: when matching on f(a), all occurrences
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10:4 Division by two, in homotopy type theory

of f(a) are replaced by its value, but we do not keep the equality between f(a) and its
value, which we need here. The trick to overcome this, consists in matching not on f(a)
directly but on the singleton f(a), where the singleton of an element a of type A is singl a =
Σ[ x ∈ A ] (a ≡ x), the type of pairs consisting of an element x of A together with an
equality a ≡ x (we write toSingl a for the element a trivially seen as an element of this
type). The restriction operation is thus defined as

restrict : {A B : Type} (f : A ⊔ ⊤ → B ⊔ ⊤) → isInjection f → A → B
restrict f inj a with toSingl (f (inl a))
... | inl b , p = b
... | inr tt , p with toSingl (f (inr tt))
... | inl b , q = b
... | inr tt , q = ⊥.rec (inl̸≡inr (inj (p · sym q)))

where inl and inr are the canonical injections in the coproduct and ⊤ is the type with
one element tt. In the last case, we combine the equalities p : f (inl a) ≡ inr tt and
q : f (inr tt) ≡ inr tt in order to obtain an equality f (inl a) ≡ f (inr tt), from
which we deduce by injectivity (the argument inj) that inl a ≡ inr tt which is impossible
since the two components of a coproduct are disjoint (lemma inl̸≡inr). Finally, we can
construct the “predecessor” we were looking for, by applying twice the above restriction
function in order to construct the components of the isomorphism, and showing that they are
mutually inverse (this requires reasoning by case analysis and using the same singleton trick
as above):

predecessor : {A B : Type} → A ⊔ ⊤ ≃ B ⊔ ⊤ → A ≃ B

What have we gained by performing the formalization? We are now sure that it is entirely
formal and that it does not use excluded-middle, since Agda works in intuitionistic Martin-Löf
type theory (looking at the proof of Theorem 1 it is not immediately obvious that we are not
using reasoning by contraposition in an essential way for instance). In a similar way, we can
observe that this proof is still valid in the setting of homotopy type theory (or, more generally,
without assuming axiom K). We thus obtain a generalization of Theorem 1: the operation −⊔1
is not only regular for sets, but also for spaces (i.e. interpretations of types in homotopy type
theory [9]). It also has some interesting consequences from the point of view of type theory.
For instance, given a natural number n, we write Fin n for the canonical set {0, 1, . . . , n − 1}
with n elements. Formally, it is defined as the type Fin n = Σ[ k ∈ N ] (k < n) of natural
numbers strictly below n. It is easy to construct an isomorphism Fin (suc n) ≃ Fin n ⊔ ⊤
between the canonical set with n + 1 elements and the canonical set with n elements with one
element added. It is then easy to deduce by induction (on m and n) that the type constructor
Fin is injective, in the sense that Fin m ≃ Fin n implies m ≡ n. Note that the equivalence
in the argument can be replaced by an equality if we furthermore assume univalence (this fact
can also be proved without univalence, but the known proofs are much more involved [10]).

3 The Conway-Doyle-Sierpiński construction of division by 2

Let us first describe briefly and informally the way division by 2 can be performed in classical
ZF set theory without choice. We are mostly following the exposition given in [3], because
of the nice “geometric” interpretation given there, but the construction is essentially quite
similar to the predating one [16]. Suppose given two sets A and B and a bijection

f : A × 2 ⇆ B × 2 : g (1)
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where 2 = {−, +} is a set with two elements. Our goal here is to perform division by 2,
i.e. construct from this a bijection A ≃ B.

The graph of a bijection. The data (1) can be interpreted as a directed graph whose
vertices are the elements of a quotient of (A × 2) ⊔ (B × 2) and whose edges are the elements
of A ⊔ B. Namely, we see an element a ∈ A as an arrow with (a, −) as source and (a, +) as
target, and similarly for B. We quotient the set of vertices and identify any two vertices which
are related by the above bijection. For instance, with A = {a, a′}, B = {b, b′}, f(a−) = b′−,
f(a+) = b+, f(a′−) = b′+ and f(a′+) = b−, the graph we construct is

·a− = b′−
·a+ = b+

·
a′− = b′+

· b− = a′+
a b

b′ a′
(2)

It can be noted that, in such a graph, every (undirected) path alternates between edges in A

(drawn with plain lines) and B (drawn with dashed lines), and that any vertex is incident to
exactly two edges (and this exactly characterizes the graphs constructed in this way).

