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General idea
Given an asynchronous protocol, we relate two associated
geometric constructions:

0 : 0⊥⊥

1 : ⊥1⊥2 : ⊥⊥2

1 : 012

0 : 012

2 : 012

2 : 0⊥2

0 : 0⊥2

1 : ⊥12 2 : ⊥12

0 : 01⊥

1 : 01⊥

t0

t1

t2

the protocol complex the geometric semantics
[Herlihy, . . . ] [Goubault, . . . ]

Aim: show impossibility results!
This work should help generalizing to more communication
primitives.
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ASYNCHRONOUS
COMPUTABILITY
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Asynchronous protocols

We consider here a model with n processes Pi :
I each process has a local memory cell
I there is a global memory with n cells

. . .

. . .

P0 P1 Pn−1

local mem.

global mem.

I each process alternatively does
I update: write in its global memory cell
I scan: read the whole global memory and update its local cell

A protocol = what processes compute depending on values.
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Decision tasks
We write V for the set of values, where ⊥ denotes a dead process.

The question is whether a protocol can solve a task Θ ⊆ Vn × Vn

(where V is the set of values) in the presence of faults.

We suppose here that the initial value of a process is its process
number (for simplicity).

Example (Consensus)
All processes must end with the same value, which is among the
input values of the alive processes, i.e.

Θ =


(01, 00)
(01, 11)

(0⊥, 0⊥)
(⊥1,⊥1)


5 / 24



Execution traces
An execution trace is determined by a word in {ui , si}∗.

Remark
The effect of execution traces on memory is invariant under the
smallest congruence ≈ such that

ujui ≈ uiuj sjsi ≈ sisj

. . .

x ′0 x ′1

x0 x1 . . . xn−1

P0 P1 Pn−1

local mem.

global mem.

e.g.

u0u1 ≈ u1u0
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GEOMETRIC
SEMANTICS
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Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary:

program ⇔ topological space

state ⇔ point of the space
execution trace ⇔ path

equivalent traces ⇔ homotopic paths

so that we can import tools from (algebraic) topology in order to
study concurrent programs.

We actually need to use spaces equipped with a notion of
direction in order to take in account irreversible time.
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An example
Consider two processes executing one round of update/scan, i.e.

u0.s0 ‖ u1.s1

The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.
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u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.

directed path : u1u0s0s1
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u0 s0

u1

s1

t0

t1
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An example
Consider two processes executing one round of update/scan, i.e.

u0.s0 ‖ u1.s1

The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.

homotopy between paths : u1u0s0s1 ≈ u0u1s0s1
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An example
Consider two processes executing one round of update/scan, i.e.

u0.s0 ‖ u1.s1

The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.

some paths are not homotopic
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More examples
This generalizes to more rounds:
consider two processes executing 2 and 4 rounds of update/scan,

u0.s0.u0.s0 ‖ u1.s1.u1.s1.u1.s1.u1.s1

The geometric semantics of this program will be

t2

t1

u2

s2

u2

s2

u1 s1 u1 s1 u1 s1 u1 s1

NB: we will illustrate in dimension 2, where things are simpler
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More examples
This generalizes to more processes:
consider three processes executing one round of update/scan,

u0.s0 ‖ u1.s1 ‖ u2.s2

The geometric semantics of this program will be

t0

t1

t2

NB: we will illustrate in dimension 2, where things are simpler
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Directed spaces

Formally,

Definition
A pospace (X ,≤) consists of a topological space X equipped
with a partial order ≤ ⊆ X × X , which is closed.

A dipath p is a continuous non-decreasing map p : [0, 1]→ X .

A dihomotopy H from a path p to a path q is a continuous map
H : [0, 1]× [0, 1]→ X such that
I H(0, t) = p(t) for every t
I H(1, t) = q(t) for every t
I t 7→ H(s, t) is a dipath for every s
I t 7→ H(0, t) and t 7→ H(1, t) are constant
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Directed paths vs traces

Theorem
Fixing a number of rounds for each process, there is a bijection
between

(i) directed paths up to directed homotopy in the geometric
semantics

(ii) colored interval orders

(iii) execution traces up to ≈

u1 s1

u2

s1

t0

t1

⇔ u1u0s0s1 ≈ u0u1s0s1
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Interval orders
Definition
A family (Ij) of intervals Ij = [aj , bj ] of R is partially ordered by
Ij ≺ Ik whenever x < y for every x ∈ Ij and y ∈ Ik , e.g.

[1, 3] ≺ [5, 6] [1, 3] ‖ [2, 6]

We write Ij ‖ Ik when two elements are not comparable.
A poset isomorphic to such a poset is called an interval order.

Here, we consider a colored version, where elements are of the
form (i , k) with 0 ≤ i < n a process number, such that two
elements with the same labels are comparable.

u0 s0

u1

s1

t0

t1

u0 s0

u1

s1

t0

t1

u0 s0

u1

s1

t0

t1

[u0, s0] � [u1, s1] [u0, s0] ‖ [u1, s1] [u0, s0] ≺ [u1, s1]
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THE
PROTOCOL
COMPLEX
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The protocol complex

The protocol complex is a simplicial complex associated to a
protocol, introduced by Herlihy et al. as a central tool in order to
characterize tasks which are solvable.

We show here how to reconstruct it from the geometric
semantics.

