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DVCS

Distributed Version Control Systems are used when working
collaboratively on files

. . .

Those feature:
I easy import of modifications from others
I storing history of files
I maintaining different flavors (branches) of a same software
I no centralized architecture
I etc.
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SOME TERMINOLOGY

A patch is a file coding difference between two files
(i.e. the list of inserted and deleted lines).

Users can perform two actions:
I commit the difference between the current version and the

last committed version as a patch to a server
I update its current version by importing all the new patches

on the server
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USING DVCS
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Cinzia Sam

Merging modifications is naturally
modeled by pushouts.
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USING DVCS
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CONFLICTS
However, not every pair of coinitial morphisms has a pushout!

?

a
c
b

AA

a
d
b

]]

a
b

f

]]

g

AA

a
<<<<<<< HEAD
c
=======
d
>>>>>>> 5c55f7c1c4ad1e02be6d0474e858bd8ad712e22b
b
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CONFLICTS
However, not every pair of coinitial morphisms has a pushout!
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HANDLING CONFLICTS
We should extend our model to account for “files with conflicts”
and their handling.

There were many proposals for modeling DVCS:
I Darcs: a theory based on patch commutation [Roundy,. . . ]
I operational transformations [Ellis,Gibbs,. . . ]
I inverse semigroups [Jacobson09]
I the Kleisli category of the exception monad [Houston12]
I . . .

– Which one is the good one?
– We should start from a

universal characterization!
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THE STARTING POINT

I Starting from the category of files, the right model for files
with conflicts can be obtained by freely adding pushouts.

I Since we also want an initial object (the empty file), we
actually want to add all finite colimits, i.e. the

free finite cocompletion
of the category of files and patches.
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PLAN

1. Define the category L of files.
2. Define abstractly the its free finite cocompletion P.
3. Provide a concrete description of the category P.
4. Study some examples.
5. Sketch the proof of the concrete description.
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THE CATEGORY L
We suppose fixed a set L of lines and write [n] = {0, . . . , n − 1}.
Definition
The category L has
I files as objects, i.e. pairs (n, `) with

[n]

`
��
L

I a morphism f : (n, `)→ (n′, `′) is a partial injective increasing
function f : [n]→ [n′] such that

[n]

` ��

f // [n′]

`′��
L
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THE CATEGORY L

For instance, a morphism f : (3, `)→ (5, `′) is

a0 d0

b1 a1

c2 d2

d3

b4

which corresponds to deleting the line c and adding lines d .

(thus partial injective increasing functions)
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HANDLING LABELS

Here I will focus on the case without labels, i.e. the category L has
I objects: integers
I morphisms: partial injective increasing functions

(the labeled case can be recovered by a slice category construction)
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THE CATEGORY L
Proposition
The category L is the free category generated by

sn
i : n→ n + 1 and dn

i : n + 1→ n

s4
2 =

0 0
1 1
2 2
3 3

4

d4
2 =

0 0
1 1
2 2
3 3
4

(insertion) (deletion)

subject to the relations

sn+1
i sn

j = sn+1
j+1 s

n
i dn

i sn
i = idn dn

i dn+1
j = dn

j dn+1
i+1

Remark
If we restrict to total functions, we get patches with insertions
only. We will handle this case in the following.
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A SIMPLER CASE

In this talk, we will consider the case
I without labels
I without deletions

(see the article for the general case). So,

Definition
The category L has
I objects: N
I morphisms f : m→ n are injective increasing functions

f : [m]→ [n]

(also known as the augmented presimiplicial category ∆).
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What is the category P
obtained by freely adding

all finite colimits
to L?
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A FREE COCOMPLETION OF L

Our main contribution:

Theorem
The free finite conservative cocompletion P of L is the category:
I objects (A,≤) are finite sets equipped with a transitive

relation
I a morphism f : A→ B is a function respecting the relation
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A FREE COCOMPLETION OF L

We have an embedding L ↪→ P:

3  ([3], <)

a
b
c

 

a
b
c
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A FREE COCOMPLETION OF L

We have all pushouts, e.g. the pushout of

a′

a
c
b

f1←−
a

b

f2−→
a
d
b

is
a′

a
c d

b
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A FREE COCOMPLETION OF L

Every object in P can be obtained as a colimit of objects in L.
For instance, consider the morphisms

s−→ and t−→

By coproduct, we get a “sequentialization” morphism

The pushout of

seq←−− seq′−−→ is
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A FREE COCOMPLETION OF L

Notice that we get a way of identifying two independent lines,
which can be used to solve a conflict.