Chains. We can partition the edges of the graph into connected components, that we call
chains: any two edges in the same chain are related by a non-directed path. In order to
construct the bijection A ≃ B, it is clearly enough to construct, for each chain, a bijection
between the elements in A and those in B. It can be observed that, given a chain, if we fix an
origin edge e in this chain, we have a canonical way of constructing such a bijection: every
edge in the chain is reachable by a non-directed path, and we send each edge in A to the
edge in B just “after” (according to this path) and each edge in B to the edge just “before”
(according to this path). In other words, our bijection swaps each element of A (resp. B)
with the next (resp. previous) one. Note that in order to make sense of the the notion of
previous/next element in a chain, we need to fix a global orientation on the chain, which is
canonically done by fixing the origin edge e. For instance, if we take a as origin in (2), the
edge a′ is reached by the path aba′ and therefore the swapping bijection sends it to the “next”
edge, which is b′ and dually b′ is sent to a′ (and similarly, the bijection exchanges a and b).
However, if we had taken b as origin, the bijection would have swapped a with b′ and a′ with
b.

Constructing the bijection. By the previous discussion, all we are left to do in order to
construct a bijection between A and B is to pick an element in each chain. However, we do not
have any immediate way of performing this since we are not accepting the use of the axiom of
choice here. Note that this does not mean that we cannot perform this, only that we are not
allowing to do this “by magic”: in order to exhibit an element, we must construct it explicitly.
The insight of Conway and Doyle to do so is the following one. In a given undirected path, we
can interpret an edge taken forward as an “opening bracket” and an edge taken backward as
a “closing bracket” (for some reason, this is the inverse of the convention taken in [3]). We
say that a path is well-bracketed, when the sequence of brackets it induces is, in the usual
sense. We say that an edge e is matched when there is a path starting with e as opening
bracket, which is well-bracketed: the edge closing the bracket corresponding to the first edge
is called the matching edge. For instance, in (2), the edge a is matched because the path ab is
well-bracketed (it corresponds to the sequence “()” of brackets), but the edge b′ is not: for
instance, the path b′a′ba is not well-bracketed since it corresponds to the sequence “(()(”. It is
not difficult to see that that for a matched edge in A, the matching edge is always in B, and
conversely. Consider a given chain, we have three cases
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10:6 Division by two, in homotopy type theory

if every edge is matched then there is no obvious way to pick a particular one, but we can
send each edge to the matching one, and this provides a bijection between the elements
in A and the elements in B of the chain,
otherwise, if we remove all matched edges then the chain must be of one of the following
forms:

· · · · ·· · · · · · · · · · · · ·· · · · · ·e e′
· · · · ·· · · · · ·

(a) (b) (c)
(3)

since once convinces himself that it would otherwise contain a matched edge
in the case (b), the edges e and e′ are called switching edges, one of them is in A: we
can take it as origin, and the associated swapping bijection as described above provides
a bijection between the elements in A and those in B in the chain,
in the cases (a) and (c), all the edges are oriented in the same direction and we can take
the swapping bijection associated to any of those (the bijection will not depend on the
choice of the origin).

While the above reasoning can reasonably be considered as a proof, the reader should
note that there are many points which are not entirely precise. For instance, when an edge is
reachable from another there might be multiple paths between them (for instance, when the
graph has loops) and we should make sure that our reasoning does not depend on the choice
of a path. Also, in the above drawings (3), we have not exactly drawn the possible chains
but the possible maximal paths in the chain, since the chain itself might have loops in the
cases (a) and (c). Also, when we consider edges above we actually often implicitly consider
them traveled in a particular direction. Also, in the last case, it is a bit puzzling that we
cannot pick an edge on a chain (because we are not accepting the axiom of choice), but we
can perform a construction using an edge of the chain as long as the result does not actually
depend on the choice of this edge. The formal developments performed here should hopefully
clarify all those points (and more).

4 A primer in homotopy type theory

In this section, we make a brief reminder of the concepts in homotopy type theory that we are
going to use and refer the reader to the reference book [19] for details: in a sentence, we work
in a variant of Martin-Löf type theory validating the univalence axiom and supporting higher
inductive types. The precise formalization of it we use here is the one provided by the cubical
variant of the Agda proof assistant and the associated library [20].

