

ÉRIC GOUBAULT
SAMUEL MIMRAM CHRISTINE TASSON École Polytechnique / PPS

General idea

Given an asynchronous protocol, we relate two associated geometric constructions:

the protocol complex
[Herlihy, ...]

the geometric semantics
[Goubault, . . .]

Aim: show impossibility results!
This work should help generalizing to more communication primitives.

ASYNCHRONOUS COMPUTABILITY

Asynchronous protocols

We consider here a model with n processes P_{i} :

- each process has a local memory cell
- there is a global memory with n cells

Asynchronous protocols

We consider here a model with n processes P_{i} :

- each process has a local memory cell
- there is a global memory with n cells

- each process alternatively does
- update: write in its global memory cell
- scan: read the whole global memory and update its local cell

Asynchronous protocols

We consider here a model with n processes P_{i} :

- each process has a local memory cell
- there is a global memory with n cells

- each process alternatively does
- update: write in its global memory cell
- scan: read the whole global memory and update its local cell

A protocol $=$ what processes compute depending on values.

Decision tasks

We write \mathcal{V} for the set of values, where \perp denotes a dead process.

The question is whether a protocol can solve a task $\Theta \subseteq \mathcal{V}^{n} \times \mathcal{V}^{n}$ (where \mathcal{V} is the set of values) in the presence of faults.

We suppose here that the initial value of a process is its process number (for simplicity).

Example (Consensus)

All processes must end with the same value, which is among the input values of the alive processes, i.e.

$$
\Theta=\left\{\begin{array}{c}
(01,00) \\
(01,11) \\
(0 \perp, 0 \perp) \\
(\perp 1, \perp 1)
\end{array}\right\}
$$

Execution traces

An execution trace is determined by a word in $\left\{u_{i}, s_{i}\right\}^{*}$.

Remark
The effect of execution traces on memory is invariant under the smallest congruence \approx such that

$$
u_{j} u_{i} \approx u_{i} u_{j} \quad s_{j} s_{i} \approx s_{i} S_{j}
$$

Execution traces

An execution trace is determined by a word in $\left\{u_{i}, s_{i}\right\}^{*}$.

Remark
The effect of execution traces on memory is invariant under the smallest congruence \approx such that

$$
u_{j} u_{i} \approx u_{i} u_{j} \quad s_{j} s_{i} \approx s_{i} S_{j}
$$

Execution traces

An execution trace is determined by a word in $\left\{u_{i}, s_{i}\right\}^{*}$.

Remark
The effect of execution traces on memory is invariant under the smallest congruence \approx such that

$$
u_{j} u_{i} \approx u_{i} u_{j} \quad s_{j} s_{i} \approx s_{i} S_{j}
$$

Execution traces

An execution trace is determined by a word in $\left\{u_{i}, s_{i}\right\}^{*}$.

Remark
The effect of execution traces on memory is invariant under the smallest congruence \approx such that

$$
u_{j} u_{i} \approx u_{i} u_{j} \quad s_{j} s_{i} \approx s_{i} S_{j}
$$

e.g.
$u_{0} u_{1}$
$\approx \quad u_{1}$

Execution traces

An execution trace is determined by a word in $\left\{u_{i}, s_{i}\right\}^{*}$.

Remark
The effect of execution traces on memory is invariant under the smallest congruence \approx such that

$$
u_{j} u_{i} \approx u_{i} u_{j} \quad s_{j} s_{i} \approx s_{i} S_{j}
$$

e.g.
$u_{0} u_{1}$
$\approx \quad u_{1} u_{0}$

GEOMETRIC SEMANTICS

Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary: program $\quad \Leftrightarrow \quad$ topological space
so that we can import tools from (algebraic) topology in order to study concurrent programs.

Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary:

program	$\Leftrightarrow \quad$ topological space
state	\Leftrightarrow

so that we can import tools from (algebraic) topology in order to study concurrent programs.

Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary:

program	\Leftrightarrow
state	\Leftrightarrow
topological space	
execution trace	\Leftrightarrow

so that we can import tools from (algebraic) topology in order to study concurrent programs.

Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary:

program	\Leftrightarrow	topological space
state	\Leftrightarrow	point of the space
execution trace	\Leftrightarrow	path
equivalent traces	\Leftrightarrow	homotopic paths

so that we can import tools from (algebraic) topology in order to study concurrent programs.

Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary:

program	\Leftrightarrow	topological space
state	\Leftrightarrow	point of the space
execution trace	\Leftrightarrow	path
equivalent traces	\Leftrightarrow	homotopic paths

so that we can import tools from (algebraic) topology in order to study concurrent programs.

We actually need to use spaces equipped with a notion of direction in order to take in account irreversible time.

An example

Consider two processes executing one round of update/scan, i.e.

$$
u_{0} \cdot s_{0} \quad \| \quad u_{1} \cdot s_{1}
$$

The geometric semantics of this program will be

i.e. a square $[0,1] \times[0,1]$ minus two holes, which is directed componentwise.