19 / 35



A FREE COCOMPLETION OF L

Notice that we get a way of identifying two independent lines,
which can be used to solve a conflict.

// oo

19 / 35



A FREE COCOMPLETION OF L

Notice that we get a way of identifying two independent lines,
which can be used to solve a conflict.

id•
<<

// oo

id•
bb

19 / 35



A FREE COCOMPLETION OF L

Notice that we get a way of identifying two independent lines,
which can be used to solve a conflict.

id•
<<

//

merge
OO

oo

id•
bb
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A FREE COCOMPLETION

Definition
The free cocompletion P of a category L is the category with
y : L → P such that for every cocomplete category C and functor
F : L → C, there exists F̃ : P → C cocontinuous such that

L
y
��

F // C

P
F̃

??

Theorem (folklore)
The free cocompletion of L is the category L̂ of presheaves
over L: functors Lop → Set and natural transformations
(and the embedding y : L → L̂ is given by Yoneda).
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PRESHEAVES – GRAPHS
Example
The category of graphs is the category of presheaves over the
category

G = V
t
//

s // E

i.e. Graph ∼= Ĝ = [Gop,Set]. Namely, given P ∈ Ĝ we have a
diagram in Set

P(V ) P(E )
P(s)oo

P(t)
oo

i.e. a graph.

For instance,

a

b

c

f g

h

 {a, b, c} {f , g , h}
P(s)oo

P(t)
oo

corresponds to the presheaf
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PRESHEAVES – PRESIMPLICIAL SETS
Similarly, presheaves in the free cocompletion L̂ of L are
(augmented) presimplicial sets:

∈ P(1) ∈ P(2) ∈ P(3) ∈ P(4)

For instance,

a

b c

d

f

g

h

i

j
α

corresponds to P ∈ L̂ with

P(1) = {a, b, c, d} P(2) = {f , g , h, i , j} P(3) = {α}
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PRESHEAVES – PRESIMPLICIAL SETS
Similarly, presheaves in the free cocompletion L̂ of L are
(augmented) presimplicial sets:

∈ P(1) ∈ P(2) ∈ P(3) ∈ P(4)

In terms of files,

a
b
c

 

a

b

c
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PRESHEAVES – PRESIMPLICIAL SETS
Similarly, presheaves in the free cocompletion L̂ of L are
(augmented) presimplicial sets:

∈ P(1) ∈ P(2) ∈ P(3) ∈ P(4)

Remark
Notice that every such presheaf has an underlying graph: G ↪→ L.
Namely, we have the following full subcategory of L

0 // 1
s1
1 //

s1
0

// 2 ////// 3 //////// . . .
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– Why do we get such a complicated
category for conflicting files?

– This is not the right completion,
because we are adding again colimits
which were already present in L!
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YONEDA DOES NOT PRESERVE COLIMITS
We have the following pushout in L:

3
2
s2
2 ==

2
s2
0aa

1s1
0

aa

s1
1

== for instance:

a
b
c

a
b

AA

b
c

]]

b

`` >>

Yoneda does not commute with pushouts:
?

y(2)

::

y(2)

dd

y(1)
s1
0

cc

s1
1

;; =

66 hh

s1
0

hh
s1
1

66

and
6= = y(3)
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Definition
The free conservative cocompletion P of a category L is the
category with cocontinuous y : L → P such that for every
cocomplete category C and cocontinuous functor F : L → C, there
exists F̃ : P → C cocontinuous such that

L
y
��

F // C

P
F̃

??

25 / 35



A FREE COCOMPLETION

Definition
The free conservative cocompletion P of a category L is the
category with cocontinuous y : L → P such that for every
cocomplete category C and cocontinuous functor F : L → C, there
exists F̃ : P → C cocontinuous such that

L
y
��

F // C

P
F̃

??

Theorem (Kelly)
The free cocompletion of L is the full subcategory of L̂ whose
objects are continuous presheaves.

25 / 35



A FREE COCOMPLETION

Definition
The free conservative cocompletion P of a category L is the
category with cocontinuous y : L → P such that for every
cocomplete category C and cocontinuous functor F : L → C, there
exists F̃ : P → C cocontinuous such that

L
y
��

F // C

P
F̃

??

Remark
The finite conservative cocompletion can be obtained by further
restricting to “finite” presheaves.
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Theorem (Kelly)
The free cocompletion of L is the full subcategory of L̂ whose
objects are continuous presheaves P:

P(colimD) ∼= lim(P ◦ D)

whenever D is a diagram in L admitting a colimit.