Equality. We write Type for the universe of small types and call types its elements (for
simplicity, we do not explicitly deal with universe levels here). Given a type A and two
terms x and y of this type, we write x ≡ y for the type of equalities (or identities or paths)
between them: this relation can internally be shown to be an equivalence relation. A type is
a proposition when any two of its elements are equal, i.e. it satisfies the predicate isProp A
defined as (x y : A) → x ≡ y. Similarly, a type is a set when any two paths between any
two elements are equal (otherwise said, the type x ≡ y is a proposition for any two terms x

and y of this type). One of the main properties of equality is

transport : {A B : Type} → A ≡ B → A → B

which expresses that when two types A and B are equal any element of the first can be seen as
an element of the second.
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Equivalences. A map f : A → B is an equivalence when there exists a map g : B → A
such that both g ◦ f and f ◦ g are identities (for subtle reasons, the actual definition of
equivalence actually has to be slightly different from this [19, chapter 4], but this will play
no role here). Given such a map, we say that the types A and B are equivalent, what we
write A ≃ B. Given two types A and B, there is a canonical map A ≡ B → A ≃ B and the
univalence axiom states that this map is itself an equivalence: homotopy type theory (HoTT)
postulates this axiom. One can construct a model of HoTT where types are interpreted not
as booleans or sets, but as spaces [9].

The axiom of choice. One has to be careful when postulating non-constructive principles
in HoTT. Traditionally, classical logic is defined as validating the excluded-middle A ∨ ¬ A
for every type A. Postulating this is inconsistent with the univalence axiom [19, section 3.4],
however it is consistent to postulate the excluded middle for every proposition (as opposed to
type) A, which is what we mean here by classical logic. Also traditionally, in set theory, the
axiom of choice states that every family of non-empty sets it non-empty. In the appropriate
type theoretic formulation of this, rather than saying that a set A is non-empty, we want to
express that “we know that there exists an element of A”, which corresponds to the type
∥ A ∥, called the propositional truncation of A (see below). The formulation of the axiom of
choice is thus [19, section 3.8]:

(A : Type) (f : A → Type) → ((x : A) → ∥ f x ∥) → ∥ ((x : A) → f x) ∥

It is known that both axioms and their negations are consistent with univalence.

Higher inductive types. It is common for functional languages to feature inductive types,
whose elements are freely generated by constructors: typically, natural numbers are generated
by zero and successor. Cutting-edge implementations of HoTT, such as the cubical variant of
Agda, support the more general higher inductive types [19, chapter 6] which allow, in addition
to traditional constructors, constructors for equalities between the elements of the type. For
instance, the propositional truncation operation ∥_∥ mentioned above can be defined by

data ∥_∥ (A : Type) : Type where
|_| : A → ∥ A ∥
squash : (x y : ∥ A ∥) → x ≡ y

which indicates that is has one traditional constructor |_| allowing to see any element of A as an
element of ∥ A ∥, and a constructor squash which adds an equality between any two elements
of ∥ A ∥: thanks to this last constructor, ∥ A ∥ can always be shown to be a proposition.
The elimination principle states that any function A → B, where B is a proposition, induces
a function ∥ A ∥ → B. One can similarly define the set truncation ∥ A ∥0 of a type which
produces a set from A in a universal way. The elimination principle states that a function
A → B sending elements in relation to equal ones and where B is a set induces a function
∥ A ∥0 → B. Another typical construction which can be defined as a higher inductive type is
the quotient set A / R of a type A by a relation R, of type A → A → Type (this construction
internally uses set truncation in order to produce a set).

5 Implementation in Agda

We now present our formalization in cubical Agda of the division algorithm described in
previous section for sets (and generalize it to arbitrary types in next section). The interested
reader can access the code on the repository [13], which should be compatible with Agda
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10:8 Division by two, in homotopy type theory

2.6.1 and the version 0.2 of the cubical library, and takes more than 3000 lines of code. We
do not detail the syntax of Agda, but it should hopefully be sufficiently close to the usual
mathematical notations to be readable by a non-expert. For full disclosure, the proof is mostly
complete apart from a few minor points: the integer module of the standard library is not
very complete and we postulated most of the standard properties (e.g. the group structure),
a few simple combinatorial lemmas were not shown due to lack of time (they always come
with a detailed explanation and should be completed soon, but the lack of automation in
Agda sometimes make simple properties long to show). Also, some parts of the proof in
the definition of the swapping bijection cannot be checked in reasonable time: we have a
hole whose type indicates a property to be shown, we have a lemma which shows this exact
property, but putting the lemma into the hole makes the typechecker loop. This can most
likely be fixed by preventing the reduction in some parts of the proofs (we have successfully
done this in other places, by using the abstract keyword). The main result is a constructive
proof of the following theorem in HoTT with excluded-middle (without supposing the axiom
of choice), where 2 is a type with two elements (e.g. the booleans):

▶ Theorem 2. Given two types A and B which are sets and an equivalence A × 2 ≃ B × 2,
we have an equivalence A ≃ B.