An example

Consider two processes executing one round of update/scan, i.e.

$$
u_{0} \cdot s_{0} \quad \| \quad u_{1} \cdot s_{1}
$$

The geometric semantics of this program will be

i.e. a square $[0,1] \times[0,1]$ minus two holes, which is directed componentwise.

$$
\text { directed path } \quad: \quad u_{1} u_{0} s_{0} s_{1}
$$

An example

Consider two processes executing one round of update/scan, i.e.

$$
u_{0} \cdot s_{0} \quad \| \quad u_{1} \cdot s_{1}
$$

The geometric semantics of this program will be

i.e. a square $[0,1] \times[0,1]$ minus two holes, which is directed componentwise.
non directed path
???

An example

Consider two processes executing one round of update/scan, i.e.

$$
u_{0} \cdot s_{0} \quad \| \quad u_{1} \cdot s_{1}
$$

The geometric semantics of this program will be

i.e. a square $[0,1] \times[0,1]$ minus two holes, which is directed componentwise.

$$
\text { homotopy between paths } \quad: \quad u_{1} u_{0} s_{0} s_{1} \approx u_{0} u_{1} s_{0} s_{1}
$$

An example

Consider two processes executing one round of update/scan, i.e.

$$
u_{0} \cdot s_{0} \quad \| \quad u_{1} \cdot s_{1}
$$

The geometric semantics of this program will be

i.e. a square $[0,1] \times[0,1]$ minus two holes, which is directed componentwise.
some paths are not homotopic

More examples

This generalizes to more rounds: consider two processes executing 2 and 4 rounds of update/scan,

$$
u_{0} \cdot s_{0} \cdot u_{0} \cdot s_{0} \quad \| \quad u_{1} \cdot s_{1} \cdot u_{1} \cdot s_{1} \cdot u_{1} \cdot s_{1} \cdot u_{1} \cdot s_{1}
$$

The geometric semantics of this program will be

More examples

This generalizes to more processes: consider three processes executing one round of update/scan,

$$
u_{0 . s_{0}}^{\|} u_{1} \cdot s_{1} \| u_{2 . s_{2}}
$$

The geometric semantics of this program will be

NB: we will illustrate in dimension 2, where things are simpler

Directed spaces

Formally,

Definition

A pospace (X, \leq) consists of a topological space X equipped with a partial order $\leq \subseteq X \times X$, which is closed.

A dipath p is a continuous non-decreasing map $p:[0,1] \rightarrow X$.
A dihomotopy H from a path p to a path q is a continuous map $H:[0,1] \times[0,1] \rightarrow X$ such that

- $H(0, t)=p(t)$ for every t
- $H(1, t)=q(t)$ for every t
- $t \mapsto H(s, t)$ is a dipath for every s
- $t \mapsto H(0, t)$ and $t \mapsto H(1, t)$ are constant

Directed paths vs traces

Theorem
Fixing a number of rounds for each process, there is a bijection between
(i) directed paths up to directed homotopy in the geometric semantics
(iii) execution traces up to \approx

$\Leftrightarrow \quad u_{1} u_{0} s_{0} s_{1} \approx u_{0} u_{1} s_{0} s_{1}$

Directed paths vs traces

Theorem
Fixing a number of rounds for each process, there is a bijection between
(i) directed paths up to directed homotopy in the geometric semantics
(ii) colored interval orders
(iii) execution traces up to \approx

$\left[u_{0}, s_{0}\right] \succ\left[u_{1}, s_{1}\right]$

$\left[u_{0}, s_{0}\right] \|\left[u_{1}, s_{1}\right]$

$\left[u_{0}, s_{0}\right] \prec\left[u_{1}, s_{1}\right]$

Interval orders

Definition

A family $\left(l_{j}\right)$ of intervals $I_{j}=\left[a_{j}, b_{j}\right]$ of \mathbb{R} is partially ordered by $I_{j} \prec I_{k}$ whenever $x<y$ for every $x \in I_{j}$ and $y \in I_{k}$, e.g.

$$
[1,3] \prec[5,6] \quad[1,3] \|[2,6]
$$

We write $I_{j} \| I_{k}$ when two elements are not comparable. A poset isomorphic to such a poset is called an interval order.

Interval orders

Definition

A family $\left(I_{j}\right)$ of intervals $I_{j}=\left[a_{j}, b_{j}\right]$ of \mathbb{R} is partially ordered by $I_{j} \prec I_{k}$ whenever $x<y$ for every $x \in I_{j}$ and $y \in I_{k}$, e.g.

$$
[1,3] \prec[5,6] \quad[1,3] \|[2,6]
$$

We write $I_{j} \| I_{k}$ when two elements are not comparable. A poset isomorphic to such a poset is called an interval order.

Here, we consider a colored version, where elements are of the form (i, k) with $0 \leq i<n$ a process number, such that two elements with the same labels are comparable.

$\left[u_{0}, s_{0}\right] \|\left[u_{1}, s_{1}\right]$

$\left[u_{0}, s_{0}\right] \prec\left[u_{1}, s_{1} 1\right]_{4}$

THE
 PROTOCOL COMPLEX

The protocol complex

The protocol complex is a simplicial complex associated to a protocol, introduced by Herlihy et al. as a central tool in order to characterize tasks which are solvable.