15 / 24



Generic protocols
Given a protocol solving a given task, we can without loss of
generality suppose that it is
I full-information:

ui writes the exact local memory in the global one
I generic:

si adds the contents of global memory to local one
(except at the end where a choice is made).

Example
With two processes, we have for instance

P0 P1

⊥ ⊥

0 1

u1−→
0 ⊥

0 1 u1−→
0 1

0 1 s1−→
0 1

0 1, 01 s0−→
0 1

0, 01 1, 01
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Generic protocols
Given a protocol solving a given task, we can without loss of
generality suppose that it is
I full-information:

ui writes the exact local memory in the global one
I generic:

si adds the contents of global memory to local one
(except at the end where a choice is made).

Definition
The local memory of a process is called its view.
Two (or more) views are coherent when they can occur at the
same time in some execution.
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The protocol complex

Definition
Given a number of rounds, the protocol complex is the simplicial
complex such that
I vertices are the possible views,
I two vertices are linked by an edge when they are coherent,
I three vertices bound a triangle when they are coherent,
I etc.

Example
With two processes, after 0 and 1 rounds, the complexes are
I 0 1

I 0, 0⊥ 1, 01 0, 01 1,⊥1
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From geometry to the complex

One can notice in the last example that edges are in bijection
with directed paths up to homotopy (and with interval orders):

0, 0⊥
0≺1

1, 01
0 1

0, 01
0�1

1,⊥1

(more generally maximal simplices are in bijection with maximal
directed paths up to homotopy).
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From geometry to the complex
This is still true for 2 processes and 2 rounds: 1, ((0(01))(01))

0 1

0

OO

1

^^ OO

0, ((0 )((0 )1)) 0, ((0(01))(01))

0, ((0 ) )

0

��

// 1

0

OO @@

// 1

OO

1, ((0 )((0 )1))

0 1

0

OO @@

// 1

OO
0 // 1

0

OO

//

@@

1

OO

0, ((0 )1)

0 // 1

0

OO @@

// 1

OO^^

1, ((0 )(01))

0 1

0

OO @@

// 1

^^ OO

0, ((0 )(01))

0 1oo

0 //

@@OO

1

^^ OO

1, (0(01))

0 1oo

0

OO

1

^^ OO

0 1oo

0

OO @@

1

^^ OO

0, ((01)(01))

0 1

0

OO @@

1

^^ OO

1, ((01)(01))

0 // 1

0

OO @@

1

^^ OO

1, ( ( 1)) 0, ((0( 1))( 1))
0 1

��

oo

0

OO

1oo

^^ OO
0 1

0

OO

1oo

^^ OO

1, (0( 1))
0 1oo

0

OO

1oo

^^ OO
0, ((01)( 1))

0 1oo

0

OO @@

1oo

^^ OO
1, ((01)( 1))

0 1

0

OO @@

1oo

^^ OO
0, ((01)1)

0 // 1

0

OO @@

1oo

^^ OO
0 // 1

0

OO @@

1

OO

1, ((0( 1))( 1)) 1, ((01)((01)1))

0, ((01)((01)1))

0 1

0

OO @@

1

OO

19 / 24



From interval orders to the complex
Since dipaths up to dihomotopy are the same as interval orders,
we can start from the latter.

Proposition
Given a colored interval order (X ,�), the view V k

i of the i-th
process at round k is given by its restriction to the k-th scan of
the i-th process

V k
i = {(j , l) | (i , k) ‖ (j , l) or (j , l) ≺ (i , k)}

0, 0⊥
0≺1

1, 01
0 1

0, 01
0�1

1,⊥1
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The interval order complex

Definition
The interval order complex is the simplicial complex whose
I vertices are ((i , k),V k

i ) where i stands for the i-th process, k
for the round number and V k

i for an interval order such that
for all (j , l) ∈ V k

i , either (i , k) ‖ (j , l) or (j , l) ≺ (i , k),
I maximal simplices are

{
((0, r0),V r0

0 ), . . . , ((n, rn),V rn
n )
}
such

that there is an interval order (X n
(r),≺) whose restriction to

(i , ri) is V ri
i .

Theorem
The interval order complex is isomorphic to the protocol complex.
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The layered protocol complex
Generally, one considers executions which are layered: all
processes must have finished round n (or died) before process can
start round n + 1.

u0 u0 u0s0 s0 s0

u1

u1

u1

s1

s1

s1

 

u0

u0

u0

s0

s0

s0

u1

u1

u1

s1

s1

s1
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The layered protocol complex
Generally, one considers executions which are layered: all
processes must have finished round n (or died) before process can
start round n + 1.

Proposition
Layered immediate snapshot executions correspond to the interval
orders such that J ≺ K and I ‖ J implies I ≺ K .

Moreover, we can recover the fact that layered protocol complexes
are iterated chromatic subdivisions of the standard simplex.
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The layered protocol complex
Here, we can compute non-layered protocols, which would be
difficult to construct by hand: 1, ((0(01))(01))
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Conclusion

We have linked geometric semantics and asynchronous
computability.

The geometric semantics of many more primitives than
update/scan is known (e.g. test/set, compare/swap, etc.) the
next step is to try to start from the geometric semantics in order
to invent the corresponding “protocol complex”
(NB: interval orders were not really crucial in this work).
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