Arrows. In the following, we fix two sets A and B and the equivalence A × 2 ≃ B × 2, whose
components are denoted f : A × 2 → B × 2 and g : B × 2 → A × 2. We write src and
tgt for the two elements of 2, because they are thought of as indicating the end of an arrow:
either source or target. Following the description of the data as a graph given in Section 3, we
define the type of arrows as Arrows = A ⊔ B: an arrow is either an element of A or B and we
define its polarity to be negative or positive accordingly. Moreover, the type of ends is Ends =
Arrows × 2 (this is the collection of all ends of all our arrows), see [13, Arrows.agda]. We
thus think of an element a of Arrows as on the left:

·(a , src) · (a , tgt)a ∗ ·fw a · ∗bw a

All the arrows we consider are directed (in the sense that they have a source and a target)
and we keep the terminology of directed arrow for an arrow equipped with a traveling direction,
which is either forward or backward (we sometimes speak of a non-directed arrow for an arrow
without a choice of direction). In practice, it is convenient to encode the direction of an arrow
by its starting end, so that we define the type of directed arrows as dArrows = Ends, with the
convention that (a , src) (resp. (a , tgt)) is the arrow a traveled forward (resp. backward)
and write fw (resp. bw) for the function of type Arrows → dArrows orienting an arrow forward
(resp. backward), as indicated on the above picture (the starred end is the one which is used
to identify the direction, and the triangle in the middle of the arrow represents the direction).
We also write arrow : dArrows → Arrows and end : dArrows → 2 for the two projections,
respectively associating to a directed arrow its underlying arrow and end. The discussion of
previous section, should have convinced you that the whole difficulty of dividing by 2 lies in
the ability of determining a consistent orientation of the arrows in each chain.

Reachability. We denote by op : dArrows → dArrows the function which reverses the
orientation of a directed arrow (by swapping src and tgt in the second component). We can
then define the function next : dArrows → dArrows that associates to each directed arrow
the next directed arrow when traveling it in the chosen direction. For instance, suppose given
an arrow a in A taken backward: the next arrow b can be computed by first applying op (in
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order to “travel across a”) and then apply f in order to obtain the end which corresponds to
the next directed arrow, which is necessarily in B:

·
(a,tgt)

·
(a,src)

·
(b,src)

·
(b,tgt)

a b
op

op

f

g

op

op

Other cases are handled similarly, and we can dually define a prev function which computes
the previous arrow. From previous functions, by induction we can define function

iterate : Z → dArrows → dArrows

which gives the arrow reached after traveling for n steps (with the convention that we travel
in the opposite direction of the arrow when n is negative). This defines an action of Z on
directed arrows, in the sense that iterate 0 is the identity, iterate (m + n) ≡ iterate
n ◦ (iterate m) and iterate n ◦ op ≡ op ◦ (iterate (- n)) for m and n integers. It
can also be shown that it is alternating, in the sense that iterate n preserves the polarity
when n is even and inverts it when it is odd.

Iteration allows us to define a reachability relation on directed arrows as follows:

reachable : dArrows → dArrows → Type
reachable e e’ = Σ[ n ∈ Z ] (iterate n e ≡ e’)

Two arrows e and e’ are reachable when the second can be obtained by iterating from the
first. Note that a proof of reachable e e’ is the data of an integer representing the number
of steps between e and e’ (which is essentially the same as giving a path between e and e’ in
the graph since every vertex has exactly two neighboring edges), together with a proof that
this is the case. It is also useful to consider the following variant defined by

is-reachable e e’ = ∥ reachable e e’ ∥

which is closer to the reachability in the usual sense: it asserts the existence of a path between
e and e’, without a priori providing a particular one. One can also define a variant, which
expresses the reachability of arrows (in Arrows) with the relation

reachable-arr a b = Σ[ n ∈ Z ] (arrow (iterate n (fw a)) ≡ b)

which expresses that when traveling from the arrow a (oriented in the forward direction, but
this plays little role since we can travel forward [when n is positive] or backward [when n is
negative]) one can reach a directed arrow which is b (with some direction). And of course,
one can similarly define a relation is-reachable-arr by propositional truncation. Those
relations can easily be shown to equivalence relations.