We show here how to reconstruct it from the geometric semantics.

Generic protocols

Given a protocol solving a given task, we can without loss of generality suppose that it is

- full-information:
u_{i} writes the exact local memory in the global one
- generic:
s_{i} adds the contents of global memory to local one (except at the end where a choice is made).

Example

With two processes, we have for instance

Generic protocols

Given a protocol solving a given task, we can without loss of generality suppose that it is

- full-information:
u_{i} writes the exact local memory in the global one
- generic:
s_{i} adds the contents of global memory to local one (except at the end where a choice is made).

Example

With two processes, we have for instance

Generic protocols

Given a protocol solving a given task, we can without loss of generality suppose that it is

- full-information:
u_{i} writes the exact local memory in the global one
- generic:
s_{i} adds the contents of global memory to local one (except at the end where a choice is made).

Example

With two processes, we have for instance

Generic protocols

Given a protocol solving a given task, we can without loss of generality suppose that it is

- full-information:
u_{i} writes the exact local memory in the global one
- generic:
s_{i} adds the contents of global memory to local one (except at the end where a choice is made).

Example

With two processes, we have for instance

Generic protocols

Given a protocol solving a given task, we can without loss of generality suppose that it is

- full-information:
u_{i} writes the exact local memory in the global one
- generic:
s_{i} adds the contents of global memory to local one (except at the end where a choice is made).

Example

With two processes, we have for instance

Generic protocols

Given a protocol solving a given task, we can without loss of generality suppose that it is

- full-information:
u_{i} writes the exact local memory in the global one
- generic:
s_{i} adds the contents of global memory to local one (except at the end where a choice is made).

Definition

The local memory of a process is called its view.
Two (or more) views are coherent when they can occur at the same time in some execution.

The protocol complex

Definition

Given a number of rounds, the protocol complex is the simplicial complex such that

- vertices are the possible views,
- two vertices are linked by an edge when they are coherent,
- three vertices bound a triangle when they are coherent,
- etc.

Example

With two processes, after 0 and 1 rounds, the complexes are

- $0-1$
- $0,0 \perp-1,01-0,01-1, \perp 1$

From geometry to the complex

One can notice in the last example that edges are in bijection with directed paths up to homotopy (and with interval orders):

(more generally maximal simplices are in bijection with maximal directed paths up to homotopy).

From geometry to the complex

This is still true for 2 processes and 2 rounds:

From interval orders to the complex

Since dipaths up to dihomotopy are the same as interval orders, we can start from the latter.

From interval orders to the complex

Since dipaths up to dihomotopy are the same as interval orders, we can start from the latter.

Proposition

Given a colored interval order (X, \preceq), the view V_{i}^{k} of the i-th process at round k is given by its restriction to the k-th scan of the i-th process

$$
V_{i}^{k}=\{(j, l) \mid(i, k) \|(j, l) \text { or }(j, l) \prec(i, k)\}
$$

$$
0,0 \perp \frac{\square}{0<1} 1,01 \frac{\boxed{\bullet}}{01} 0,01 \frac{\boxed{\bullet}}{0 \succ 1} 1, \perp 1
$$

The interval order complex

Definition

The interval order complex is the simplicial complex whose

- vertices are $\left((i, k), V_{i}^{k}\right)$ where i stands for the i-th process, k for the round number and V_{i}^{k} for an interval order such that for all $(j, I) \in V_{i}^{k}$, either $(i, k) \|(j, I)$ or $(j, l) \prec(i, k)$,
- maximal simplices are $\left\{\left(\left(0, r_{0}\right), V_{0}^{r_{0}}\right), \ldots,\left(\left(n, r_{n}\right), V_{n}^{r_{n}}\right)\right\}$ such that there is an interval order $\left(X_{(r)}^{n}, \prec\right)$ whose restriction to $\left(i, r_{i}\right)$ is $V_{i}^{r_{i}}$.

Theorem

The interval order complex is isomorphic to the protocol complex.

The layered protocol complex

Generally, one considers executions which are layered: all processes must have finished round n (or died) before process can start round $n+1$.

The layered protocol complex

Generally, one considers executions which are layered: all processes must have finished round n (or died) before process can start round $n+1$.

Proposition

Layered immediate snapshot executions correspond to the interval orders such that $J \prec K$ and $I \| J$ implies $I \prec K$.

Moreover, we can recover the fact that layered protocol complexes are iterated chromatic subdivisions of the standard simplex.

The layered protocol complex

Here, we can compute non-layered protocols, which would be difficult to construct by hand:

((01)(01))

Conclusion

We have linked geometric semantics and asynchronous computability.

The geometric semantics of many more primitives than update/scan is known (e.g. test/set, compare/swap, etc.) the next step is to try to start from the geometric semantics in order to invent the corresponding "protocol complex"
(NB: interval orders were not really crucial in this work).