So we have to
1. find properties satisfied by continuous presheaves
2. characterize all diagrams which admits a colimit in L
3. show that presheaves satisfying 1. are the continuous ones
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CONTINUOUS PRESHEAVES IN L̂
We have the following pushout in L:

3
2
s2
2 ==

2
s2
0aa

1s1
0

aa

s1
1

== for instance:

a
b
c

a
b

AA

b
c

]]

b

`` >>

Given a continuous P ∈ L̂, we should have a pullback in Set

P(3)

P(2)
xx

P(s2
2 )

P(2)
&&

P(s2
0 )

P(1)
&&

P(s1
0 )

xx
P(s1

1 )

i.e. P(3) ∼= P(2)×P(1) P(2):

P(3) is the set of paths of length 2 in the underlying graph of P.
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CONTINUOUS PRESHEAVES IN L̂
By elaborating on this idea:
Proposition
A continuous presheaf P ∈ L̂ satisfies
1. for each non-empty path x � y there exists exactly one edge

x → y:

x1 // x2 // . . . // xn
((x

66

// y

(in particular there is at most one edge between two vertices),
2. P(n + 1) is the set of paths of length n in the underlying

graph of P, and P(0) is reduced to one element.

Remark
Such a presheaf is characterized by its underlying graph,
whose edges form transitive relation on its set of vertices.
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We want to show that this is
a characterization

of continuous presheaves.

P(colimD) ∼= lim(P ◦ D)

whenever D is a diagram in L admitting a colimit
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COLIMIT DIAGRAMS IN L
We saw that we have the following pushout in L

3
2
s2
2 ==

2
s2
0aa

1s1
0

aa

s1
1

==

More generally, every object n ∈ L is a colimit of objects 1 and 2
(the inclusion functor G ↪→ L is dense)

In order to test that P ∈ L̂ sends the colimit of every diagram D
to a limit, we can restrict to those where
I the objects are 1 and 2
I the morphisms are

s1
0 : 1→ 2 and s1

1 : 1→ 2
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COLIMIT DIAGRAMS IN L

Notice that these two diagrams always admit the same colimits:

C

B

A

]]
s
??

A

s
__ AA

C

B

A

^^

s

OO AA

By elaborating on this idea, we can restrict to diagrams in which
every object 2 is the target of
I one morphism s1

0 : 1→ 2
I and one morphism s1

1 : 1→ 2
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COLIMIT DIAGRAMS IN L

Those diagrams are of the form

El(G)
π−→ L

for some graph G ∈ Ĝ.

For instance the diagram

2 2 2
1

s1
1 77

1
s1
0gg s1

1 77

s1
1

++

1
s1
0gg s1

1 77

1
s1
0

ss

s1
0gg

2

is “described” by the graph

• // • // 55• // •

32 / 35



COLIMIT DIAGRAMS IN L

Those diagrams are of the form

El(G)
π−→ L

for some graph G ∈ Ĝ.

Theorem (Paré’73,Street,Walters’73)
Any functor F : C → D factorizes in an essentially unique way into
I a final functor (= does not changes colimit)
I followed by a discrete fibration (= “described” by a presheaf)
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COLIMIT DIAGRAMS IN L

Those diagrams are of the form

El(G)
π−→ L

for some graph G ∈ Ĝ.

From there and RF a NF associated to F : G ↪→ L, we can
I characterize the graphs G such that the diagram

El(G)
π−→ L

admits a colimit in L,
I show that those diagrams are preserved by presheaves

satisfying the previous properties.
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THE FREE FINITE COCOMPLETION

The properties we have shown earlier actually characterize
presheafs in L̂ which are continuous. Thus,

Theorem
The free finite conservative cocompletion P of L is the category:
I objects (A,≤) are finite sets equipped with a transitive

relation
I a morphism f : A→ B is a function respecting the relation
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WHAT WE HAVE

I A characterization of the category of files with conflicts,
starting from a universal property.

I We have shown the case of patches with insertions,
but we can handle deletions and labels too.

I Pushouts can be computed concretely.
I Interestingly we recover Houston’s category (up to op)!
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FUTURE WORKS

I A presentation of the free cocompletion:
what are “atomic patches” and their relations?

I Extend to more complex data structures:
multiples files, structured files (xml), etc.

I Links with event structures in order to handle common
operations: branches, cherry-picking, etc.
(this is some form of game semantics!)
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