Revealing reachability. Given any two directed arrows e and e’, it is easy to show the
implication reachable e e’ → is-reachable e e’: if we are provided with a path between
e and e’ then there exists one between e and e’. What is perhaps more surprising is that
the converse implication holds, i.e. if there exists a path between the arrows, we can always
construct it (we like to think that this operation reveals the path):

▶ Proposition 3. Given directed arrows e and e’, is-reachable e e’ implies reachable e e’.
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Proof. It is folklore that N is searchable (see [5] and [13, Nat.agda]): given a predicate
P : N → Type such that P n is a decidable proposition for every natural number n, we have
that ∥ Σ N P ∥ implies Σ N P (if there is a natural number satisfying P then we can construct
it). Namely, one can consider the predicate Q on natural numbers defined by

Q n = P n × ((m : N) → P m → n ≤ m)

which expresses that n is a smallest natural number satisfying P. Since N is a set and the order
is total, the type Σ N Q is a proposition. We can therefore eliminate ∥ Σ N P ∥ to it, from
which we can easily deduce an element of Σ N P by projection.

Since Z and N are isomorphic (for instance, via the map sending n to 2n or −2n + 1
depending on whether n is positive or negative), they are equal by univalence, and Z is
also searchable. All we are left to show is that, for every integer n, the property P n =
iterate n e ≡ e’ is a decidable proposition. Since A and B are supposed to be sets, the type
dArrows = (A ⊔ B) × 2 is also a set and thus P n is a proposition (as an equality between
two elements of a set). It is moreover decidable because we assume the excluded middle. ◀

Note that the proof uses both our main hypothesis: that A and B are sets and that the
excluded-middle holds. A similar property of course holds for reachable-arr.

Orientation. We have already noted that fixing an edge e0 induces an orientation for every
reachable arrow e, namely the traveling direction when reaching the edge e from e0. Another
important property is that this orientation is well-defined, in the sense that it does not depend
on the actual path from e0 to e:

▶ Proposition 4. Given directed arrows e0, e and e’, such that reachable e0 e and
reachable e0 e’ and arrow e ≡ arrow e’, we have end e ≡ end e’.

Proof. By symmetry and transitivity of reachability, we know that e’ is reachable from e
and we reason by induction on the length n of the path from e to e’. If n = 0, the result is
immediate. The case n = 1 is impossible because paths are alternating and e and e’ have the
same polarity because they have the same underlying arrow. Otherwise, we reason by case
analysis on the respective ends of e and e’: if they are the same then we are done. Otherwise,
the path is of the form e · e1 · · · · · e’1 · e’ and we can apply the induction hypothesis
to the path e1 · · · · · e’1 and from which we deduce the result. ◀

Chains. Our goal is now to give a type which describes chains. The chain of a directed arrow
e is the set of directed arrows which are reachable from it. Naively, this would suggest defining
the type of chains as

Σ[ e ∈ dArrows ] (Σ[ e’ ∈ dArrows ] (is-reachable e e’))

i.e. the sets of arrows e’ which are reachable from some arrow e. However, this type is rather
the type of pointed chains, i.e. the type of chains together with a distinguished arrow, and we
have explained in the introduction that this choice of distinguished point is precisely the crux
of our construction.

Fortunately, we have access to quotient types and we can define the directed chains as the
quotient of arrows under the reachability predicate:

dChains = dArrows / is-reachable

As a side note, although the above definition is slightly more convenient (see below), we
would have obtained an equivalent type if we had defined chains as dArrows / reachable:
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this is a general fact that quotienting a type under a relation or under the propositional
truncation of the relation give equivalent types. There is a non-directed analogous definition
for (non-directed) arrows, and we define the type of (non-directed) chains as:

Chains = Arrows / is-reachable-arr

The function delements : dChains → Type, which associates to a directed chain its elements,
i.e. the directed arrows in the equivalence class, can be defined as delements c = fiber [_]
c, where fiber f y = Σ[ x ∈ A ] (f x ≡ y) associates to a function f and an element
y its homotopy fiber (the type of preimages of y under the function) and [_] : dArrows →
dChains is the quotient map (a similar function elements can be defined for non-directed
chains).

▶ Proposition 5. Any two arrows in the same chain are reachable one from the other.

Proof. The relation is-reachable-arr being proposition-valued (since it is defined by propo-
sitional truncation), it is effective, which means any two directed arrows in the same directed
chain are related by is-reachable-arr, and thus by reachable-arr thanks to Proposi-
tion 3. ◀

Similar properties hold in the directed variant, but we will use the above proposition.

Pointed chains. Given a directed arrow o (for “origin”), we think of the directed chain
[ o ], i.e. its equivalence class, as being the pointed chain associated to o. It is not difficult
to construct a map

delements [ o ] → elements [ arrow o ]

which takes a directed arrow reachable from o to the underlying arrow, which is reachable
from the underlying arrow of o. More, interestingly, for every (non-directed) arrow o, there is
map

elements [ o ] → delements [ fw o ]

Namely, given an element of elements [ o ], i.e. an arrow a such that [ o ] ≡ [ a ],
there is an integer n such that a can be obtained from o by iterating n times, and we define the
image as the directed arrow obtained by iterating n times from fw o. By using Proposition 4,
one can show that these maps form an equivalence, thus showing that picking an arrow in a
non-directed chain equips it with a canonical orientation:

▶ Proposition 6. Given a non-directed arrow o, there is an equivalence

elements [ o ] ≃ delements [ fw o ]

Well-bracketed chains. Suppose given a directed arrow e. Given an integer n, the height of
the path of length n is the sum for i between 0 (included) and n (excluded) of the weight of
the directed arrow obtained by iterating i times from e, this weight being 1 (resp. −1) if it is
in the forward (resp. backward) direction. For instance, the following path of length 4 has
height 2:

· · · · ·1 1 −1 1

We say that a (non-directed) a is matched when there is a positive integer n such that the
directed arrow e obtained by iterating n times from fw a (the matching arrow) is at height 0
and all intermediate arrows have strictly positive height:
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matched a = Σ[ n ∈ N ] (height (suc n) (fw a) ≡ 0 ∧
((k : N) → k < suc n → ¬ (height k (fw x) ≡ 0)))

The chain of a (non-directed) arrow o is well-bracketed when every arrow a reachable from o
is matched.

▶ Proposition 7. Being well-bracketed for a reachable arrow is a proposition, which is
independent of the choice of o.

Proof. Being a proposition follows from the fact that any two matching of a given arrow
are necessarily equal, which follows from the definition of matching. Independence of the
origin follows from the fact that any two possible origins are reachable from the other by
Proposition 5. ◀

Given a non-directed chain c, we finally say that it is well-bracketed when its elements are:
reading an arrow in the forward (resp. backward) direction as an opening (resp. closing)
bracket, this amounts to say that the resulting word is well-bracketed in the traditional
acceptation. In order for this definition to make sense, we need to eliminate to a set (because
quotient is defined by set truncation): here, we eliminate to the type of propositions (also
called HProp) which is known to be a set, of which being well-bracketed is an element by
Proposition 7. In order to use the elimination principle, we must show that the result does
not depend on the choice of the element in the equivalence class, which is precisely the second
part of Proposition 7 (other properties on chains below are defined in a similar way, even
though we do not detail this).

▶ Proposition 8. Given a well-bracketed chain c, we have an equivalence chainA c ≃
chainB c.

Proof. The function sending an arrow to the matching one (which exists because the chain
is well-bracketed and is unique by Proposition 7) can be shown to be involutive and swaps
polarity because a matching arrow is necessarily at even distance from the original arrow. As
in the previous definition, we must show that the type chainA c ≃ chainB c is a set (which
is the case essentially because A and B are sets) and that the definition does not depend on
the choice of the element. ◀

Switching chain. A (non-directed) arrow a is switch when it is not matched, and the next
non-matched arrow (going in the backward direction indicated by the arrow) is in the opposite
direction. For instance, the arrow a below is switching because the next arrow which is not
bracketed, namely b, is in the opposite direction:

· · · · · · · · ·a ( ) b

Formally, this can be defined as follows [13, Switch.agda]:

switch a = ¬ (matched a) ∧ Σ[ n ∈ N ] (
let b = iterate (fromN n) (bw a) in
(end b ≡ src) ∧ ¬ (matched (arrow b)) ∧
((k : N) → suc k < n → matched (arrow (iterate (fromN (suc k)) (bw a)))))

It is easy to show that being switch for an arrow is a proposition. Finally, we say that a chain
is switching when one of its elements is a switch arrow in A.

▶ Proposition 9. The property of being switching for a chain is a proposition.
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Proof. This amounts to show that there is at most one switch arrow in a chain. First note
that it is important that we require that the switch arrow we are looking for is in A (otherwise,
the associated arrow, which can be shown to be in B, would also be switch). If there were two
switch arrows, by case analysis on their relative positions, one of them can be shown to be
matched, thus contradicting the definition. ◀

Slopes. We say that a directed arrow o is sequential when any two directed arrows which are
reachable from o and not matched are oriented in the same direction. Formally,

sequential o = ((m n : Z) →
let a = iterate m o in
let b = iterate n o in
¬ (matched (arrow a)) → ¬ (matched (arrow b)) → end a ≡ end b)

This definition can be shown to be independent from the choice of o in a chain and from its
direction, so that we can define the notion of sequential (non-directed) chain. Finally, we say
that a chain c is a slope when it is sequential and there exists one of its elements which is not
matched, in the sense that we have

∥ Σ[ a ∈ elements o ] ¬ (matched a) ∥ (4)

▶ Proposition 10. The property of being a slope for a chain is a proposition.

The trichotomy. Because being well-bracketed and being switching are propositions for
a chain, we can use the excluded middle on those. Moreover, it can be shown that a chain
which is not switching is sequential. From there, we easily deduce the following principle of
“trichotomy” [13, Tricho.agda]::

▶ Proposition 11. Any (non-directed) chain is either well-bracketed, switching or sequential.

Swappers. Given a non-directed chain c, we write chainA c (resp. chainB c) for the
elements in A (resp. B) of the chain. We use similarly the notations dchainA c and dchainB c
for the elements of a directed chain c. Since the elements in a chain a canonically oriented by a
choice of the origin (Proposition 6), we have the following relationship, for every (non-directed)
arrow o:

chainA [ o ] ≃ dchainA [ fw o ]

(and similarly for the component B). Given a directed arrow o, one can construct an equivalence

dchainA [ o ] ≃ dchainB [ o ]

by sending each element in A (resp. B) of the chain [ o ] to the next (resp. previous) element.
By the above, for every non-directed arrow o, we thus have an equivalence

chainA [ o ] ≃ dchainA [ fw o ] ≃ dchainB [ fw o ] ≃ chainB [ o ]

This equivalence can be shown to be independent of the choice of o in its reachability class,
and this thus induces a function

(c : Chains) → elements c → chainA c ≃ chainB c (5)
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Moreover, when we have a chain which is a slope, we can also build such a bijection

(c : Chains) → slope c → chainA c ≃ chainB c (6)

In order to construct it, we essentially need to show that the bijection (5) does not depend on
the choice of the non-matched element of the chain c in order to eliminate the propositional
truncation (4).

Chainwise bijection. We are now in position of proving our main theorem. We first observe
that we can build the equivalence we are looking for “locally”, by which we mean “chain by
chain”, in the following sense:

▶ Proposition 12. If, for every chain c we have chainA c ≃ chainB c, then A ≃ B.

Proof. Given a relation R on a type A, the type is the union of its equivalence classes in the
sense that we have A ≃ Σ[ c ∈ A / R ] (fiber [_] c). The result can be deduced from
this and standard equivalences. ◀

▶ Theorem 2. Given two types A and B which are sets and an equivalence A × 2 ≃ B × 2,
we have an equivalence A ≃ B.

Proof. By Proposition 12 is it enough to construct an equivalence chainA c ≃ chainB c
for any chain c. By Proposition 11, such a chain is either well-bracketed, in which case we
conclude by (8), or swapping, in which case we conclude by (5) applied to the swapping arrow,
or slope, in which case we conclude by (6). ◀

6 Generalization to arbitrary types

We bring here our main novel contribution by showing that division extends to arbitrary types
(as opposed to sets), whose main arguments are formalized in [13, Spaces.agda]. The proof is
based on Theorem 2 and the following observation.

Given a type A, we write ∥ A ∥0 for its set truncation and |_|0 : A → ∥ A ∥0 for the
quotient map. Given an element a of A, we think of | a |0 as the connected component of a
and fiber |_|0 | a |0 as the elements of this connected component, which can be justified by
the fact that this type is equivalent to Σ[ a’ ∈ A ] ∥ a ≡ a’ ∥, i.e. the elements of A for
which there exists a path to a. The following two propositions will allows us to work with
equivalences connected component by connected components, i.e. fiberwise with respect to
|_|0:

▶ Proposition 13. An equivalence e : A ≃ B with underlying function f : A → B induces,
for every connected component x : ∥ A ∥0, an equivalence

fiber |_|0 x ≃ fiber |_|0 (∥∥0-map f x)

▶ Proposition 14. Given an equivalence e : A ≃ B with underlying function f : A → B,
and type families P : A → Type and Q : B → Type, which are pointwise equivalent, in the
sense that P x ≃ Q (f x) for every x : A, the total spaces are equivalent: Σ A P ≃ Σ B Q.

Now, suppose fixed two arbitrary types A and B. The type ∥ dArrows ∥0 = ∥ (A ⊔ B) × 2 ∥0
of connected components of directed arrows and the type (∥ A ∥0 ⊔ ∥ B ∥0) × 2 of arrows
in connected components are canonically equivalent (and we implicitly identify the two here)
because set truncation commutes with disjoint union and products with sets.
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▶ Proposition 15. Two directed arrows a and b in ∥ dArrows ∥0 which are reachable from
one another have the same connected components: fiber |_|0 a ≃ fiber |_|0 b.

Proof. By recurrence on the length of path and symmetry, it is enough to show the result in
the case where b is the next arrow after a. The function next : dArrows → dArrows is easily
shown to be an equivalence (with prev as inverse) and thus induces an equivalence between
fiber |_|0 a and fiber |_|0 (∥ next ∥0 a) by Proposition 13. ◀

▶ Theorem 16. Given two types A and B and an equivalence A × 2 ≃ B × 2, we have an
equivalence A ≃ B.

Proof. Suppose given two types A and B and a map f : A × 2 → B × 2 which is an equiv-
alence. By set truncation, it induces a map ∥ A × 2 ∥0 → ∥ B × 2 ∥0 and thus a map
∥ A ∥0 × 2 → ∥ B ∥0 × 2. We can apply Theorem 2 and deduce the existence of a map
f0 : ∥ A ∥0 → ∥ B ∥0 which is an equivalence. Because the way f0 is constructed (it either
sends parenthesis to matching ones or swaps an element of a chain with the next one) it can
be shown that any element a of ∥ A ∥0, seen as a (non-directed) arrow in ∥ A ∥0 ⊔ ∥ B ∥0,
is sent to a reachable arrow b. This means that the corresponding directed arrow fw a is sent
to either fw b or bw b, the second being reachable from the first, and thus that the fiber
|_|0 a and fiber |_|0 b are equivalent by Proposition 15. We can conclude with the following
series of equivalences:

A ≃ Σ[ a ∈ A ] (fiber |_|0 a) ≃ Σ[ b ∈ B ] (fiber |_|0 b) ≃ B

where the bijection in the middle follows by Proposition 14 from the fact that the types ∥ A ∥0
and ∥ B ∥0 are isomorphic (by Theorem 2) and have equivalent fibers under |_|0 by the above
reasoning. ◀

7 Conclusion and open questions

We have described our formalization of division by 2 of types in Agda, following the proof of
Conway and Doyle. It fills in often left over details, such as bringing in the distinction between
non-directed and direct arrows, the formalization of chains, the elimination of propositions
and so on. It also allowed us to generalize the proof to arbitrary types.

Practical lessons. It also illustrates the usefulness of homotopy type theory, even when
formalizing results about sets, most notably by bringing in quotient types and identity types
with computational rules (and our development does rely quite a lot on the possibility of
computing the result of transporting values along equalities, even though we did not insist so
much on it in the paper). This work moreover shows that this is doable in practice: the library
provided along with cubical Agda is rich enough (even though we mostly used v0.2 because
of compatibility issues) and quite abstract (we almost never had to explicitly manipulate
terms involving the cubical constructions, so that the proof is in principle quite independent
of the precise formalization of HoTT in use). The first thing we observed is that not having
definitional J rule (because it is incompatible with the cubical model) is sometimes quite
cumbersome, although it is nothing compared to what has to be done in traditional Agda (in
which J is definitional, but univalence does not compute, and HITs have to be axiomatized by
hand). Another lesson we learned is that, in cubical Agda, it is much more manageable to use
elimination rules associated to (higher) inductive types than directly use pattern matching:
even though they are a priori less convenient, elimination principles avoid having to explicitly
deal with cubical (interval) variables. A last thing we learned and already mentioned is that
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one should sometimes be careful to prevent the typechecker from computing some parts of
the proof, in order not to make its computation time explode; more generally, one should
be careful about implementing things in an efficient way (e.g. transporting an equivalence is
sometimes out of reach whereas transporting the underlying function is).

Future work. As mentioned in the introduction, one can show that it is necessary to postulate
the excluded-middle by using semantic arguments [17], but it would be interesting to have a
constructive proof that division by two implies excluded-middle (in a similar fashion as for
Cantor-Bernstein-Schröder [14]); we could unfortunately not find such a proof. Generalizations
to natural numbers greater than two have been studied on paper [18, 3, 4] and could also be
formalized in principle. Lastly, it would be interesting to investigate how division generalize to
“numbers” which are not (finite) sets, in the sense that they have non-trivial higher-dimensional
features.
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